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a b s t r a c t

Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the
important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their
chemical gradients to uphold ionic concentration differences over the plasma membrane. The
two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely
a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity,
either by changing the cellular distribution of the ATPases or by directly altering the kinetic prop-
erties as supported by electrophysiological results presented here. We further review the other pro-
posed pump phosphorylations.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The mammalian Na+,K+-ATPase (NKA) and H+,K+-ATPase (HKA)
maintain key ionic imbalances between cells and their surround-
ings by exporting sodium ions and protons, respectively, in ex-
change for potassium ions. These gradients provide the driving
force for numerous cellular functions, e.g. for establishing the
membrane potential from potassium gradients, for sodium depen-
dent secondary transport and neuronal signaling, and for stomach
acidification. The fundamental roles of the ATPases make dysregu-
lation of their activities potentially pathophysiological, and several
human conditions are associated with the pumps; NKA mutations
can cause the neurological diseases Rapid-onset Dystonia Parkin-
sonism and Familial Hemiplegic Migraine 2 [1], and HKA inhibitors
are among the most sold drugs world-wide for treatment of duode-
nal ulcers and heartburn.

In addition to the pump function, it is becoming increasingly
evident that the NKA is also a receptor for cardiotonic steroids,
which are endogenously produced compounds that in high con-
centrations inhibit NKA function, but in low concentrations func-
tion as signaling molecules that via the NKA as a receptor
activate associated protein kinases such as Src, phosphoinositol 3
kinase (PI3K) and ankyrin to modulate, e.g. apoptosis, cell adhesion
and growth [2].

NKA and HKA pump function is fuelled by ATP via formation
and break-down of a phosphoenzyme intermediate. ATP hydrolysis
chemical Societies. Published by E
and ion transport are accomplished by the a subunit, but the
pumps also depend on a b subunit for folding and membrane tar-
geting. Besides a phosphorylation domain displaying a conserved
aspartate as the phosphorylation site, a subunits contain domains
for protein kinase, protein phosphatase and transmembrane ion
transport activities. There are several different genes encoding
both the a and b subunits: in mammals there are four NKA a sub-
units (NKAa1–4), two HKAa subunits (HKAa1 and 2), and four b
subunits. Additionally, the NKA ab complex associates with mem-
bers of the FXYD proteins. The use of different subunits performing
basically similar tasks offers the opportunity to regulate the func-
tions in a time- and tissue-specific manner [3].

A further means of pump control is offered by phosphorylation,
and this review will focus on how, why and where HKA and NKA
are phosphorylated. The best studied pump kinases are the cAMP
activated protein kinase, PKA, and protein kinase C, PKC, which
both target serine and threonine residues. The kinases can be stim-
ulated to phosphorylate the pump by activation of a cellular recep-
tor or by change in an intracellular component, and the pump
activity is thereby altered directly or because of endocytosis or
plasma recruitment.

2. The pump structure

X-ray crystal structures of NKA from pig kidney [4] and from
shark rectal gland [5] have revealed the overall structure of the ter-
nary complex including the a subunit with 10 transmembrane
(TM) helices, the heavily glycosylated single membrane spanning
b subunit and the single membrane spanning c subunit FXYD2
lsevier B.V. All rights reserved.
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Fig. 1. Structural overview of XKA phosphorylation sites. The structure shows two views of the NKAa subunit in grey, the b subunit in wheat, the FXYD in red and possible
phosphorylation sites in yellow. The protein parts not resolved by X-ray crystallography are indicated with thick lines in corresponding colors. The HKA structure will be
similar, except that there are no indications of other subunits than a and b. The numbering in the a subunit is counting from the first methionine in human NKAa1 or (for
Ser27) HKa2. The numbering in the FXYD subunit is excluding the signal peptide. The structures were made with PyMOL (www.pymol.org) using the shark NKA, PDB ID 2ZXE.
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(Fig. 1). The HKAa’s have primary structures very similar to the
NKAa’s (>60% identity), and electron microscopy support that they
share similar three dimensional structures [6]. Unfortunately, the
majority of the proposed phosphorylation sites are not resolved
in the crystal structures, since they lie in the disordered N-terminal
part of the a subunit, or in the C-terminal part of FXYD1 that, from
homology to the subunit in the crystal forms, corresponds to disor-
dered parts of the crystal structures (Fig. 1).

