Abelian 1-Factorizations of the Complete Graph

MARCO BURATTI

Extending a result by Hartman and Rosa (1985, Europ. J. Combinatorics 6, 45–48), we prove that for any Abelian group \(G \) of even order, except for \(G \approx \mathbb{Z}_{2^n} \) with \(n > 2 \), there exists a one-factorization of the complete graph admitting \(G \) as a sharply-vertex-transitive automorphism group.

\(\copyright 2001 \) Academic Press

1. INTRODUCTION

A 1-factorization of a graph \(\Gamma = (V, E) \) is a partition \(\mathcal{F} \) of \(E \) into classes (1-factors) each of which is, in its turn, a partition of \(V \). An automorphism group of \(\mathcal{F} \) is a group of bijections on \(V \) leaving \(\mathcal{F} \) invariant.

For general background on 1-factorizations of the complete graph we refer to [1, 9, 10]. Here we are interested in 1-factorizations of the complete graph admitting a sharply-vertex-transitive automorphism group. Some papers on this subject are [2, 7, 8].

The following question naturally arises.

PROBLEM 1.1. For which groups \(G \) does there exist a 1-factorization of the complete graph admitting \(G \) as a sharply-vertex-transitive automorphism group?

The complete solution is still unknown but the problem has been settled in the cyclic and dihedral cases, as presented in the following theorems.

THEOREM 1.2 ([7]). There exists a 1-factorization of \(K_{2v} \) admitting a cyclic sharply-vertex-transitive automorphism group for all \(v \)'s but \(v \neq 2^n \), \(n \geq 2 \).

THEOREM 1.3 ([2]). There exists a 1-factorization of \(K_{2v} \) admitting a dihedral sharply-vertex-transitive automorphism group for all values of \(v \).

Bonisoli and Labbate [2] also give some partial results in the Abelian case. Here this case is completely settled; we will prove, in fact, that any Abelian group of even order that is not a cyclic 2-group is a solution of Problem 1.1.

2. STARTERS AND 1-FACTORIZATIONS

A 1-factorization of the complete graph admitting \(G \) as an automorphism group fixing one vertex and acting sharply transitively on the others is said to be 1-rotational under \(G \). It has been known for a long time (see [5]) that for any group \(G \) of odd order there exists a 1-rotational 1-factorization of the complete graph under \(G \).

We recall that a starter (see [6]) in a group \(G \) of odd order \(2n + 1 \) is a set \(\{[x_i, y_i] | i = 1, \ldots, n \} \) of \(2 \)-subsets of \(G \) with the property that

\[
\bigcup_{i=1}^{n} [x_i - y_i, y_i - x_i] = \bigcup_{i=1}^{n} [x_i, y_i] = G - \{0\}.
\]

The existence of a starter in \(G \) is equivalent to the existence of a 1-rotational 1-factorization of the complete graph under \(G \). The equivalence may be also viewed as a consequence of a general result on 1-rotational resolvable Steiner 2-designs (see [4], Theorem 1).
Our aim is to define a new concept of a starter in a group of *even* order able to describe all 1-factorizations admitting a sharply-vertex-transitive automorphism group.

Given a group G written in additive notation, let $K_G = (G, \binom{G}{2})$ be the complete graph on G. Speaking of the action of G on itself, namely on the vertices of K_G, we always mean the regular right representation of G ($g(x) = x + g$ for $x \in G$). Of course, this action also induces actions of G on edges and 1-factors of K_G.

An edge $e = [x, y]$ of K_G is said to be short or long according to whether $-x + y$ is or is not an involution. In the first case e is fixed by $-x + y$ and its G-orbit has length $|G|/2$ while, in the second case, e has trivial G-stabilizer so that its G-orbit has length $|G|$.

We set $\partial[x, y] = \{x - y, y - x\}$ when $[x, y]$ is long and $\partial[x, y] = \{x - y\}$ when $[x, y]$ is short. Also, we set $\phi[x, y] = \{x, y\}$ when $[x, y]$ is long and $\phi[x, y] = \{x\}$ or (at pleasure) $\{y\}$ when $[x, y]$ is short.

