
File: DISTL2 287501 . By:AK . Date:01:07:98 . Time:12:36 LOP8M. V8.B. Page 01:01
Codes: 4008 Signs: 2216 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series A � TA2875

Journal of Combinatorial Theory, Series A 83, 221�232 (1998)

On the Generation of Dual Polar Spaces of
Symplectic Type over Finite Fields

B. N. Cooperstein*

Department of Mathematics, University of California, Santa Cruz, Santa Cruz, California

Communicated by Jonathan I. Hall

Received March, 1997

It is demonstrated that the dual polar space of type Sp2n(q), q>2, can be generated
as a geometry by ( 2n
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1. INTRODUCTION

We assume the reader is familiar with the basic definitions relating to
undirected graphs and linear incidence system or point-line geometry (as a
standard reference see [2]). In particular: the distance function, a geodesic
path, and diameter of a graph; the collinearity graph of a point-line geometry
1=(P, L), a subspace of 1, the subspace (X)1 generated by a subset X of P,
and convex subspace of 1. We define the generating rank, gr(1), of a point-line
geometry 1 to be min[ |X |: X/P, (X)1=P], that is, the minimal cardinality
of a generating set of 1.

Let G=(P, L) be a point-line geometry. By a projective embedding of 1
we mean an injective mapping e: P � PG(V ), V a vector space over some
division ring, such that (i) the space spanned by e(P) is all of PG(V ) and
(ii) for l # L, e(l ) is a full line of PG(V ). We say that 1 is embeddable if
some projective embedding of 1 exists. When 1 is embeddable, we define
the embedding rank, er(1 ), of 1 to the maximal dimension of a vector space
V for which there exists an embedding into PG(V ). Suppose now that
1=(P, L) is a point-line geometry and ei : P � PG(Vi), i=1, 2 are projec-
tive embeddings. A morphism of embeddings is a map :: PG(V1) � PG(V2)
induced by a surjective semi-linear transformation of the underlying vector
spaces V1 , V2 such that : b e1=e2 . An embedding ê is said to be universal
relative to e if there is a morphism :̂: ê � e such that for any other
morphism #: e$ � e, :̂ factors through #, that is, there is a morphism
:$: ê � e� such that ê=:$ b #. An embedding e: P � PG(W ) is relatively
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universal if it is universal relative to itself. An immediate consequence of
these definitions is the following:

1.1. Let 1=(P, L) be an embeddable point-line geometry and let
e: P � PG(V) be an embedding. Then

(i) dim(V )�gr(1). Consequently, er(1 )�gr(1).

(ii) If dim(V )= gr(1 ) then e is relatively universal.

In general, when we have a subset X of a point-line geometry 1=(P, L) and
some collection of subspaces A then we will set A(X )=[A # A | A/X].

Polar spaces and dual polar spaces of type Sp2n(q). In this paper we will
be interested in two related incidence systems: the polar and dual polar
spaces of type Sp2n(q). The polar space of type Sp2n(q) can be described
as follows: Let V be a vector space of dimension 2n over Fq and let
f : V_V � Fq be a non-degenerate alternative form, that is, a bilinear form
which satisifies: (1) f (v, v)=0 for all v # V and (2) for all v # V there exists
w # V with f (v, w){0.

We say a subspace U is isotropic if f (U, U )=0, so note that all projec-
tive points in PG(V ) are isotropic. The maximal dimension of an isotropic
subspace is n and all such subspaces are conjugate under the action of

G=G(V )=[T : V � V | f (Tv, Tw)= f (v, w), \v, w # V ].

This is the symplectic group. We denote the isotropic subspaces of dimen-
sion l, 1�l�n, by P(l, q) or P2n(l, q) when we need to keep track of the
dimension of the ambient symplectic space. The points of the symplectic
polar space are the one spaces��P(1, q)��and the lines are the isotropic
two subspaces��P(2, q). We will denote by PSp2n(q) the incidence geometry
(P(1, q), P(2, q)). For convenience throughout this paper we will set P=P(1, q)
and L=P(2, q).

We will denote by S(l, q) the collection of all nondegenerate subspaces
of V which have dimension 2l, l�n and identify such a subspace with the
isotropic points which it contains. The hyperbolic lines are the subspaces in
S(1, q) which we will denote by H. The geometry (P, H ) will be denoted
by N.