3. PKA and Ser943

The only well-characterized phosphorylation target in the
structure is a serine (Ser943 in NKAa1) in a short helical segment
between TM 8 and 9 (Fig. 1), which is a supposed PKA site. The con-
sensus recognition sequence for PKA is Arg-Arg-X-Ser/Thr-Phe,
where X is any residue and Phe is a hydrophobic residue. A se-
quence alignment of NKA and HKAa subunits shows that Ser943
is in an ideal PKA consensus motif in all of the pumps (Fig. 2). In
early studies, PKA was shown to phosphorylate the residue, but
only in the presence of detergent [7–10]. The expected localization
of the residue close to the cytoplasmic membrane interface and the
detergent dependence led to skepticism of whether the observed
phosphorylation is physiologically relevant – will PKA ever be able
to reach the site within an intact cell? Several studies in intact cells
and even whole animals indicate that the answer is indeed yes.

Phosphorylation of NKA expressed in COS-7 cells was found to
be enhanced by treatment with the PKA activator forskolin [11]
or by stimulation of various G-protein coupled receptors (GPCRs
[12]), unless the PKA site was mutated. Both adrenergic, choliner-
gic and dopaminergic receptors enhanced NKA phosphorylation,
suggesting that the activated GPCRs stimulate the phosphorylation
in live cells.

The dopaminergic signaling has been studied indirectly in mice
treated with morphine [13]. Depending on the duration of the
treatment, the PKA and NKA activities in the striatum were altered
in opposite directions; short term morphine administration stimu-
lated NKA and inhibited PKA activity, primarily via the dopamine 2
receptor (D2), while long term treatment upregulated PKA and
downregulated NKA by a dopamine 1 receptor (D1) dependent
pathway. The Ser943 phosphorylation status was not determined
directly, but the PKA activity and the overall amount of NKA phos-
phorylation correlated, and the phosphorylation increase was sen-
sitive to H89, a specific PKA inhibitor [14]. The differential
phosphorylation effects were specific for NKAa3, no effects of
morphine treatment were observed for NKAa1 [13]. In contrast,
dopamine was found to inhibit the surface content of NKAa2 spe-
cifically in rat neostriatal neurons, while no change was observed
for NKAa1 and NKAa3 [15].

Another group of GPCRs regulating NKA are the prostaglandin
receptors. Prostaglandin E (PGE) modulates neuronal excitability,
and the levels rise after, e.g. brain injury and seizure. In a neuro-
blastoma cell line, PGE1 treatment resulted in reduced NKA activity
[16], and PGE2 inhibited NKA in rat hippocampal slices [17]. The
PGE effects were abrogated by PKA inhibition, and PGE2 led to in-
creased Ser943 phosphorylation as shown with a specific antibody
[17]. Prostaglandin treatment also caused hippocampal NKA inhi-
bition in vivo [17], further supporting that the Ser943 phosphory-
lation is physiologically relevant.

http://www.pymol.org


Fig. 2. Alignment of XKA phosphorylation sites. The sequences of the proposed phosphorylation sites in the a subunits from Homo sapiens (hs), Mus musculus (mm) and Rattus
norvegius (rn) were aligned with CLCbio. The numbering in the a subunit is counting from the first methionine in human NKAa1 or for Ser27 HKAa2. Above the alignment,
arrows indicate the residues that may be targeted by tyrosine phosphorylation by an unidentified kinase (purple), PKC phosphorylation (yellow), ERK phosphorylation (light
blue) and PKA phosphorylation (green).
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The inverse correlation between the NKA and PKA activities has
been found in various cell types, where the plasma membrane lev-
els of NKA do not appear to be affected, implying that the phos-
phorylated serine inhibits pump function directly, at least at
adequate Ca2+ concentrations [13,17–20].

PKA phosphorylation of NKA can also alter the amount of NKA
at the cell surface, probably by cAMP independent PKA activation.
A rise in intracellular Na+ concentration increased NKA at the plas-
ma membrane of kidney collecting duct cells, and though cAMP
levels appeared unaltered, the PKA activity was elevated and the
surface recruitment was sensitive to PKA specific inhibitors [21].
That elevated sodium levels promote NKA surface recruitment
may also provide a simple explanation for the observation that glu-
tamate treatment of neurons increases the plasma membrane
abundance of NKAa1 and NKAa2 [15].

