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Abstract Rho GTPases contribute to multiple cellular pro-
cesses that could affect cancer progression, including cytoskeletal
dynamics, cell cycle progression, transcriptional regulation, cell
survival and vesicle trafficking. In vitro several Rho GTPases
have oncogenic activity and/or can promote cancer cell invasion,
and this correlates with increased expression and activity in a
variety of cancers. Conversely, other family members appear
to act as tumour suppressors and are deleted, mutated or down-
regulated in some cancers. Genetic models are starting to provide
new information on how Rho GTPases affect cancer development
and progression. Here, we discuss how Rho GTPases could con-
tribute to different steps of cancer progression, including prolif-
eration, survival, invasion and metastasis.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Rho GTPases form a distinct family within the Ras-like pro-

tein superfamily, which also includes the Ras, Rab, Arf and

Ran families (Fig. 1). Rho members differ from other Ras-like

GTPases by the presence of a Rho-specific insert domain. Rho

proteins are highly conserved from lower eukaryotes to plants

and mammals [1]. In mammals the family comprises 20 mem-

bers, divided into 8 different subfamilies (Figs. 1 and 2). Splice

variants of Rac1 and Cdc42 have also been identified. Rho-

BTB3 and Miro1 and 2 are now considered as outside of the

Rho family because they lack a proper Rho insert domain

and are of distinct phylogenetic origin [1].

Most Rho family members act as molecular switches, cycling

between a GTP-bound active form and a GDP-bound inactive

form [2] (Fig. 3). Their activity is increased by guanine nucle-

otide exchange factors (GEFs), which promote the release of

bound GDP and subsequent binding of the more abundant

GTP, and downregulated by GTPase-activating proteins
Abbreviations: ECM, extracellular matrix; JNK, Jun N-terminal
kinase; MLC, myosin light chain; MMP, matrix metalloproteases;
PAK, p21-activated kinase; PKA, cAMP-dependent protein kinase;
ROCK, Rho-associated, coiled-coil containing protein kinase
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(GAPs), which stimulate the hydrolysis of GTP [3]. Rho pro-

teins are also frequently post-translationally modified at the

C-terminus with the addition of a lipidic group by prenylation

(farnesylation or geranylgeranylation) or palmitoylation,

thereby enhancing their interaction with membranes. GDI

proteins (guanine–nucleotide-dissociation inhibitors) also reg-

ulate the activity of Rho GTPases by binding to the C-terminal

prenyl group, preventing their membrane association and

sequestering them in the cytoplasm, and thus frequently inhib-

iting their access to downstream targets [4]. RhoGDIs can bind

to either the GTP- or the GDP-loaded forms. To date over 70

RhoGEFs, 60 RhoGAPs and 3 RhoGDIs have been identified

in mammals, reflecting the complexity of the regulation of this

class of proteins.

The Rho family members Rnd1, Rnd2, Rnd3/RhoE, RhoH,

RhoBTB1 and RhoBTB2 have key amino acid substitutions

that make them lack GTP hydrolysis activity and GDP bind-

ing and they are therefore permanently bound to GTP [5,6]

(Fig 2). These proteins are likely to be regulated by expression

level, phosphorylation or protein interactions through specific

protein domains. Phosphorylation regulates the activity and

localization of RhoA and Rnd3/RhoE, which are phosphory-

lated by cAMP-dependent protein kinase (PKA) and Rho-

associated, coiled-coil containing protein kinase (ROCK),

respectively [7,8].

Once activated, Rho GTPases bind different effector mole-

cules and trigger a signalling cascade to direct cellular re-

sponses. Rho GTPases have been implicated in many cellular

processes including actin and microtubule cytoskeleton

organization, cell division, motility, cell adhesion, vesicular

trafficking, phagocytosis and transcriptional regulation [2].

Considerable insight into their function has come from the

study of model organisms. Dictyostelium discoideum has more

than 15 genes in the family including members of the Rac

and RhoBTB subfamilies but not the other human subfamilies.

Several Rac isoforms affect migration and cytokinesis [9]. The

nematode Caenorhabditis elegans has six members, including

Rho, Rac and Cdc42. They are required for cytoskeleton-based

processes including cell migration, cell polarity, phagocytosis,

spindle formation, axon guidance, locomotion and embryonic

development [10]. Drosophila melanogaster has seven members

including Rho, 3 Rac isoforms, Cdc42 and RhoBTB, which

have been shown to affect cell shape, morphology, polarity, cell

division, and the maintenance of epithelial architecture.

As well as contributing to physiological processes, Rho

GTPases have been found to contribute to pathological pro-

cesses including cancer cell migration, invasion, and metasta-

sis, inflammation, and wound repair [2,5]. In this review, we
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Phylogenetic tree showing the mammalian Ras GTPase superfamily. The 20 Rho GTPase family members are grouped into eight subfamilies.
Miro proteins and RhoBTB3 form independent branches within the superfamily, separate from the Rho GTPases.
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will focus on the involvement of Rho GTPases in the cellular

processes that contribute to cancer progression.
2. Steps in cancer progression

Rho GTPases have been reported to contribute to most

steps of cancer initiation and progression including the acqui-

sition of unlimited proliferation potential, survival and evasion

from apoptosis, tissue invasion and the establishment of

metastases.

Primary tumours generally arise as a consequence of multi-

ple mutations and epigenetic changes affecting key genes that

ultimately affect proliferation and survival. Activating muta-

tions in the three Ras isoforms, Ki-Ras, N-Ras and Ha-Ras,

are found in 15% of all human tumours. In contrast, Rho pro-

teins are only rarely mutated in tumours, whereas their expres-

sion and/or activity are frequently altered. For example,

several Rho GTPases are upregulated in some human tu-

mours, including RhoA, RhoC, Rac1, Rac2, Rac3, Cdc42,

Wrch2/RhoV and RhoF [11–13].

Uncontrolled proliferation, coupled to increased survival

signals that permit tumour cells to escape from apoptosis, re-

sult in tumour growth. Some Rho GTPases stimulate cell cycle

progression and regulate gene transcription, and this could in

part explain their pro-oncogenic properties, for example in
promoting Ras-induced transformation [14]. The induction

of tumour vascularisation is essential for tumours to grow be-

yond a certain size and malignant cells release factors that pro-

mote angiogenesis from nearby pre-existing blood vessels.