The second geometry which we will be concerned with is the dual polar
space of type Sp2n(q). This geometry has as its points the elements of P(n, q).
We will denote this set by P. The lines are in one-to-one correspondence with
the elements of P(n&1, q) and for an isotopic subspace, A, dim(A)=n&1,
the line corresponding to it is l(A)=[M # P | A/M]. We will denote the
set of lines by L. We will use the notation DSp2n(q) for the isomorphism
class of this geometry or simply D.
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The main theorem of this paper is the following:

Theorem A. Assume q>2. Then the generating rank of DSp2n(q) is
( 2n

n )&( 2n
n&2).

From (Brouwer and Shpecterov [1] and Premet and Suprunenko [9])
we will be able to conclude that the geometry DSp2n(q) has an embedding
e into a projective space PG(M ) where dim(M )=( 2n

n )&( 2n
n&2). Therefore

as an immediate consequence of Theorem A we will have the following:

Theorem B. Assume q>2. Then embedding into PG(M ) is a relatively
universal embedding and the embedding rank of DSp2n(q) is ( 2n

n )&( 2n
n&2).

In (Cooperstein and Shult [5]) a basis of an embeddable geometry
1=(P, L) is defined to be a subset X of P such that (X) 1=P and such
that there exists some embedding e: P � PG(M ) with e(X ) an independent
set of points. Such sets exist if and only if the embedding rank of 1 is equal
to the generating rank. Therefore we have the following corollary:

Theorem C. For q>2, bases exist in the symplectic dual polar space of
type DSp2n(q).

The layout of this paper is as follows: In section two we consider the
geometry N=(P, H ) and prove that it is possible to find a set of points
p1 , p2 , ..., p2n in P such that for every j�k the linear space, Vj spanned by
p1 , p2 , ..., pj is nondegenerate or has radical of dimension one as j is even,
or odd, respectively, and such that the subspace of N generated by
p1 , p2 , ..., pj is P(Vj)"rad(Vj). In section three we record some necessary
properties of the dual polar space DSp2n(q). In section four we will define,
for each natural number n�2, a sequence of integers by a recurrence
relation and get a closed expression for these numbers. Finally, in section
five we prove Theorem A.

2. PROPERTIES OF THE SYMPLECTIC SPACE Sp2n(q)

In this section we consider a nondegenerate symplectic space V of dimen-
sion 2n over the field Fq . Recall that for a subspace of U of V its ``perp''
is defined to be U==[v # V | f (v, U)=0] and the radical of U is U & U =.

For each point x # P let rx be the transvection group with center x and
axis x=

rx=[{ # GL(V ) | [V, {]�x, [x=, {]=0].
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These are subgroups of G and the actions of G on P and [rx | x # P] are
equivalent. We remark that for x, y # P that either (i) f (x, y)=0 in which
case [x, y]=1 and (x, y)$Fq_Fq or (ii) f (x, y){0 and (x, y)$SL(2, q).
We shall require the following

Lemma 2.1. Let X/P. Then the group (rx | x # X) leaves (X)N invariant.

Proof. Set S=(X)N . It suffices to prove that for all x # X and y # S
that yrx/S. If f (x, y)=0 then yrx=[ y]. On the other hand, if f (x, y){0
then yrx/P((x, y) )=(x, y) N/S since x, y # S and S is a subspace. K

Lemma 2.2. There exists a basis v1 , v2 , ..., v2n for V such that for each
j�2n, Vj=(v1 , v2 , ..., vj) is nondegenerate if j is even and has radical of
dimension one if j is odd. Moreover, for j�2, Vj & v=

j+1=Vj&1 .

Proof. Let x1 , y1 , x2 , y2 , ..., xn , yn be a hyperbolic basis of V. This
means that f (xi , xj)= f ( yi , yj)=0 for all i, j and f (xi , yj)=$ij . Now set
v1=x1 , v2i&1=xi+xi+1 for 2�i�n and v2j= yj for 1� j�n. Clearly
V2k=(vi | 1�i�2k) =(x j , yj | 1� j�k) and so is non-degenerate. It
follows from this that rad(V2k+1) has dimension at most one. On the other
hand, xk+1 # V2k+1 and is perpendicular to all the vj , 1� j�2k+1. This
prove the first part. Also notice from the construction that f (vi , vj)=0 if
and only if |i& j |>1 from which the second part follows. K

Now let v1 , ..., v2n be a basis for V as in (2.2) and set p i=(rv i). Set Rj=
rad(Vj)=Vj & V =

j so that Rj=0 for j even and has dimension one for j
odd. Our final result of this section concerns the subspace of the geometry
N=(P, H ) generated by p1 , p2 , ..., pj for j�2n.