PKA phosphorylation of HKA was similarly shown to promote
its expression and cell surface localization [22]. Inhibition of PKA
or mutation of the PKA site, Ser955, to alanine (which cannot be
phosphorylated) reduced activity and plasma membrane levels,
while mutation to aspartate (mimicking constitutive phosphoryla-
tion) gave protein levels and activity comparable to wild-type [22].

We have also found that mutation of the PKA site in NKAa2 to
glutamate affected its functional properties when expressed in
Xenopus laevis oocytes. In particular, the mutant gave rise to leak
Fig. 3. The electrophysiological effect of mutating the PKA site Ser940 in NKAa2 to glu
calculated as the ouabain-sensitive current in the presence of 15 mM potassium, the leak
Both pump and leak currents are normalized to the value of pump current at 20 mV. Th
ouabain insensitive hsNKAa2 and hsNKAb1. After 1–3 days at 19 �C, oocytes were load
0.1 mM EGTA, pH 7.6. Two-electrode voltage-clamping was performed in 115 mM Na, 11
ouabain, pH 7.4. To determine steady-state currents, 15 mM K replaced 15 mM Na, a
subtracted. (b) Stereo-view showing the proximity of the PKA site and the C-terminus. T
tyrosines are highlighted with green sticks, an arginine (Arg937 in NKAa2) coordinating t
The structures were made with PyMOL (www.pymol.org) from the shark NKA, PDB ID 2
currents at low membrane potentials, i.e. an inward current sensi-
tive to the NKA specific drug ouabain (Fig. 3a). In the wild-type
pump, leak currents have been observed, but not at physiological
levels of extracellular sodium. Intriguingly, leak currents are also
characteristic of C-terminally truncated NKA mutants [23,24],
and the structure of the pump shows that the introduction of a
negative charge at the PKA site is likely to affect the intricate struc-
ture of the C-terminus, which is coordinated by positively charged
arginine residues (Fig. 3b). The C-terminal region has only been
recognized as a possible regulatory element after the elucidation
of the NKA structure, but there is accumulating evidence to suggest
that the highly conserved C-terminal tyrosines are essential for
pump function and several of the disease-causing mutations map
to the region [1,25]. It will be interesting to follow the future char-
acterizations of how PKA phosphorylation can influence pump
function via the C-terminus.

The NKA activity is usually determined as uptake of radioac-
tively labeled Rb+ into living cells or as ATPase activity in purified
preparations. The exact mechanism of inhibition remains undeter-
mined, but the direct effect of phosphorylation on the enzyme
activity is likely to arise from an altered structure caused by phos-
phorylation of the serine residue. In one study, enzyme purified
from forskolin treated cells were found to have lower Na affinity,
but similar Vmax [8], while another study reported that both Na
tamate. (a) The voltage dependence of steady-state currents. The pump current is
current is determined as the ouabain-sensitive current in the absence of potassium.
e pumps were expressed in oocytes from X. laevis by co-injecting cRNAs encoding
ed with sodium in 95 mM Na, 90 mM sulfamic acid, 5 mM HEPES, 10 mM TEACl,
0 mM sulfamic acid, 1 mM MgCl2, 0.5 mM CaCl2, 5 mM BaCl2, 10 mM HEPES, 1 lM

series of 200 ms voltage steps was run and the 10 mM ouabain background was
he a subunit is in grey, the b subunit in wheat and the FXYD in red. The C-terminal
hem in a cation–p interaction with blue sticks and the PKA target with yellow sticks.
ZXE.
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affinity and Vmax were lower in forskolin treated cells, unless the
intracellular concentration of Ca2+ was raised, and in that case,
there was no difference [18]. The molecular mechanism for the ef-
fect of PKA phosphorylation thus remains to be determined.

The other means of regulating pump function is to alter which
proteins it interacts with. The increased plasma localization of
pumps phosphorylated by PKA [21,22] indicates that interaction
with other cellular partners is determined by the phosphorylation
status, though the protein promoting plasma recruitment in re-
sponse to PKA activity is as yet unknown, and it has also been sug-
gested that PKA phosphorylation of the interaction partners rather
than of the NKA can regulate its distribution [26].

4. PKC and the aN-terminus

The NKAa1N-termini from various species are phosphorylated
by PKC [11,27], although there is no obvious conserved PKC site,
i.e. a serine or threonine, which on both sides has at least one basic
residue maximally two residues away (Fig. 2). The best studied PKC
site is Ser23 in NKAa1 from rat [28–34], but this residue is unique
to rat (Fig. 2), making its general regulatory role less obvious.

