journal of combinatorial theory (A) 17, 131-133 (1974)

Note

Spheres Tangent to All the Faces of a Simplex

George B. Purdy
Center for Advanced Computation, University of Illinois, Urbana, Illinois 61801
Communicated by Paul Erdös

Received November I, 1972

There are at most 2^{n} spheres tangent to all $n+1$ faces of an n-simplex. It has been shown that the minimum number of such spheres is $2^{n}-c\left(n, \frac{1}{2}(n+1)\right.$) if n is odd and $2^{n}-c\left(n, \frac{1}{2}(n+1)\right)$ if n is even. The object of this note is to show that this result is a consequence of a theorem in graph theory.

It is known that there are at most 2^{n} spheres tangent to all $n+1$ faces of an n-simplex.
H. E. Vaughan and Hyman Gabai [1] conjectured that the minimum number of such spheres is

$$
2^{n}-C\left(n, \frac{1}{2}(n+1)\right)
$$

or

$$
2^{n}-C\left(n, \frac{1}{2}(n+2)\right)
$$

according as n is odd or even. By an ingenious argument, Leon Gerber [2] proved their conjecture. The object of this note is to show that Gerber's result is a consequence of a very general theorem of Paul Erdös.

We begin with a lemma from [1, p. 387] but in the notation of [2].
Lemma 1. Let $\mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{n}\right)$ with $e_{i} \in\{-1,1\}$. For $i \in\{0,1, \ldots, n\}$, let $A_{i}, \mathbf{a}_{i}, F_{i}, f_{i}$ denote respectively a vertex of an n-simplex, its position vector, the hyperplane of the opposite face, and its $(n-1)$-dimensional measure. Let P be the center of a sphere which is tangent to F_{i} for all $i \in\{0,1, \ldots, n\}$, and let e_{i} be 1 or -1 according as P and A_{i} are on the same or opposite sides of F_{i}. Then $S(\mathrm{e})=\sum_{i=0}^{n} e_{i} f_{i}>0$ and the position vector of P is given by

$$
\begin{equation*}
\mathbf{P}=\sum_{i=0}^{n} e_{i} f_{i} \mathbf{a}_{i} / S(\mathbf{e}) . \tag{1}
\end{equation*}
$$

Conversely, for any choice of \mathbf{e} such that $S(\mathbf{e})>0$, the point whose position vector is given by (1) is equidistant from the F_{i}.
If N is the number of solutions \mathbf{e} to $S(\mathbf{e})=0$, then the number of \mathbf{e} 's such that $S(\mathrm{e})>0$ is $(1 / 2)\left(2^{n+1}-N\right)$, which is the number of spheres tangent to all the faces of the simplex.
To prove the Vaughan-Gabai conjecture, it is therefore enough to show that $N \leqslant 2 C(n,(1 / 2)(n+1))$ when n is odd and $N \leqslant 2 C(n,(1 / 2)(n+2))$ when n is even. To do this we need another lemma.

Lemma 2. Let f_{0}, \ldots, f_{n} be positive and not all equal, and let N be the number of solutions \mathbf{e} of

$$
\begin{equation*}
\sum_{i=0}^{n} e_{i} f_{i}=0 . \tag{1}
\end{equation*}
$$

Then $N \leqslant 2 C(n,(n+2) / 2)$ if n is even and $N \leqslant C(n+1,(n+3) / 2)$ if n is odd.

Proof. Since $f_{0}, f_{1}, \ldots, f_{n}$ are not all equal, we may suppose without loss of generality that $f_{0}>f_{1}$. Then

$$
-f_{0}-f_{1}<-f_{0}+f_{1}<f_{0}-f_{1}<f_{0}+f_{1}
$$

Let the N solutions of (1) be $\mathbf{e}^{(i)}, 1 \leqslant i \leqslant N$. Then the ($n-1$)-tuples

$$
\tilde{\mathbf{e}}^{(i)}=\left(e_{2}^{(i)}, \ldots, e_{n}^{(i)}\right), \quad 1 \leqslant i \leqslant N,
$$