Lemma 2.3. Assume q>2. Then for 2� j�2n, ( p1 , p2 , ..., pj) N=
P(Vj)"Rj .

Proof. Set Sj=( p1 , p2 , ..., pj) N and let r i=rpi
. Set /j=(r1 , ..., rj).

Suppose that j=2l is even. Then from (Kantor [6] or McLaughlin [7])
/2l=(ri | 1�i�2l) , is equal to the subgoup

NG(V2l ) & CG(V =
2l )=[g # G | g(V2l)=V2l , g |Vl

==11].

It is isomorphic to Sp(2l, q) and induces this group on V2l . Therefore /2l

is transitive on P(V2l). Since /2l leaves S2l invariant by (2.1) it follows in
this case that S2l=P(V2l).

Assume now that j=2l+1 is odd. Again from ([6]) we have that

/2l+1=NG(V2l+1) & CG(V =
2l+1).
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We describe this subgroup in a little more detail. In this instance,
R2l+1 , the intersection of V2l+1 and V =

2l+1, has dimension one. As in the
previous paragraph, /2l+2 $Sp2l+2(q) and contains /2l+1 . Then /2l+1=
Op$((/2l+2)R2l+1

), that is, the subgroup of /2l+2 which fixes the point R2l+1

in V2l+2 and is generated by the unipotent elements (here p is the charac-
teristic of Fq). This subgroup is transitive on the points in P(V2l+1)"R2l+1 .
By (2.1) /2l+1 leaves S2l+1 invariant. Hence, S2l+1=P(V2l+1)"R2l+1 . K

3. PROPERTIES OF THE DUAL SYMPLECTIC POLAR SPACE

We continue with the notation of the introduction and record some
properties of the geometry (P, L) of type DSp2n(q) which we require in
the sequel. We remark that for points x, y # P the distance function defined
by the point-collinarity graph of DSp2n(q) is given by d(x, y)=dim[x�(x & y)]
=dim[ y�(x & y)].

For B # P2n(t, q), that is a totally isotropic subspace of dimension t,
denote by U(B) those p # P=P2n(n, q) such that B/p. We then have

3.1. For B # P2n(t, q), U(B) is a convex subspace of (P, L). Moreover,
U(B) is the convex closure of any two points in U(B) whose intersection is
B. The diameter of U(B) is n&t.

Note that for B # P2n(t, q), B� =B=�B is a nondegenerate symplectic space
of dimension 2(n&t). Moreover, the map from U(B) which takes p to p�B
is a bijection onto the maximal isotropic subspaces in B� . Consequently we
have

3.2. The geometry of DSp2n(q) induced on U(B) for B # P2n(t, q) is
DSp2n&2t(q).

It is well known that (P, L) is a near 2n-gon as introduced by Shult and
Yanushka ([10]). This means

3.3. For any point line pair p, l there is a unique point on l nearest p.

In a near 2n-gon we say that quads exist if for any two points at distance
two the convex closure is a generalized quadrangle, that is, a point-line
geometry where for any non-incident point line pair x, l there is a unique
point on l collinear to x. (See [8]). By (3.1), (3.2) it follows if x, y are
points at distance two then the convex closure of [x, y] is U(x & y) and is
a generalized quadrangle. Thus, quads exist.
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It is also the case that any point-quad pair, p, Q=U(C) is gated : there
is a unique point x in Q nearest p and for any point y # Q, d( p, y)=d( p, x)
+d(x, y). This implies the well known result that

3.4. (P, L) is a classical near 2n-gon.

Remark 3.5. Cameron ([3]) characterized the classical near 2n-gons
and proved that they are precisely the dual polar spaces.

We complete this section with the proof of three lemmas.

Lemma 3.6. Assume x is an isotropic point of V and p # P is a maximal
isotropic subspace of V and p � U(x). Then there is a unique point in U(x)
at distance one from p.