The only serine/threonine conserved in the N-termini of NKAa1
subunits is Ser16, which has been identified as a PKC tar-
get although there is just a single basic residue in its vicinity,
namely a downstream histidine and only in the rodent sequences
(Fig. 2). Mutating Ser16 to an alanine reduces or abolishes PKC
phosphorylation [11,35,36], and mutation to an aspartate can mi-
mic the consequences of phosphorylation [35]. However, Ser16
phosphorylation was reported to be abolished if the downstream
histidine was mutated to glutamine [27], which is the residue
found at the analogous position in the human sequence (Fig. 2).
Accordingly, in vitro phosphorylation with PKC was undetectable
for the N-terminus of hsNKAa1 [27] and low or undetectable for
the full length protein [37], making it further questionable if the
physiological effects reported of N-terminal PKC phosphorylation
would also apply to human cells. The fairly large sequence varia-
tion in the a subunit N-termini therefore makes it difficult to gen-
eralize studies of PKC regulation of rodent NKAa1, especially if it is
not shown that the effects are independent of Ser16 and Ser23
phosphorylation [36,38–44].

There are no apparent PKC sites in the N-terminus of HKAa1,
but Ser27 in HKAa2 is within a consensus sequence (Fig. 2) and
can be efficiently phosphorylated by PKC in vitro [9], which in-
creases Vmax at saturating ATP conditions. In kidney cells, PKC acti-
vation by phorbol esters leads to endocytosis of HKAa2, though it
is not shown directly where (or if) PKC phosphorylates the pump
[45].

In chick embryos, thyroid hormones were shown to inhibit NKA
activity by a process depending on PI3K and PKA as well as PKC
[46], while thyroid hormones in rat alveolar epithelial cells in-
creased NKA activity, again depending on PI3K [47]. There is clearly
a tight interplay between various signaling pathways, and slight
variations during development and between different tissues can
lead to opposite effects of the same treatment [36,46,47]. Future
experiments are required to determine if direct phosphorylation
of the NKA is important, or if regulatory proteins are the main
targets.
5. Alternative phosphorylation sites in a subunits, ERK
phosphorylation and insulin

The NKA has also been suggested to be phosphorylated directly
by the extracellular signal-regulated kinases (ERK). Using human
skeletal muscle, insulin was shown to stimulate NKA activity, pos-
sibly due to the increased cell surface abundance observed for both
NKAa1 and NKAa2 [48], and the plasma membrane pump levels
were similarly not to increase upon insulin treatment of rats, espe-
cially for NKAa2 [49]. In vitro, insulin generally stimulated phos-
phorylation of Ser, Thr and Tyr residues [48,50], and ERK1/2
could phosphorylate the pump [37]. The most obvious ERK recog-
nition sequence in the NKAs is Thr96, which is in the optimal con-
text, Pro-X-X-Thr-Pro, and the site is conserved between the NKAs,
but not in the HKAs (Fig. 2). In the structure, this threonine is cyto-
plasmic though close to the membrane (Fig. 1), and its accessibility
may change during the catalytic cycle. The study suggests that
insulin leads to Thr96 phosphorylation and thereby promotes
insertion of pumps into the plasma membrane [48]. The insulin-in-
duced surface recruitment of NKAa1 was found to depend on acti-
vation of the kinase Akt and the downstream activation of the
GTPase Rab10 [51]. Rab10 colocalized with the sodium pump in
the perinuclear region and was proposed to mediate its increase
at the plasma membrane [51], but it remains to be investigated
whether the pump phosphorylations play a direct role in the exo-
cytosis process.

The increased tyrosine phosphorylation [37] is in agreement
with an earlier study of the insulin-induced NKA stimulation,
where Tyr10 was identified as a phosphorylation target in rat
NKAa1 (Fig. 2), and mutation of the tyrosine abolished the effect
of insulin [52]. It would be intriguing to see if, e.g. the suspected
interaction with Rab10 is dependent upon the phosphorylation
status of Tyr10.