Some Rho GTPases are thought to be able to regulate the re-

lease of pro-angiogenic factors to promote neovascularisation

[15].

Invasion of epithelial cancers is initiated when the integrity

of the epithelium is disrupted and malignant cells disrupt the

basement membrane and enter the underlying stroma

(Fig. 4). This normally implies loosening of epithelial cell–cell

contacts and acquisition of a more motile phenotype in a pro-

cess frequently referred as epithelial to mesenchymal transition

(EMT). Invasive epithelial cancer cells often have reduced

expression of the cell–cell adhesion protein E-cadherin and

start expressing markers of mesenchymal origin such as vimen-

tin and N-cadherin [16]. Non-epithelial cancers also invade so-

lid tissues [17].

Cancer cells can invade into tissues either as single cells or as

cell groups (collective cell migration) (Fig. 5). Single cells have

been described to use two alternative migratory mechanisms:

mesenchymal and amoeboid migration. Cells using mesenchy-

mal migration have an elongated morphology and extend long

protrusions at the front. Integrin-based adhesions and strong

traction are the driving forces for movement in addition to

extracellular matrix (ECM) degradation by secreted and/or
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transmembrane proteases [17]. In contrast, amoeboid migra-

tion is generally independent of extracellular protease activity

and is driven by actomyosin-based cortical contraction, and

cells have a more rounded shape. In collective cell invasion,

cells move in groups through the extracellular matrix and
maintain cell–cell adhesions. A leading cell at the tip of the

group generates the migratory traction necessary for move-

ment and the cells at the back and middle of the group are

mostly dragged passively. Degradation of the ECM by matrix

metalloproteases (MMPs) is essential for this kind of collective
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migration [18]. Cancer cells can convert from one type of

migration to another depending on conditions [17,18].

To establish metastases in distant tissues, tumour cells have

to enter the vascular or lymphatic system, then exit it and pro-

liferate in the new tissue. The ability of Rho GTPase family

members to regulate cytoskeletal dynamics, cell adhesion and

cell migration [2] points to a central role in cancer cell invasion

and metastasis. The possible roles of the different Rho GTPas-

es in different steps of cancer progression are discussed below.

2.1. Rho subfamily

The Rho subfamily consists of the highly conserved RhoA,

RhoB and RhoC proteins (Fig. 1). RhoA and RhoC expres-
sion and/or activity is frequently increased in human tumours

[12,19], whereas RhoB is often downregulated [12].

RhoA has been implicated in virtually all stages of cancer

progression. RhoA might play a role during tumour cell prolif-

eration and survival: for example, in vitro, constitutively active

RhoA can stimulate transformation [2]. In normal epithelia,

RhoA contributes to the generation of epithelial polarity and

junction assembly and function (reviewed in [20]) but also af-

fects epithelial disruption during tumour progression. Rho

activity can be inhibited downstream of cadherins leading to

a more motile phenotype [21]. Different GEFs and GAPs influ-

ence how Rho proteins can act in different contexts either pro-

moting epithelial organization and polarity or epithelial EMT,
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as seen in studies of RhoA GEFs/GAPs in Drosophila models

[22].

RhoA is important for both amoeboid and mesenchymal

migration (Fig. 4). RhoA-ROCK signalling is proposed to in-

duce actomyosin-based cortical contractility leading to amoe-

boid migration via blebbing, as well as tail retraction in

mesenchymal migration [17]. A 3D in vitro invasion model

using co-cultures of SSC12 carcinoma cells, that have not

undergone a complete mesenchymal transformation retaining

some epithelial markers, with stromal fibroblasts has shown

how a fibroblast is the leading cell in this model of collective

cell invasion [23]. This fibroblast generates the traction force

and remodels the matrix through MMPs. Different Rho GTP-

ases were found to be required in the leading fibroblast and the

following carcinoma cells with a RhoA regulation of Myosin

light chain (MLC) in the former and mainly Cdc42 and

MRCK function in the latter. Rho GTPases can also regulate

the production of MMPs, affecting matrix remodelling and tu-

mour cell invasion. Rho can induce the expression or secretion

of MMPs [24]. Nevertheless, studies on cells depleted of RhoA

by RNAi are variable and show a strong dependence of cell

background for its effect on migration and invasion [25,26]

In contrast to RhoA, RhoC has no apparent transforming

activity and the involvement of RhoC in cancer progression

appears to be restricted largely to metastasis [27]. RhoC was

identified in a screen for genes upregulated in melanoma

metastases [28], and has subsequently been proposed as a mar-

ker for poor prognosis in cancers of different origins [29]. In-

creased RhoC expression has been claimed as the possible

cause for the induction in invasion and metastasis triggered

by the overexpression of the microRNA-10b in breast cancer

[30]. Studies of RhoC knock-out mice show that RhoC is dis-

pensable for embryogenesis and tumour initiation but is re-

quired for metastasis [27]. RhoC expression is increased

during EMT in a colon cancer model and contributes to

EMT-induced migration, whereas RhoA levels go down [25].

Knockdown of RhoC expression by RNAi confirms that

RhoC is important for invasion in vitro [25,26,31]. It is not

yet clear how RhoC increases invasion and metastasis or

why its effects differ from RhoA.

Some reports indicate that RhoA, RhoC and their down-

stream target ROCK are needed for cancer cell extravasation,

but these studies are largely based on chemical inhibitors that

are not completely specific [32]. Interestingly, RhoC can induce

the production of angiogenic factors in breast cancer, and this

could help promote entry into blood vessels and thereby

metastasis [15]. More extensive work is needed to elucidate

the possible contribution of Rho GTPases to the extravasation

of cancer cells.

Unlike RhoA and RhoC, RhoB is often downregulated in

human tumours and its expression inversely correlates with tu-

mour aggressiveness [33]. It has been proposed that RhoB can

work as a tumour suppressor as it is activated in response to

several stress stimuli including DNA damage or hypoxia,

and it has been reported to inhibit tumour growth, cell migra-

tion and invasion and have proapoptotic functions in cells [33].