Proof. Clearly p$=( p & x=, x) is in U(x) and meets p in a hyperplane
and so p, p$ are collinear. On the other hand, suppose p$ # U(x) is collinear
with p. Then p & p$ is a hyperplane in each of p and p$. Also, p & x= is a
hyperplane in p which contains p & p$. Therefore p & x== p & p$. Since
x � p & p$, p$=( p & p$, x) =( p & x=, x). K

Lemma 3.7. Suppose x, y are non-orthogonal isotropic points of V. Let h
be the hyperbolic line spanned by x, y. Then

(U(x), U( y)) D= .
z # h

U(z).

Proof. We first show that cupz # h U(z) is a subspace of (P, L). Suppose
pi # U(zi), z i # h, i=1, 2 are collinear. Then the line on p1 , p2 is U( p1 & p2)
which is identical with [( p1 & p2 , z) | z # h]. This proves the claim and it
follows from this that (U(x), U( y)) D/�z # h U(z). On the other hand,
suppose p # U(z), z # h, z{x, y. By (3.6) there is a unique p$ # U(x) collinear
with p. By the above argument the line U( p & p$) contains a unique point
r # U( y) and then U( p & p$)=U(r & p$)/(U(x), U( y)) D . K

Lemma 3.8. Assume B is a subspace of V. Then �b # B"Rad(B) U(b) is a
subspace of DSp2n(q).

Proof. Suppose pi # U(bi), bi a point in B not contained in rad(B) are
collinear. Suppose b1 and b2 are non-orthogonal and let h be the hyper-
bolic line which they span. Then by (3.7) the line U( p1 & p2) is contained
in �z # h U(z)/�b # B"Rad(B) U(b). On the other hand, if b1 =b2 then p1 , p2 #
U((b1 , b2) )=U(b1) & U(b2) and then clearly the line U( p1 & p2)/
U((b1 , b2) )/�b # B"Rad(B) U(b). K
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4. A RECURSION FORMULA

In this section we define for each natural integer n a finite sequence of
natural numbers [ f (n, j )]n

j=0 by a recursion formula. We then obtain a
closed expression for f (n, j ) as well as for �n

j=0 f (n, j ).
For n=1 we simply define f (1, 0)= f (1, 1)=1. Assume for some n�0

we have defined f (n, j), 0� j�n. Set *(n)=�n
j=0 f (n, j ). We now define

f (n+1, 0)= f (n+1, 1)=*(n). For 2�k�n+2 we define f (n+1, k)=
�n

j=k&1 f (n, j ). Some of these sequences are shown in Fig. 4.1. Note that
each entry in the table from the second row down is the sum of the element
directly above it (with the convention that if there is no element above it
then that entry is taken to be zero) and all those to the right of that element
and this reflects our recursive definition.

Before proceeding to our main result we first record two lemmas on
identities of binomial coefficients which we will require:

Lemma 4.1. For natural numbers m, k

:
k

t=0
\m+t

t +=\m+k+1
k + .

Proof. This follows immediately by induction on k from the identity

\ l
s&1++\l

s+=\l+1
s + . K

Lemma 4.2. For every integer n�2 the following is an identity:

\2n&1
n&1 ++\2n&2

n&1 +&\2n&1
n&3 +&\2n&2

n&3 +=\2n
n +&\ 2n

n&2+ .

FIG. 4.1. The sequences f (n, j ) for 1�n�5.
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Proof. From the identify in the proof of (4.1) we have

\2n
n +&\ 2n

n&2+=\2n&1
n ++\2n&1

n&1 +&_\2n&1
n +&2+\2n&1

n&3 +&
=2 \2n&1

n&1 +&_\2n&1
n +&2+\2n&1

n&3 +&
=\2n&1

n&1 ++\2n&2
n&1 ++\2n&2

n&2 +
&_\2n&2

n&2 ++\2n&2
n&3 ++\2n&1

n&3 +&
=\2n&1

n&1 ++\2n&2
n&1 +&\2n&1

n&3 +&\2n&2
n&3 + . K

Before proceeding to the main proposition of this section a word about
convention when computing binomial coefficients: we will treat as 0 any
expression ( m

l ) where l<0.

Proposition 4.3. For j=0, f (n, j)= f (n, 0)=( 2n&2
n&1 )&( 2n&2

n&3 ). For
1� j�n, f (n, j )=( 2n&1&j

n&j )&( 2n&1&j
n&2&j ).