Tyrosine phosphorylation may, however, also serve to down-
regulate NKAa1 activity, since tyrosine phosphatase inhibitors
dose-dependently inhibit the ATPase activity, correlating with in-
creased overall tyrosine phosphorylation [53]. Whether Tyr10 is
involved is unknown, and again it is important to distinguish be-
tween direct effects on the enzymatic kinetics and effects on regu-
latory protein–protein interactions.
6. FXYD1

The seven mammalian members of the FXYD family are small,
single membrane spanning proteins that share a consensus Pro-
Phe-X-Tyr-Asp sequence in their extracellular N-termini. Oligo-
mers of the FXYDs may form ion channels [54,55], but they have
mainly been studied for their interactions with NKA. The trans-
membrane domain associates closely with TM9 of the a subunit
(Fig. 1), and the interaction modulates NKA activity by altering
the apparent affinities for sodium, potassium and ATP [3].

In heart and skeletal muscle, the primary membrane protein
target for PKA and PKC is FXYD1 [56], as indicated by its alterna-
tive name, phospholemman. The main phosphorylation sites are
Ser63, Ser68 and Thr69 in the very C-terminal end of the protein,
a part that was relatively disordered in the crystals, so its struc-
ture remains unknown. PKC promotes phosphorylation of all
three residues, while PKA only targets Ser68 [57]. PKA phosphor-
ylation of FXYD1 increases NKA activity in mouse cardiac myo-
cytes, unless FXYD1 has been knocked out. This fits well with
the suggestion that the unphosphorylated FXYD1 lowers pump
affinity for sodium and potassium, while phosphorylation re-
lieves the inhibitory effect [58] and even stimulates the pump
[57,59].

In ventricular myocytes, just the intracellular part of FXYD1
gave increased NKA currents when phosphorylated by PKA, while
the unphosphorylated peptide was inhibitory [59]. The peptide
was coimmunoprecipitated with NKA regardless of its phosphory-
lation status [59,60], although fluorescence resonance energy
transfer has indicated that phosphorylation significantly reduces
energy transfer, i.e. the phosphorylation status of FXYD1 strongly
influences its relative orientation to the a subunit [61].



Fig. 4. Regulation of XKA by phosphorylation. Schematic overview of phosphorylation pathways described to modulate pump function. The XKA subunits are colored as in
Fig. 1, red arrows indicate pathways specific for FXYD1, and numbering of the yellow phosphorylation sites is as in Fig. 1. The arrows from PKA crossing AKAP (A-kinase
anchoring protein) signify that NKA phosphorylation by PKA may depend on initial membrane recruitment of the kinase [63]. Similarly, PKC phosphorylation probably
depends on membrane attachment of the kinase [42,64]. Numerous other signaling molecules have been shown to activate receptors and thereby alter XKA activity, only the
ones mentioned in the review are indicated. See text for further details.
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7. Concluding remarks

Although an extensive amount of literature links various signal-
ing pathways to regulation of NKA and HKA pump function, the
underlying molecular mechanisms of phosphorylation remain lar-
gely unknown. We have summarized some of the many studies in
Fig. 4.

Especially in the heart, it is evident that phosphorylation of
FXYD1 is a means of promoting NKA activity. It also seems rela-
tively clear that PKA phosphorylation can either lower pump func-
tion directly or increase it indirectly by promoting cell surface
recruitment. The role of PKC phosphorylation at the a subunit,
especially for human physiology, is less well characterized, but
even though specific target residues have not been identified in
the human pumps, many of the signaling pathways described for
the rodent enzymes may apply generally, and there will probably
in many or most cases be cross-talk between the different path-
ways regulating the enzymes, including the phosphorylations by
ERK and by the yet unidentified tyrosine kinase.

One intriguing possibility that has not, to our knowledge, been
examined is whether NKA phosphorylation is important for auto-
regulation. When the NKA acts as a ouabain receptor, it stimulates
a number of kinases that are also known from the NKA phosphor-
ylation pathways (e.g. PI3K and Src), and the ouabain activation
leads to endocytosis of the NKA receptor [62]. It would be interest-
ing to learn if NKA as the ouabain signal transducer is itself specif-
ically regulated by phosphorylation.

We also hope that future experiments will further clarify the di-
rect enzymatic consequences of phosphorylations. Apparently, PKA
phosphorylation of the NKAa subunits promotes leak currents, an
effect previously noted to characterize C-terminal deletion mu-
tants [23,24], but the mechanism remains elusive. Further struc-
tural and functional studies will be important to understand the
role of PKA on NKA and HKA.
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