RhoB knock-out mice develop normally but have enhanced

carcinogen-induced skin tumour formation, in agreement with

a role of RhoB as a tumour suppressor [34]. RhoB also sup-

presses invasion: for example it has been postulated to act

downstream of PKCs in the regulation of cancer cell invasion
in vitro [35] and it was also reported to inhibit Ras-induced

invasion and metastasis [36].

The exact mechanism whereby RhoB suppresses tumour

growth and invasion is not clear, although its role in endo-

somal trafficking could be important. RhoB regulates the

delivery of signalling proteins, including growth factor recep-

tors and the tyrosine kinase Src, to specific intracellular com-

partments [37], and this could certainly influence

proliferation and invasion.

2.2. Rac subfamily

The Rac subfamily of Rho GTPases comprises Rac1, Rac2,

Rac3 and RhoG (Fig. 1). Rac1 is over-expressed in various

tumours and accumulating evidence indicates that Rac1-

dependent cell signalling is important for malignant transfor-

mation [12]. Rac1 is one of the few Rho GTPases mutated in

some tumours, with mutations mainly affecting the effector do-

main that interacts with downstream targets. It was proposed

that these mutations could increase the activity of the protein

and the survival of the tumours [38].

A splice variant of Rac1, Rac1b, has an extra intron close to

the GTP-binding region. It was initially identified to be upreg-

ulated in colon cancers [39]. It does not bind RhoGDI and

thus is present predominantly in the GTP-bound state.

Although Rac1b is defective in activating several Rac1-regu-

lated signalling pathways, in some cell types it stimulates cell

survival and cell cycle progression through NFjB, and is less

susceptible to ubiquitination and degradation, which could ex-

plain its increased expression in cancers [40–42].

So far little is known about the role of Rac proteins in cancer

progression in vivo. Rac1 knock-out in mice is embryonic

lethal [43] but conditional knock-out mice have been studied

extensively [44,45]. In a conditional lung cancer mouse model

Rac1 function was required for K-Ras-driven proliferation

and tumorigenicity [46]. Similarly, mice lacking the Rac-spe-

cific GEF Tiam1 are protected from Ras-induced skin cancer,

developing fewer tumours, although the tumours that do form

are more aggressive [47]. These results suggest that Rac pro-

teins normally stimulate tumour cell proliferation but inhibit

tumour dissemination.

Rac1 could contribute to cancer cell proliferation via regula-

tion of the cell cycle: for example, it stimulates expression of

cyclin D1, and induces cell transformation in vitro [2,14]. It

is likely to inhibit cancer invasion through its ability to en-

hance epithelial cell-cell adhesion. However, active Rac can

mediate the loss of adherens junction in some situations, pro-

moting a more migratory phenotype, and thus Rac could pro-

mote or inhibit tumour cell invasion depending on the cell

background [48–51]. Rac is necessary for the generation of

lamellipodial protrusions during mesenchymal migration, as

well as for the amoeboid migration of Ras-transformed cells

(Fig. 5)[17]. Rac1 can also contribute to cancer cell invasion

by regulating the production of MMPs and their natural inhib-

itors, the Tissue-specific inhibitors of MMP (TIMPs) [24].

Like Rac1, Rac2 and Rac3 are over-expressed in some tu-

mours. Rac3 is hyperactive and/or deregulated in breast can-

cers [19,52,53]. The contribution of different Rac isoforms to

migration is likely to depend on the cell type and their relative

expression levels. Rac2 is required for neutrophil migration

but whether it acts similarly in tumours is not known [54]. In

contrast, Rac1 and Rac2 are dispensable for cell migration
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in macrophages, although Rac1 is required for invasion [55].

Studies of Rac3-null mice indicate that Rac3 but not Rac1

or Rac2 specifically contributes to the development of Brc-

Abl-induced lymphomas in vivo [56]. However, in fibroblasts,

Rac1 but not Rac3 suppression by RNAi affects lamellipodium

formation although cell invasion is reduced in both cases [57].

It is not yet clear how these results can be translated to cancer

cell invasion in vivo.

Little is known about the role of RhoG in cancer, although

it induces actin reorganization and cell migration via Rac

in vitro [58], and thus it will be interesting to determine its role

in cancer cell invasion.

2.3. Cdc42 subfamily

Cdc42 and the closely related RhoQ/TC10 and RhoJ/TCL

form a distinct subfamily of Rho GTPases. Cdc42 expression

is upregulated in some breast cancers [59], yet liver-specific

knock-out indicates that loss of Cdc42 enhances liver cancer

development [60], suggesting that the contribution of Cdc42

to cancer progression may be tissue-specific. This could reflect

the multiple roles of Cdc42 in regulating cell polarity as well as

cell cycle progression.

Both Cdc42 and RhoQ/TC10 stimulate transformation and

contribute to Ras-induced transformation in vitro

[2,12,14,61], and for Cdc42 this has been suggested to be due

to its effect on receptor trafficking and degradation [62].

RhoQ/TC10 is also implicated in receptor trafficking, particu-

larly of the glucose transporter [63], but whether this accounts

for its role in transformation is not known. Another mecha-

nism whereby Cdc42 could affect cell cycle progression is by

regulating chromosome segregation during mitosis: only

Cdc42 knockdown out of all Rho GTPases was found to in-

duce chromosome misalignment during cell division, leading

to multinucleate cells. RhoJ/TCL and RhoQ/TC10 enhance

this effect when suppressed in conjunction with Cdc42 [64],

pointing towards a possible redundancy in function of Cdc42

family proteins during spindle formation and cell division.

Cdc42 is involved in the establishment of normal epithelial

polarity as well as migratory polarity via its interaction with

the Par3/Par6/aPKC polarity complex, which in turn regulates

Rac via Tiam1 [20]. Cdc42 is thus predicted to inhibit invasion

by promoting epithelial polarity, yet conversely also stimulate

migration. Indeed, it contributes to cancer cell invasion in sin-

gle cells in vitro with a mesenchymal morphology although

probably not with an amoeboid morphology [17,65]. It is also

important for collective cancer cell invasion, where it acts

through its target MRCK to stimulate actomyosin contractil-

ity [23] (Fig. 5). However, whether the Par3/Par6/aPKC com-

plex is also involved in these processes is not yet known.