Proof. We prove the result by induction on n� =1. By definition,
f (1, 0)= f (1, 1)=1. On the other hand, for n=1, j=0 we get ( 2n&2

n&1 )&
( 2n&2

n&3 )=( 0
0)&( 0

&1)=1 and for n= j=1 we get ( 2n&1&j
j&1 )&( 2n&j&1

n&2&j )=
( 0

0)&( 0
&2)=1. Thus, the result holds for n=1.

Now assume that we have demonstated the result for n, that is, for
f (n, 0)=( 2n&2

n&1 )&( 2n&2
n&3 ) and for 1� j�n, f (n, j )=( 2n&1&j

n&j )&( 2n&1&j
n&2&j ).

We now compute

*(n)= :
n

j=0

f (n, j)

which, by the inductive hypothesis, is equal to

\2n&2
n&1 +&\2n&2

n&3 ++ :
n

j=1 _\
2n&1&j

n&j +&\2n&1&j
n&2&j +&

=\2n&2
n&1 +&\2n&2

n&3 ++ :
n&1

i=0
\n&1+i

i +& :
n&3

i=0
\n+1

i + .
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By (4.1) this is equal to

\2n&2
n&1 +&\2n&2

n&3 ++\2n&1
n&1 +&\2n&1

n&3 + .

Then, by (4.2) this is equal to

\2n
n +&\ 2n

n&2+ .

We now prove the result for n+1. By definition f (n+1, 0)= f (n+1, 1)
=*(n)=( 2n

n )&( 2n
n&2). So the result holds for f (n+1, 0). It also holds for

f (n+1, 1) since

\2(n+1)&1&1
(n+1)&1 +&\2(n+1)&1&1

(n+1)&2&1)+=\2n
n +&\ 2n

n&2+ .

Assume now that 2� j�n+1. Then f (n+1, j )=�n
i= j&1 f (n, i) which,

by the inductive hypothesis, is

:
n

i= j&1
_\2n&1&i

n&i +&\2n&1&i
n&2&i +&

= :
n&j+1

t=0
\n&1+t

t +& :
n&j&1

s=0
\n+1+s

s + .

By (4.1) this is equal to

\2n+1& j
n+1& j +&\2n+1& j

n&1& j +
as desired. K

5. PROOF OF THE MAIN THEOREM

Let #(n, q) denote the generating rank of the geometry DSp2n(q). In our
first result of this section we prove that #(n, q)�( 2n

n )&( 2n
n&2). This will be

an immediate consequence of

Proposition 5.1. The geometry DSp2n(q) has an embedding into a
projective space PG(M ) where M has dimension ( 2n

n )&( 2n
n&2) over Fq .

Proof. Let M be the subspace of �n (V ) spanned by all vectors of the
form �n ( p), p # P, that is, p a totally isotropic n-dimensional subspace.
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By [1] and [9] M has dimension ( 2n
n )&( 2n

n&2). Since �n (V ) affords an
embedding for the the full Grassmannian geometry of all n-dimensional
subspaces of V it follows that for l # L the set of points [�n ( p) | p # L]
is a projective line of PG(�n (V )). Since all these points lie in M, M
affords an embedding for DSp2n(q)=(P, L). K

Corollary 5.2. The generating rank of DSp2n(q) is at least ( 2n
n )&( 2n

n&2).

Proof. This follows from the definition of an embedding and the generating
rank of a geometry. K

We can now prove our main result:

Theorem A. Assume q>2. Then the generating rank, #(n, q), of the
symplectic dual polar space, DSp2n(q) is ( 2n

n )&( 2n
n&2).

Proof. We make use of the notation previously introduced. As in
Section 2 let p1 , p2 , ..., p2n be isotropic points such that for 2� j�2n,
( p1 , p2 , ..., pj) =Vj is nondegenerate for even j and has a one dimensional
radical, Rj for j odd and for j�3, p=

j & Vj&1=Vj&2 . Now set C=Vn+1 .
By (.32) the subspace ( p1 , p2 , ..., pn+1) N=P(C )"Rn+1 . From this and
(3.7) it follows that

(U( p1), U( p2), ..., U( pn+1)) D# .
z # P(C )"Rad(C )

U(z).

However, by (3.8) the latter is a subspace of DSp2n(q) and therefore

(U( p1), U( p2), ..., U( pn+1)) D= .
z # P(C )"Rad(C )

U(z).