More generally, given $S = \{e_1, \ldots, e_n\} \subset \binom{G}{2}$, we set $\partial S = \partial e_1 \cup \cdots \cup \partial e_n$ and $\phi(S) = \phi(e_1) \cup \cdots \cup \phi(e_n)$.

In the above equalities and throughout the paper the union is understood to be strong (elements have to be counted with their respective multiplicities) so that ∂S and $\phi(S)$ are, in general, multisets of elements of G.

We are now ready to define the new concept of a starter in a group of even order.

Definition 2.1. A starter in a group G of even order is a set $\Sigma = \{S_1, \ldots, S_n\}$ of subsets of $\binom{G}{2}$ satisfying the following conditions:

$$\partial S_1 \cup \cdots \cup \partial S_n = G - \{0\}.$$

$\phi(S_i)$ is a left transversal of G/H_i for a suitable $H_i \leq G$ containing all the involutions fixing the short edges of S_i, $i = 1, \ldots, n$.

The following theorem shows that the concept defined above is equivalent to that of a 1-factorization of the complete graph admitting G as a sharply-vertex-transitive automorphism group. As a matter of fact the theorem is a very special case of a much more general theory able to describe, in particular, any regular resolution of a Steiner 2-design (see [3]). For this reason we give a quick proof without entering into the smallest details.

Theorem 2.2. The existence of a starter in a group G of even order is equivalent to the existence of a 1-factorization of the complete graph admitting G as a sharply-vertex-transitive automorphism group.

Proof. Let $\Sigma = \{S_1, \ldots, S_n\}$ be a starter in G, i.e., a set of subsets of $\binom{G}{2}$ satisfying the conditions of Definition 2.1. For $i = 1, \ldots, n$, let $F_i = \bigcup_{e \in S_i} \text{Orb}_G(e)$ be the union of the H_i-edge-orbits represented by the edges of S_i.

Given $i \in \{1, \ldots, n\}$ and $g \in G$, since $\phi(S_i)$ is a left transversal of G/H_i, there exists exactly one pair $(x, h) \in \phi(S_i) \times H_i$ such that $g = x + h$. One may check that the only edge of F_i containing g is $e + h$ where e is the edge of S_i through x. This means that each F_i is a 1-factor of K_G.

Now, consider the set $\mathcal{F} = \text{Orb}_G(F_1) \cup \cdots \cup \text{Orb}_G(F_n)$ of 1-factors of K_G.

Given any $[g, h] \in \binom{G}{2}$, let $e = [x, y] \in S_i$ be the only edge of $\bigcup_{j=1}^n S_j$ such that $g - h \in \partial e$, say $g - h = x - y$. Then $F_i + (-x + g)$ is the only factor of \mathcal{F} containing $[g, h]$. Thus, any $[g, h] \in \binom{G}{2}$ belongs to exactly one factor of \mathcal{F}, i.e., \mathcal{F} is a 1-factorization of K_G. Obviously, \mathcal{F} admits G as a sharply-vertex-transitive automorphism group.

Now, let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a 1-factorization of the complete graph admitting G as a sharply-vertex-transitive automorphism group. For $i = 1, \ldots, n$, let H_i be the G-stabilizer of
Given an Abelian group \(G \), we denote by \(I(G) \) and by \(2G \) the kernel and, respectively, the image of the group endomorphism \(\alpha : g \in G \rightarrow 2g \in G \). Thus, the nonzero elements of \(I(G) \) are the involutions of \(G \).

We shall need the following elementary lemmas.

Lemma 3.1. Let \(G \) be an Abelian group. We have:

(i) A subset \(X \) of \(G \) is a transversal of \(G/I(G) \) if and only if the map \(\beta : x \in X \rightarrow 2x \in 2G \) is bijective.

(ii) For any \(g \in G − 2G \) there exists at least one subgroup of index two in \(G \) not containing \(g \).

Proof.

(i) It follows from the proof of the Homomorphism theorem.

(ii) From the fundamental theorem on the structure of finite Abelian groups we may assume that \(G = \bigoplus_{i=1}^{n} C_{i} \) where each \(C_{i} \) is a cyclic group of even order while \(K \) is an Abelian group of odd order. Note that \(2G = \bigoplus_{i=1}^{n} 2C_{i} \) and hence, if \(g = (x_{1}, x_{2}, \ldots, x_{i}, k) \in G − 2G \), we have that \(x_{j} \in C_{j} \). Then \(\bigoplus_{i=1}^{n} C_{i} \) is a subgroup of \(G \) of index 2 not containing \(g \).