2.4. Wrch1 and Wrch2

Wrch1/RhoU and Wrch2/RhoV, also known as Chp, both

have an N-terminal proline-rich domain that is not present in

other Rho family members (Fig. 2), and which can bind to

SH3 domain-containing proteins such as Nck2 and Grb2 [5].

Wrch1 is upregulated by the Wnt signalling pathway, and thus

could be involved in Wnt-driven oncogenic transformation

[66]. It can be upregulated or downregulated in some primary tu-

mours [5,67], but it is not known whether this correlates with lev-

els of Wnt signalling. Wrch1 stimulates cell cycle progression,

and constitutively active Wrch1 is able to induce transformation
of fibroblasts when overexpressed [66,67]. It is therefore possible

that Wnt-induced Wrch1 expression contributes to cancer devel-

opment by stimulating proliferation, although how it does this

remains to be established.

Wrch2 is abundant in cancer cell lines and upregulated in

some human cancers [11]. It differs from Wrch1 at the C-termi-

nus: it lacks a CAAX box and instead has a unique 32 amino

acid sequence (Fig. 2). It has been reported to stimulate the

Jun N-terminal kinase (JNK) signalling pathway [11] but the

relevance of this to cancer progression is not known.

Overexpression of Wrch1 and Wrch2 induces actin cytoskel-

etal reorganization including formation of filopodia and disso-

lution of stress fibers. Whether this reflects their physiological

function or is just a consequence of sequence similarity to

Cdc42 is not known, although, in the case of Wrch1, it does

not bind to the Cdc42 effectors WASP or p21-activated kinase

(PAK) [63]. However, Wrch interaction with Nck2 could allow

them to recruit these proteins indirectly and thereby promote

cell migration [68]. Future studies should delineate in more de-

tail whether and how Wrch proteins contribute to cancer pro-

gression.

2.5. Rnd proteins

The Rnd (Round) proteins, Rnd1, Rnd2 and Rnd3/RhoE,

received their name for the rounded morphology and loss of

stress fibers observed in cells overexpressing Rnd1 or Rnd3.

The three Rnd genes are regulated at the transcriptional level

in response to a variety of stimuli. Rnd1 has been implicated

in axon guidance and Rnd2 in neurite outgrowth and cytokine-

sis, but it is only Rnd3/RhoE that has been clearly linked to

functions related with cancer progression [6].

Rnd3/RhoE has been reported to be downregulated in pros-

tate cancer yet upregulated in other tumours [69,70]. The levels

of Rnd3/RhoE in different tumours could reflect the fact that it

is a p53-inducible gene and is induced by genotoxic stress [71].

Rnd3/RhoE could on the one hand suppress cancer cell prolif-

eration since it can inhibit cell cycle progression and Ras-in-

duced transformation, yet on the other hand it could

enhance cancer progression by acting as a pro-survival factor

[69,71,72]. Its effect would therefore depend on the cellular

background.

Rnd3/RhoE also affects epithelial polarity and cell migra-

tion. Overexpression of Rnd3/RhoE in epithelial cells stimu-

lates multilayering [20], which would be expected to enhance

invasion. It also increases the migration speed of epithelial cells

[6]. Given these multiple functions of Rnd3/RhoE on cell cycle,

survival and morphology, it will be interesting to know how it

affects different steps of cancer progression in vivo.

2.6. RhoD and RhoF/Rif

RhoD and RhoF have not so far been implicated in cancer

cell proliferation or survival, but both of them can affect cell

morphology. Overexpression of RhoF induce the generation

of abundant long actin-rich Cdc42-independent filopodia and

a moderate increase in stress fibers, but the relevance of these

changes for cell migration and physiology is unknown [73].

Interestingly, RhoF is upregulated in malignant B-cell lympho-

mas [13]. Whether this overexpression leads to a change in

adhesion or migration of lymphoma cells is not yet known.

RhoD regulates vesicle trafficking between intracellular

compartments and endosomal motility [63]. RhoD can also in-
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duce alterations to the actin cytoskeleton including loss of

stress fibers, focal adhesion disassembly and actin-based pro-

trusions at the plasma membrane, resulting in an inhibition

of cell motility in some cases. The link between these two

RhoD-regulated responses is so far speculative, but intracellu-

lar trafficking can mediate the delivery of signalling proteins to

the plasma membrane affecting the formation of functional

complexes that drive migration. No link so far has been found

between cancer progression and RhoD expression.

2.7. RhoH

RhoH is frequently rearranged or mutated in B-cell lympho-

mas, and this is believed to contribute to lymphoma progres-

sion [5,74]. Consistent with this, RhoH knock-out mice show

several deficiencies in T-cells [75]. Knockdown of RhoH by

RNAi stimulates proliferation, survival and migration of

hematopoietic progenitor cells [76]. Although RhoH by itself

does not seem to exert a significant effect on actin reorganiza-

tion, recent work places RhoH function as antagonistic to

Rac1 in primary hematopoietic precursor cells: RhoH impairs

migration, chemotaxis and cortical F-actin assembly by sup-

pressing Rac1 activation and membrane targeting. Conversely,

cells lacking RhoH have enhanced Rac1 activity and migration

[77]. How RhoH regulates Rac1 at a molecular level is not yet

known. Previous observations showed that RhoH can also in-

hibit NFjB and p38 activation by other Rho GTPases [78],

suggesting that it may act to regulate multiple Rho family

members. It is possible that this inhibitory effect of RhoH on

Rac1 explains how loss of RhoH function by mutation con-

tributes to malignant progression in lymphomas, since Rac1

has been implicated in lymphoma progression [79], although

other mechanisms cannot be ruled out as the physiological

function of RhoH has not been comprehensively studied.