Suppose n+1 is odd. Set R=Rad(C )=Rn+1 and let p # U(R). Then
dim( p & C )>1 so that

p # (U( p1), U( p2), ..., U( pn+1)) D= .
z # P(C )"Rad(C )

U(z).

Therefore

(U( p1), U( p2), ..., U( pn+1)) D= .
z # P(C )

U(z).

Now in the general case suppose p # P so that p is an n-dimensional
isotropic subspace of V. Since dim(V )=2n and dim(C )=n+1 it follows
that p & C{0. Therefore there is an x # P(C ), x/p and then p # U(x)/
(U( p1), U( p2), ..., U( pn+1)) D . Consequently, the set of subspaces U( pi),
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1�i�n+1 generate P. We will make use of the recursion of Section 4 to
demonstrate that these subspaces can be generated by ( 2n

n )&( 2n
n&2) points

so that the generating rank is at most ( 2n
n )&( 2n

n&2). Together with (5.2) this
will imply that the generating rank of DSp2n(q) is exactly ( 2n

n )&( 2n
n&2).

Suppose n=2. Then each of U( pi), i=1, 2, 3 is a DSp2(q) geometry, that
is, a hyperbolic line. We require two points to generate each of U( pi),
i=1, 2. However, U( p3) contains ( p1 , p3) which is already a point of
U( p1) and so we need only one further point to generate U( p3). As a result,
by the above argument, we can generate DSp4(q) with 2+2+1=5=
( 4

2)&( 4
0) points.

Suppose now that n>2. For j=1 set G(n, j)=[A/U( p1) | (A)D=U( p1)].
For 1< j�n+1, let B j&1=(U( p1), ..., U( pj&1))D and set G(n, j)=
[A/U( pj) | (A, Bj&1 & U( pj)) D=U( pj)].

Finally, set g(n, j )=min[ |A| | A # G(n, j )]. We claim that g(n, j)=
f (n, j&1) for every applicable pair n, j where f (n, j ) are the numbers
defined recursively in Section 4. We will prove this induction on n.

Suppose for some n�2 that we have demonstrated that g(n, j)=
f (n, j&1) for j=1, 2, ..., n+1. Then by the definition of the numbers
f (n, j ) it follows that

#(n, q)� :
n+1

j=1

g(n, j )= :
n

j=0

f (n, j )= f (n+1, 0)=\2n
n +&\ 2n

n&2+
from (4.3). From (5.2) #(n, q)�( 2n

n )&( 2n
n&2) and therefore we get equality.

Note that the theorem will now be a consequence of the equality of f (n, j )
and g(n, j&1) for all n, j. Notice also that as a result of this if Aj # G(n, j),
j=1, 2, ..., n+1 then A=�n+1

j=1 Aj is a generating set for DSp2n(q). This
implies the following:

5.3. Assume j<n+1. Set E(n, j)=[E/P | (Bj&1 , E) D=P] and
e(n, j )=min[ |E | | E # E(n, j )]. Then

e(n, j )= :
n+1

i= j

g(n, i).

We now prove that g(n, j )= f (n, j&1) for j=1, 2, ..., n+1. Since U( p1)
is isomorphic to DSp2n&2(q) g(n, 1)=#(n&1, q)=( 2n&2

n&2 )( n&2
n&2). Also, g(n, 2)

=#(n&1, q) since B1 & U( p2)=< as p=
2 & V1=0. Assume then that j�3.

Now Bj&1 & U( pj)=Bj&2 and, of course, U( pj) is a subspace of DSp2n(q)
isomorphic to DSp2n&2(q). From (5.3) it we have that

g(n, j )=c(n&1, j&1)= :
n

i= j&1

g(n&1, i ).
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By the induction hypothesis

:
n

i= j&1

g(n&1, i)= :
n&1

i= j&2

f (n&1, i )

which, by (4.2) is equal to f (n, j&1) so that g(n, j)= f (n, j&1) as
required. K

Remark. The result is definitely false for q=2. Brouwer ([1] has shown
that DSp2n(2) has an embedding of dimension at least (2n+1)(2n&1+1)�3
and has conjectured that this is the embedding rank of DSp2n(2). For
n�5 it has been shown that this is the generating rank of DSp2n(2) (see
Cooperstein [4]). By methods similar to the above it is possible to show
that the generating rank of DSp12(2) is at most 716.
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