must be distinct, for if $e^{(i)}=e^{(j)}$ for some indices i and j, then we see from (1) that

$$
\begin{aligned}
\sum_{k=0}^{n} e_{k}^{(i)} f_{k} & =\sum_{k=0}^{n} e_{k}^{(j)} f_{k}, \\
e_{0}^{(i)} f_{0}+e_{1}^{(i)} f_{1} & =e_{0}^{(j)} f_{v}+e_{1}^{(i)} f_{1}, \\
\left(e_{0}^{(i)}, e_{1}^{(i)}\right) & =\left(e_{0}^{(j)}, e_{1}^{(j)}\right),
\end{aligned}
$$

$\mathbf{e}^{(i)}=\mathbf{e}^{(j)}$, and $i=j$.
For each i, let \tilde{S}_{i} be the set of those $j, 2 \leqslant j \leqslant n$, for which $e_{i}^{(i)}=1$. Then there are no inclusion chains of length five among the \tilde{S}_{i}.

To see this, suppose that

$$
\tilde{S}_{i} \subset \tilde{S}_{j} \subset \tilde{S}_{k} \subset \tilde{S}_{l} \subset \tilde{S}_{m}
$$

for some distinct i, j, k, l, and m.

Putting $\sigma_{s}=\sum_{r=2}^{n} e_{r}^{(s)} f_{r}$, we have $\sigma_{i}<\sigma_{j}<\sigma_{k}<\sigma_{l}<\sigma_{m i}$. But there are only four possible values for $\sigma_{s}= \pm f_{0} \pm f_{1}$.

Hence there are indeed no inclusion chains of length five among the \tilde{S}_{i}, and by a theorem of Paul Erdös [3; p. 900, Theorem 5], the number N of the \widetilde{S}_{i} is at most equal to the sum of the 4 largest binomial coefficients $C(n-1, j), 0 \leqslant j \leqslant n-1$. Calculation shows this sum to be $2 C(n,(1 / 2)(n+2))$ when n iseven and $C(n+1,(1 / 2)(n+3))$ when n is odd.

We now prove the Vaughan-Gabai conjecture. We consider separately the cases n odd and n even.

Suppose that n is even; then the number of terms in the sum of (1) is odd. If the f_{i} are all equal, then $N=0$; otherwise, by Lemma 2, $N \leqslant 2 C(n,(n+2) / 2)$.

Suppose that n is odd; if the f_{i} are all equal, then the solutions of (1) are those e having exactly $((n+1) / 2) e_{i}$ such that $e_{i}=1$, and $N=$ $C(n+1,(n+1) / 2)$. If the f_{i} are not all equal, then by Lemma 2

$$
\begin{aligned}
N & \leqslant C(n+1,(n-1) / 2)<C(n \mid 1,(n+1) / 2) \\
& =2 C(n,(n+1) / 2), \text { as required. }
\end{aligned}
$$

In addition to proving the conjecture, this also shows that the maximum of N is isolated. That is, when n is odd, there are no values of N between $C(n+1,(n+3) / 2)$ and $2 C(n,(n+1) / 2)$. Consequently, in odd dimensional space, there are no simplices having T tangent spheres where

$$
2^{n}-C(n,(1 / 2)(n+1))<T<2^{n}-(1 / 2) C(n+1,(1 / 2)(n+3)) .
$$

The existence of gaps in the value of T is not suggested by the example of three-dimensional space. When $n=3$, the above states merely that there are no values of T strictly between 5 and 6 , and indeed when $n=3$ all values between the maximum and the minimum are achieved. But when $n=5$, we see that there are no values of T between 22 and $24 \frac{1}{2}$; that is, $T \neq 23,24$. As n gets larger the gap widens.

If n is even, then the f_{i} cannot be all equal and the existence of gaps is still undecided.

References

1. H. E. Vaughan and H. Gabai, Hyperspheres associated with an n-simplex, Amer. Math. Monthly 74 (1967), 384-392.
2. L. Gerber, Spheres tangent to all the faces of a simplex, J. Combinatorial Theory (A) 12 (1972), 453-456.
3. P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898-902.