2.8. RhoBTB subfamily

RhoBTB1 and RhoBTB2 (also known as deleted in breast

cancer-2, DBC2) have an unusual domain structure, which in-

cludes an N-terminal GTP-binding domain followed by a pro-

line-rich region and two BTB domains (Fig. 2). RhoBTB

proteins have been suggested to be tumour suppressors, since

RhoBTB2 was identified as a gene homozygously deleted in

some breast and head and neck cancers and almost 50% of

breast cancer cell lines [80]. RhoBTB1 has also recently been

found to be deleted in some cancers, and in rare cases they

are mutated with loss of function [81]. However, they have also

been reported to be upregulated in some cancer cell lines [82].

Since very little is known of the molecular functions of Rho-

BTB proteins, it is only possible to speculate on their roles

in cancer in vivo. RhoBTB2 is a substrate of cullin3-dependent

ubiquitin ligase, and is implicated in the recruitment of cullin3,

which promotes the ubiquitination and degradation of sub-

strates implicated in cancer. RhoBTB2 might also regulate cell

cycle progression and/or apoptosis as a target of the E2F1

transcription factor [83].
3. Rho regulators in cancer

The spatiotemporal activation of Rho GTPases is determined

by which GEFs and GAPs are involved, and in turn these GEFs

and GAPs can often act as scaffolds to bring the Rho GTPases
and other signalling proteins together with their downstream

targets [3]. This could explain the different, or even opposite in

some cases, functions of closely related Rho GTPases in various

aspects of cancer progression, for example RhoA versus

RhoB.

Deregulation of expression or activity of some GEFs, GAPs

and effector proteins has been observed in cancer. For exam-

ple, Vav proteins are GEFs for Rac and probably other Rho

proteins and have been described to have oncogenic properties.

They are implicated in a variety of human malignancies such

as neuroblastoma, melanoma, pancreatic tumours and leukae-

mia, although the oncogenic form has not been detected in hu-

man tumours [84]. The RhoGAP ARHGAP8 is frequently

upregulated in colon and cervical tumours [85] and RhoGDIa
expression is deregulated in various cancers [86]. Furthermore,

effectors such as PAK and ROCK, downstream of Rac/Cdc42

and Rho, respectively, are upregulated in some cancers [87,88].

It is not clear how the altered expression of these various pro-

teins influences Rho GTPase function in cancer and indeed

whether the connection between these upregulated proteins

and their partner Rho GTPases is relevant for tumour progres-

sion. Further studies analysing the consequences of these

expression changes on Rho protein activity and also the spec-

ificity between different regulators, Rho isoforms and effectors

will help to elucidate the particular functions of these proteins

in the various steps of cancer progression.
4. Conclusions and perspective

Rho GTPases are involved in all stages during cancer progres-

sion. Although their initial discovery as regulators of cytoskele-

ton dynamics implied that they are most likely to contribute to

cancer cell migration and invasion, it is now clear that the func-

tion of Rho GTPases is not restricted to these events and that

they can affect tumour cells through modulation of gene tran-

scription, cell division and survival, intracellular transport of

signalling molecules or modifying the interaction of cancer cells

with surrounding stromal cells. This makes the detailed analysis

of how Rho GTPases work in cells and contribute to tumours

very complex but at the same time promising for potential future

therapeutical intervention. The involvement of specific GEFs or

GAPs in defined processes regulated by Rho GTPases makes

them particularly suitable as therapeutic targets [89].

Genetic models are so far available only for some of the Rho

GTPases, including RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42,

RhoH and RhoG, and for a few regulators and effectors.

The generation of cancer-specific models in mice will help to

elucidate how these proteins work in cancer.

Most of what is known regarding the role of Rho GTPases

in cancer cell invasion has come from the study of the proto-

typic members RhoA, Rac1 and Cdc42 and RhoC, but little

is known regarding other members of the family although they

are known to affect the actin cytoskeleton, and thus further

studies are needed to clarify the roles of these less-character-

ized family members in tumourigenesis in vivo.

References

[1] Boureux, A., Vignal, E., Faure, S. and Fort, P. (2007) Evolution
of the Rho family of ras-like GTPases in eukaryotes. Mol. Biol.
Evol. 24, 203–216.



2100 F.M. Vega, A.J. Ridley / FEBS Letters 582 (2008) 2093–2101
[2] Jaffe, A.B. and Hall, A. (2005) RHO GTPASES: biochemistry
and biology. Annu Rev. Cell Dev Biol. 21, 247–269.

[3] Bos, J.L., Rehmann, H. and Wittinghofer, A. (2007) GEFs and
GAPs: critical elements in the control of small G proteins. Cell
129, 865–877.

[4] Dovas, A. and Couchman, J.R. (2005) RhoGDI: multiple
functions in the regulation of Rho family GTPase activities.
Biochem. J. 390, 1–9.

[5] Aspenstrom, P., Ruusala, A. and Pacholsky, D. (2007) Taking
Rho GTPases to the next level: the cellular functions of atypical
Rho GTPases. Exp. Cell Res. 313, 3673–3679.

[6] Chardin, P. (2006) Function and regulation of Rnd proteins. Nat.
Rev. Mol. Cell Biol. 7, 54–62.

[7] Riento, K., Totty, N., Villalonga, P., Garg, R., Guasch, R. and
Ridley, A.J. (2005) RhoE function is regulated by ROCK I-
mediated phosphorylation. EMBO J. 24, 1170–1180.

[8] Rolli-Derkinderen, M., Sauzeau, V., Boyer, L., Lemichez, E.,
Baron, C., Henrion, D., Loirand, G. and Pacaud, P. (2005)
Phosphorylation of serine 188 protects RhoA from ubiquitin/
proteasome-mediated degradation in vascular smooth muscle
cells. Circ. Res. 96, 1152–1160.

[9] Vlahou, G. and Rivero, F. (2006) Rho GTPase signaling in
Dictyostelium discoideum: insights from the genome. Eur. J. Cell
Biol. 85, 947–959.

[10] Lundquist, E.A. (2006) Small GTPases. WormBook, 1–18.
[11] Aronheim, A., Broder, Y.C., Cohen, A., Fritsch, A., Belisle, B.

and Abo, A. (1998) Chp, a homologue of the GTPase Cdc42Hs,
activates the JNK pathway and is implicated in reorganizing the
actin cytoskeleton. Curr. Biol. 8, 1125–1128.

