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There are at most 2” spheres tangent to all n + 1 faces of an n-simplex. It has 
been shown that the minimum number of such spheres is 2” - c(n, &(n +l)) 
if n is odd and 2” - c(n, i(n + 1)) if n is even. The object of this note is to show 
that this result is a consequence of a theorem in graph theory. 

It is known that there are at most 2” spheres tangent to all n + 1 faces 
of an n-simplex. 

H. E. Vaughan and Hyman Gabai [1] conjectured that the minimum 
number of such spheres is 

or 
2” - C(n, &(n + 1)) 

2” - C(n, $(n + 2)) 

according as n is odd or even. By an ingenious argument, Leon Gerber [2] 
proved their conjecture. The object of this note is to show that Gerber’s 
result is a consequence of a very general theorem of Paul ErdBs. 

We begin with a lemma from [l, p. 3871 but in the notation of [2]. 

LEMMA I. Let e = (e,,e, ,..., e,) with eiE(--l, 11. For i~(0, I,..., n), 
let Ai , ai , Fi ,,f;l denote respectively a vertex of an n-simplex, its position 
vector, the hyperplane of the opposite face, and its (n - I)-dimensional 
measure. Let P be the center of a sphere which is tangent to r;i for all 
i E (0, l,..., n}, and let ei be 1 or - 1 according as P and Ai are on the same 
or opposite sides of Fi . Then S(e) = CL,, ei fi > 0 and the position vector 
of P is given by 

P = t e&ails(e). (1) 
i=O 

131 
Copyright 6 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82182697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


132 GEORGE B. PURDY 

Conversely, for any choice of e such that S(e) > 0, the point whose position 
vector is given by (1) is equidistant from the Fi . 

If N is the number of solutions e to S(e) = 0, then the number of e’s 
such that S(e) > 0 is (1/2)(2”+l - N), which is the number of spheres 
tangent to all the faces of the simplex. 

To prove the Vaughan-Gabai conjecture, it is therefore enough to show 
that N < 2C(n, (1/2)(n + I)) when n is odd and N < 2C (n, (1/2)(n + 2)) 
when n is even. To do this we need another lemma. 

LEMMA 2. Letf, ,..., fn be positive and not all equal, and let N be the 
number of solutions e of 

i ei.L = 0. (1) 

Then N < 2C(n, (n + 2)/2) if n is even and N < C (n + 1, (n + 3)/2) if n 
is odd. 

Proof. Since f. , fi ,..., fn are not all equal, we may suppose without 
loss of generality that f. > fl . Then 

-fo -f1 < -fo +fl <fo -f1 <fo +fi. 

Let the N solutions of (1) be eci), 1 < i < N. Then the (n - 1)-tuples 

E(i) = (ef) ,..., et’), 1 < i < N, 

must be distinct, for if eu) = e(j) f or some indices i and j, then we see from 
(1) that 

i. fd% = 2 ei%, 
k=O 

$f, + $fi E e”f + e(‘)f 0 0 1 12 

(e 
p, ey) = (ef), ef)), 

e(i) = e(j), and i = j. 

For each i, let si be the set of those j, 2 < j < n, for which eii) = 1. 
Then there are no inclusion chains of length five among the & . 

To see this, suppose that 

for some distinct i, j, k, I, and m. 
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Putting us = cF=, eis)f7 , we have Ui < oj < ok < uz < unl . But there 
are only four possible values for Q’, = f f0 i fi . 

Hence there are indeed no inclusion chains of length five among the si , 
and by a theorem of Paul Erdijs [3; p. 900, Theorem 51, the number N 

of the si is at most equal to the sum of the 4 largest binomial coefficients 
C(n - l,j), 0 < j < n - 1. Calculation shows this sum to be 
2C(n, (1/2)(n + 2))when niseven and C(n + 1,(1/2)(n + 3))whenn isodd. 

We now prove the Vaughan-Gabai conjecture. We consider separately 
the cases n odd and n even. 

Suppose that n is even; then the number of terms in the sum of 
(1) is odd. If the& are all equal, then N = 0; otherwise, by Lemma 2, 
N f 2c (n, (n + 2)/4. 

Suppose that n is odd; if the fi are all equal, then the solutions of 
(1) are those e having exactly ((n + 1)/2) ei such that ei = 1, and N = 
C(n + 1, (n + 1)/2). If thefi are not all equal, then by Lemma 2 

N~C(n+l,(n+3)/2)<C(n+l,(n+1)/2) 

= 2C (n, (n + 1)/2), as required. 

In addition to proving the conjecture, this also shows that the maximum 
of N is isolated. That is, when n is odd, there are no values of N between 
C (n + I, (n + 3)/2) and 2C (n, (n + 1)/2). Consequently, in odd dimen- 
sional space, there are no simplices having T tangent spheres where 

2” - C(n, (1/2)(n + 1)) < T < 2” - (l/2) C(n + 1, (l/2)@ + 3)). 

The existence of gaps in the value of T is not suggested by the example 
of three-dimensional space. When n = 3, the above states merely that 
there are no values of T strictly between 5 and 6, and indeed when n = 3 
all values between the maximum and the minimum are achieved. But 
when n = 5, we see that there are no values of T between 22 and 244; that 
is, T # 23,24. As n gets larger the gap widens. 

If n is even, then theyi cannot be all equal and the existence of gaps is 
still undecided. 
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