Lemma 3.2. Let \(G \) be an Abelian group of even order and let \(\Sigma = \{ S_{1}, \ldots, S_{m} \} \) be a set of subsets of \(\binom{G}{2} \) satisfying the following conditions:

(1) \(\bigcup_{i=1}^{m} \partial S_{i} \) has no repeated elements and contains \(2G − I(G) \);

(2) \(\phi(S_{i}) \) is a transversal of \(G/H_{i} \) for a suitable \(H_{i} \leq G \) containing all the involutions fixing the short edges of \(S_{i} \), \(i = 1, \ldots, m \).

Then \(\Sigma \) can be extended to a starter in \(G \).

Proof. Let \(A \) be the set of nonzero elements of \(G \) that are not covered by \(\bigcup_{i=1}^{m} \partial S_{i} \). We may express \(A \) in the form \(A = A' \cup -A' \cup A'' \) where \(A'' \) is the set of involutions in \(A \). For each \(a \in A' \cup A'' \) set \(T_{a} = \{0, a\} \). We have \(\bigcup_{a \in A' \cup A''} \partial T_{a} = A \). Also, for each \(a \in A' \) we have \(\phi(T_{a}) = \{0, a\} \) so that, by (1) and Lemma 3.1(ii), \(\phi(T_{a}) \) is a transversal of \(G/L_{a} \) for a suitable subgroup \(L_{a} \) of index 2 in \(G \). Finally, for each \(a \in A'' \) we have that \(\phi(T_{a}) = \{0\} \), which, obviously, is a transversal of \(G/G \).

It follows that \(\Sigma \cup \{ T_{a} \mid a \in A' \cup A'' \} \) is a starter in \(G \).

Theorem 3.3. For any Abelian group \(G \) of even order, but \(G \not\cong \mathbb{Z}_{2^{n}} \) with \(n > 2 \), there exists a 1-factorization of the complete graph admitting \(G \) as a sharply-vertex-transitive automorphism group.

Proof. For our purpose it is sufficient to construct a set \(\Sigma \) of subsets of \(\binom{G}{2} \) satisfying the conditions of Lemma 3.2. We realize the construction distinguishing four cases according to the form of the Sylow 2-subgroup, say \(H \), of \(G \).

1st case: \(H \) is elementary Abelian, i.e., \(H = I(G) \).

In this case \(G \) is the direct sum \(H + K \) where \(K \) is an Abelian group of odd order. Express \(K \) as union of two disjoint sets \(K' \) and \(-K' \), choose a nonzero element \(h \in H \) and consider the following subset of \(\binom{G}{2} \):

\[
S = \{[k, -k] \mid k \in K'\} \cup \{[0, h]\}.
\]
We have $\partial S = (K - \{0\}) \cup \{h\}$ and $\phi(S) = K$ so that $\phi(S)$ is a transversal of G/H.

Thus, since $2G = K$, $\Sigma = \{S\}$ satisfies the conditions of Lemma 3.2

2nd case: H is neither elementary Abelian nor cyclic.

In this case G may be expressed as direct sum of two groups C and K where $C = \langle y \rangle$ is cyclic of order $2^n \geq 4$ and K is an Abelian group of even order.

Take a subset X of G in such a way that the map $\beta : x \in X \longrightarrow 2x \in 2G$ is bijective. It is easy to see that we may choose X of the form $X' \cup -X' \cup X''$ where $\beta(X'') = 1(G) \cap 2G$. We may also assume that $X' \cap C = \{iy | 1 \leq i < 2^{n-2}\}$ and that $X'' \cap C = \{0, 2^{n-2}y\}$.

Consider the following subset of $\binom{\frac{n}{2}}{2}$:

$$S = \{[x, -x] | x \in (X' \cup X'') \setminus C \} \cup \{[-iy, (i + 1)y] | 0 \leq i < 2^{n-2}\}.$$

One may check that $\partial S = (2G - 2C) \cup (C - 2C)$ and that $\phi(S) = X$.