[12] Gomez del Pulgar, T., Benitah, S.A., Valeron, P.F., Espina, C.
and Lacal, J.C. (2005) Rho GTPase expression in tumourigenesis:
evidence for a significant link. Bioessays 27, 602–613.

[13] Gouw, L.G., Reading, N.S., Jenson, S.D., Lim, M.S. and
Elenitoba-Johnson, K.S. (2005) Expression of the Rho-family
GTPase gene RHOF in lymphocyte subsets and malignant
lymphomas. Br. J. Haematol. 129, 531–533.

[14] Benitah, S.A., Valeron, P.F., van Aelst, L., Marshall, C.J. and
Lacal, J.C. (2004) Rho GTPases in human cancer: an unresolved
link to upstream and downstream transcriptional regulation.
Biochim. Biophys. Acta 1705, 121–132.

[15] Merajver, S.D. and Usmani, S.Z. (2005) Multifaceted role of Rho
proteins in angiogenesis. J. Mammary Gland Biol. Neoplasia 10,
291–298.

[16] Wheelock, M.J., Shintani, Y., Maeda, M., Fukumoto, Y. and
Johnson, K.R. (2008) Cadherin switching. J. Cell Sci. 121, 727–735.

[17] Friedl, P. and Wolf, K. (2003) Tumour-cell invasion and
migration: diversity and escape mechanisms. Nat. Rev. Cancer
3, 362–374.

[18] Wolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C.,
Stack, M.S. and Friedl, P. (2007) Multi-step pericellular proteol-
ysis controls the transition from individual to collective cancer cell
invasion. Nat. Cell Biol. 9, 893–904.

[19] Abraham, M.T., Kuriakose, M.A., Sacks, P.G., Yee, H., Chirib-
oga, L., Bearer, E.L. and Delacure, M.D. (2001) Motility-related
proteins as markers for head and neck squamous cell cancer.
Laryngoscope 111, 1285–1289.

[20] Braga, V.M. and Yap, A.S. (2005) The challenges of abundance:
epithelial junctions and small GTPase signalling. Curr. Opin. Cell
Biol. 17, 466–474.

[21] Wildenberg, G.A., Dohn, M.R., Carnahan, R.H., Davis, M.A.,
Lobdell, N.A., Settleman, J. and Reynolds, A.B. (2006) p120-
catenin and p190RhoGAP regulate cell–cell adhesion by coordi-
nating antagonism between Rac and Rho. Cell 127, 1027–1039.

[22] Labouesse, M. (2004) Epithelium-mesenchyme: a balancing act of
RhoGAP and RhoGEF. Curr. Biol. 14, R508–R510.

[23] Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R.,
Marshall, J.F., Harrington, K. and Sahai, E. (2007) Fibroblast-
led collective invasion of carcinoma cells with differing roles for
RhoGTPases in leading and following cells. Nat. Cell Biol. 9,
1392–1400.

[24] Lozano, E., Betson, M. and Braga, V.M. (2003) Tumor progres-
sion: small GTPases and loss of cell–cell adhesion. Bioessays 25,
452–463.

[25] Bellovin, D.I., Simpson, K.J., Danilov, T., Maynard, E., Rimm,
D.L., Oettgen, P. and Mercurio, A.M. (2006) Reciprocal regula-
tion of RhoA and RhoC characterizes the EMT and identifies
RhoC as a prognostic marker of colon carcinoma. Oncogene.

[26] Pille, J.Y. et al. (2005) Anti-RhoA and anti-RhoC siRNAs inhibit
the proliferation and invasiveness of MDA-MB-231 breast cancer
cells in vitro and in vivo. Mol. Ther. 11, 267–274.

[27] Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G.,
Wakeham, A., Khokha, R. and Mak, T.W. (2005) RhoC is
dispensable for embryogenesis and tumor initiation but essential
for metastasis. Genes Dev. 19, 1974–1979.

[28] Clark, E.A., Golub, T.R., Lander, E.S. and Hynes, R.O. (2000)
Genomic analysis of metastasis reveals an essential role for RhoC.
Nature 406, 532–535.

[29] Kleer, C.G., Teknos, T.N., Islam, M., Marcus, B., Lee, J.S., Pan, Q.
and Merajver, S.D. (2006) RhoC GTPase expression as a potential
marker of lymph node metastasis in squamous cell carcinomas of
the head and neck. Clin. Cancer Res. 12, 4485–4490.

[30] Ma, L., Teruya-Feldstein, J. and Weinberg, R.A. (2007) Tumour
invasion and metastasis initiated by microRNA-10b in breast
cancer. Nature.

[31] Simpson, K.J., Dugan, A.S. and Mercurio, A.M. (2004) Func-
tional analysis of the contribution of RhoA and RhoC GTPases
to invasive breast carcinoma. Cancer Res. 64, 8694–8701.

[32] Miles, F.L., Pruitt, F.L., van Golen, K.L. and Cooper, C.R.
(2007) Stepping out of the flow: capillary extravasation in cancer
metastasis. Clin. Exp. Metastasis.

[33] Huang, M. and Prendergast, G.C. (2006) RhoB in cancer
suppression. Histol. Histopathol. 21, 213–218.

[34] Liu, A.X., Rane, N., Liu, J.P. and Prendergast, G.C. (2001) RhoB
is dispensable for mouse development, but it modifies suscepti-
bility to tumor formation as well as cell adhesion and growth
factor signaling in transformed cells. Mol. Cell Biol. 21, 6906–
6912.

[35] Baldwin, R.M., Parolin, D.A. and Lorimer, I.A. (2008) Regula-
tion of glioblastoma cell invasion by PKCiota and RhoB.
Oncogene.

[36] Jiang, K., Sun, J., Cheng, J., Djeu, J.Y., Wei, S. and Sebti, S.
(2004) Akt mediates Ras downregulation of RhoB, a suppressor
of transformation, invasion, and metastasis. Mol. Cell Biol. 24,
5565–5576.

[37] Sandilands, E., Akbarzadeh, S., Vecchione, A., McEwan, D.G.,
Frame, M.C. and Heath, J.K. (2007) Src kinase modulates the
activation, transport and signalling dynamics of fibroblast growth
factor receptors. EMBO Rep. 8, 1162–1169.

[38] Hwang, S.L., Hong, Y.R., Sy, W.D., Lieu, A.S., Lin, C.L., Lee,
K.S. and Howng, S.L. (2004) Rac1 gene mutations in human
brain tumours. Eur. J. Surg. Oncol. 30, 68–72.

[39] Jordan, P., Brazao, R., Boavida, M.G., Gespach, C. and Chastre,
E. (1999) Cloning of a novel human Rac1b splice variant with
increased expression in colorectal tumors. Oncogene 18, 6835–
6839.

[40] Singh, A., Karnoub, A.E., Palmby, T.R., Lengyel, E., Sondek, J.
and Der, C.J. (2004) Rac1b, a tumor associated, constitutively
active Rac1 splice variant, promotes cellular transformation.
Oncogene 23, 9369–9380.

[41] Matos, P. and Jordan, P. (2006) Rac1, but not Rac1B, stimulates
RelB-mediated gene transcription in colorectal cancer cells. J.
Biol. Chem. 281, 13724–13732.

[42] Visvikis, O., Lores, P., Boyer, L., Chardin, P., Lemichez, E. and
Gacon, G. (2008) Activated Rac1, but not the tumorigenic variant
Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated
process. FEBS J. 275, 386–396.

[43] Sugihara, K. et al. (1998) Rac1 is required for the formation of
three germ layers during gastrulation. Oncogene 17, 3427–3433.

[44] Walmsley, M.J. et al. (2003) Critical roles for Rac1 and Rac2
GTPases in B cell development and signaling. Science 302, 459–462.

[45] Benninger, Y. et al. (2007) Essential and distinct roles for cdc42
and rac1 in the regulation of Schwann cell biology during
peripheral nervous system development. J. Cell Biol. 177, 1051–
1061.

[46] Kissil, J.L. et al. (2007) Requirement for Rac1 in a K-ras induced
lung cancer in the mouse. Cancer Res. 67, 8089–8094.

[47] Malliri, A., van der Kammen, R.A., Clark, K., van der Valk, M.,
Michiels, F. and Collard, J.G. (2002) Mice deficient in the Rac
activator Tiam1 are resistant to Ras-induced skin tumours.
Nature 417, 867–871.



F.M. Vega, A.J. Ridley / FEBS Letters 582 (2008) 2093–2101 2101
[48] Engers, R., Springer, E., Michiels, F., Collard, J.G. and Gabbert,
H.E. (2001) Rac affects invasion of human renal cell carcinomas
by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1
and TIMP-2 expression. J. Biol. Chem. 276, 41889–41897.

[49] Espina, C. et al. (2008) A critical role for rac1 in tumor
progression of human colorectal adenocarcinoma cells. Am. J.
Pathol. 172, 156–166.

[50] Mertens, A.E., Rygiel, T.P., Olivo, C., van der Kammen, R. and
Collard, J.G. (2005) The Rac activator Tiam1 controls tight
junction biogenesis in keratinocytes through binding to and
activation of the Par polarity complex. J. Cell Biol. 170, 1029–
1037.

[51] Sander, E.E., van Delft, S., ten Klooster, J.P., Reid, T., van
der Kammen, R.A., Michiels, F. and Collard, J.G. (1998)
Matrix-dependent Tiam1/Rac signaling in epithelial cells pro-
motes either cell-cell adhesion or cell migration and is
regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143,
1385–1398.

[52] Morris, C.M., Haataja, L., McDonald, M., Gough, S., Markie,
D., Groffen, J. and Heisterkamp, N. (2000) The small GTPase
RAC3 gene is located within chromosome band 17q25.3 outside
and telomeric of a region commonly deleted in breast and ovarian
tumours. Cytogenet. Cell Genet. 89, 18–23.

[53] Mira, J.P., Benard, V., Groffen, J., Sanders, L.C. and Knaus,
U.G. (2000) Endogenous, hyperactive Rac3 controls proliferation
of breast cancer cells by a p21-activated kinase-dependent
pathway. Proc. Natl. Acad. Sci. USA 97, 185–189.

[54] Roberts, A.W. et al. (1999) Deficiency of the hematopoietic cell-
specific Rho family GTPase Rac2 is characterized by abnormalities
in neutrophil function and host defense. Immunity 10, 183–196.

[55] Wheeler, A.P., Wells, C.M., Smith, S.D., Vega, F.M., Henderson,
R.B., Tybulewicz, V.L. and Ridley, A.J. (2006) Rac1 and Rac2
regulate macrophage morphology but are not essential for
migration. J. Cell Sci. 119, 2749–2757.

[56] Cho, Y.J., Zhang, B., Kaartinen, V., Haataja, L., de Curtis, I.,
Groffen, J. and Heisterkamp, N. (2005) Generation of rac3 null
mutant mice: role of Rac3 in Bcr/Abl-caused lymphoblastic
leukemia. Mol. Cell Biol. 25, 5777–5785.

[57] Chan, A.Y., Coniglio, S.J., Chuang, Y.Y., Michaelson, D.,
Knaus, U.G., Philips, M.R. and Symons, M. (2005) Roles of
the Rac1 and Rac3 GTPases in human tumor cell invasion.
Oncogene.

[58] Katoh, H., Hiramoto, K. and Negishi, M. (2006) Activation of
Rac1 by RhoG regulates cell migration. J. Cell Sci. 119, 56–65.

[59] Fritz, G., Just, I. and Kaina, B. (1999) Rho GTPases are over-
expressed in human tumors. Int. J. Cancer 81, 682–687.

[60] van Hengel, J. et al. (2008) Continuous cell injury promotes
hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroen-
terology 134, 781–792.

[61] Murphy, G.A., Solski, P.A., Jillian, S.A., Perez de la Ossa, P.,
D�Eustachio, P., Der, C.J. and Rush, M.G. (1999) Cellular
functions of TC10, a Rho family GTPase: regulation of morphol-
ogy, signal transduction and cell growth. Oncogene 18, 3831–3845.

[62] Wu, W.J., Tu, S. and Cerione, R.A. (2003) Activated Cdc42
sequesters c-Cbl and prevents EGF receptor degradation. Cell
114, 715–725.