Then, by Lemma 3.1(i), $\phi(S)$ is a transversal of $G/1(G)$.

Since K has even order, $K - 2K$ is not empty. Take an element $k \in K - 2K$ and consider the following subset of $\binom{\frac{n}{2}}{2}$:

$$T = \{[i, y, (2^{n-1} - i)y] | 1 \leq i < 2^{n-2}\} \cup \{[0, 2^{n-2}y + k]\}.$$

One may check that $\partial T = (2C - [0, 2^{n-1}y]) \cup [2^{n-2}y + k, -2^{n-2}y - k]$ and that $\phi(T)$ is a transversal of G/L where $L = [0, 2^{n-1}y] + K$.

Note that $\partial S \cup \partial T$ has no repeated elements and covers all the nonzero elements of $2G$ with the only exception of the involution $2^{n-1}y$. Thus $\Sigma = \{S, T\}$ satisfies the conditions of Lemma 3.2.

3rd case: $H = [0, h, 2h, 3h]$ is cyclic of order 4.

Here G is the direct sum of H with an Abelian group K of odd order. Express $K - \{0\}$ as union of two disjoint sets K' and $-K'$. Consider the following subset of $\binom{\frac{n}{2}}{2}$:

$$S = \{[k, -k] | k \in K' \} \cup \{[h - k, 3h + k] | k \in K' \} \cup \{[0, h]\}.$$

We have $\partial S = (2G - [0, 2h]) \cup [h, 3h]$. Also, $\phi(S)$ is a transversal of $G/\{0, 2h\}$. Thus, $\Sigma = \{S\}$ satisfies the conditions of Lemma 3.2.

4th case: H is cyclic of order greater than 4.

In this case G is the direct sum of H with an Abelian group K of odd order >1. Take a subset $X \subseteq G$ in such a way that the map $\beta : x \in X \longrightarrow 2x \in 2G$ is bijective with X of the form $X' \cup -X' \cup \{0, j\}$ where $2j$ is the only involution of G.

Choose an element $y = h + z \in X'$ with $(h, z) \in (H - 2H) \times (K - \{0\})$ and consider the following subset of $\binom{\frac{n}{2}}{2}$:

$$S = \{[x + y, -x + y] | x \in X' \setminus \{y\} \} \cup \{[y, 2y], [0, j + y]\}.$$

One checks that

$$\partial S = (2G - [0, 2y, -2y, 2j]) \cup \{y, -y, j + y, -j - y\}$$

and that $\phi(S) = X + y$. Thus, since X is a transversal of $G/\{0, 2j\}$ by Lemma 3.1(i), we have that $\phi(S)$ is also a transversal of $G/\{0, 2j\}$.

Now, express $K - \{0, z, -z\}$ as union of two disjoint subsets K' and $-K'$ and consider the set

$$T = \{[k, h - k] | k \in K' \} \cup \{[0, 2j], [h + z, -h - z]\}.$$
We have \(\partial T = (\bigcup_{k \in K'} \{ h - 2k, -h + 2k \}) \cup \{ 2y, -2y, 2f \} \) so that \(\partial S \cup \partial T \) has no repeated elements and covers all the elements of \(2G - \{ 0 \} \).

Also, the projection of \(\phi(T) \) on \(K \) gives all of \(K \) exactly once so that \(\phi(T) \) is a transversal of \(G/H \).

Hence, also here, \(\Sigma = \{ S, T \} \) satisfies the conditions of Lemma 3.2. The assertion follows.

Remark 3.4. The number of \(G \)-invariant factors in the factorization produced by the above theorem is \(|I(G)| - 2 \) in the 1st case, \(|I(G)| - 2G| + 1 \) in the 2nd case, one in the 3rd case. In the 4th case we have no \(G \)-invariant factors.

References

3. M. Buratti, A description of any regular or 1-rotational design by difference methods, preprint.

Received 1 August 2000 and accepted 22 September 2000

Marco Buratti

Universita' degli Studi di Perugia,
Dipartimento di Matematica e Informatica,
Via Vanvitelli 1,
06123 (PG),
Italy
E-mail: buratti@mat.unipg.it