[63] Ridley, A.J. (2006) Rho GTPases and actin dynamics in
membrane protrusions and vesicle trafficking. Trends Cell Biol.
16, 522–529.

[64] Yasuda, S., Taniguchi, H., Oceguera-Yanez, F., Ando, Y.,
Watanabe, S., Monypenny, J. and Narumiya, S. (2006) An
essential role of Cdc42-like GTPases in mitosis of HeLa cells.
FEBS Lett. 580, 3375–3380.

[65] Pinner, S. and Sahai, E. (2008) PDK1 regulates cancer cell
motility by antagonising inhibition of ROCK1 by RhoE. Nat.
Cell Biol. 10, 127–137.

[66] Tao, W., Pennica, D., Xu, L., Kalejta, R.F. and Levine, A.J.
(2001) Wrch-1, a novel member of the Rho gene family that is
regulated by Wnt-1. Genes Dev. 15, 1796–1807.

[67] Shutes, A., Berzat, A.C., Cox, A.D. and Der, C.J. (2004) Atypical
mechanism of regulation of the Wrch-1 Rho family small GTPase.
Curr. Biol. 14, 2052–2056.

[68] Blasutig, I.M. et al. (2008) Phosphorylated YDXV motifs and
Nck SH2/SH3 adaptors act cooperatively to induce actin reorga-
nization. Mol. Cell Biol. 28, 2035–2046.
[69] Bektic, J. et al. (2005) Small G-protein RhoE is underexpressed in
prostate cancer and induces cell cycle arrest and apoptosis.
Prostate 64, 332–340.

[70] Gress, T.M. et al. (1996) A pancreatic cancer-specific expression
profile. Oncogene 13, 1819–1830.

[71] Ongusaha, P.P. et al. (2006) RhoE is a pro-survival p53 target
gene that inhibits ROCK I-mediated apoptosis in response to
genotoxic stress. Curr. Biol. 16, 2466–2472.

[72] Villalonga, P., Guasch, R.M., Riento, K. and Ridley, A.J. (2004)
RhoE inhibits cell cycle progression and Ras-induced transfor-
mation. Mol. Cell Biol. 24, 7829–7840.

[73] Pellegrin, S. and Mellor, H. (2005) The Rho family GTPase Rif
induces filopodia through mDia2. Curr. Biol. 15, 129–133.

[74] Gaidano, G. et al. (2003) Aberrant somatic hypermutation in
multiple subtypes of AIDS-associated non-Hodgkin lymphoma.
Blood 102, 1833–1841.

[75] Gu, Y., Chae, H.D., Siefring, J.E., Jasti, A.C., Hildeman, D.A.
and Williams, D.A. (2006) RhoH GTPase recruits and activates
Zap70 required for T cell receptor signaling and thymocyte
development. Nat. Immunol. 7, 1182–1190.

[76] Gu, Y., Jasti, A.C., Jansen, M. and Siefring, J.E. (2005) RhoH, a
hematopoietic-specific Rho GTPase, regulates proliferation, sur-
vival, migration, and engraftment of hematopoietic progenitor
cells. Blood 105, 1467–1475.

[77] Chae, H.D., Lee, K.E., Williams, D.A. and Gu, Y. (2008) Cross-
talk between RhoH and Rac1 in regulation of actin cytoskeleton
and chemotaxis of hematopoietic progenitor cells. Blood 111,
2597–2605.

[78] Li, X., Bu, X., Lu, B., Avraham, H., Flavell, R.A. and Lim, B.
(2002) The hematopoiesis-specific GTP-binding protein RhoH is
GTPase deficient and modulates activities of other Rho GTPases by
an inhibitory function. Mol. Cell Biol. 22, 1158–1171.

[79] Colomba, A., Courilleau, D., Ramel, D., Billadeau, D.D.,
Espinos, E., Delsol, G., Payrastre, B. and Gaits-Iacovoni, F.
(2007) Activation of Rac1 and the exchange factor Vav3 are
involved in NPM-ALK signaling in anaplastic large cell lympho-
mas. Oncogene.

[80] Knowles, M.A., Aveyard, J.S., Taylor, C.F., Harnden, P. and
Bass, S. (2005) Mutation analysis of the 8p candidate tumour
suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder
cancer. Cancer Lett. 225, 121–130.

[81] Beder, L.B. et al. (2006) Identification of a candidate tumor
suppressor gene RHOBTB1 located at a novel allelic loss region
10q21 in head and neck cancer. J. Cancer Res. Clin. Oncol. 132,
19–27.

[82] Ramos, S., Khademi, F., Somesh, B.P. and Rivero, F. (2002)
Genomic organization and expression profile of the small
GTPases of the RhoBTB family in human and mouse. Gene
298, 147–157.

[83] Berthold, J., Schenkova, K. and Rivero, F. (2008) Rho GTPases
of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol.
Sin. 29, 285–295.

[84] Katzav, S. (2007) Flesh and blood: the story of Vav1, a gene that
signals in hematopoietic cells but can be transforming in human
malignancies. Cancer Lett. 255, 241–254.

[85] Song, J.Y., Lee, J.K., Lee, N.W., Jung, H.H., Kim, S.H. and Lee,
K.W. (2008) Microarray analysis of normal cervix, carcinoma
in situ, and invasive cervical cancer: identification of candidate
genes in pathogenesis of invasion in cervical cancer. Int. J.
Gynecol. Cancer.

[86] Jones, M.B., Krutzsch, H., Shu, H., Zhao, Y., Liotta, L.A.,
Kohn, E.C. and Petricoin 3rd., E.F. (2002) Proteomic analysis
and identification of new biomarkers and therapeutic targets for
invasive ovarian cancer. Proteomics 2, 76–84.

[87] Kamai, T., Yamanishi, T., Shirataki, H., Takagi, K., Asami, H.,
Ito, Y. and Yoshida, K. (2004) Overexpression of RhoA, Rac1,
and Cdc42 GTPases is associated with progression in testicular
cancer. Clin. Cancer Res. 10, 4799–4805.

[88] Salh, B., Marotta, A., Wagey, R., Sayed, M. and Pelech, S. (2002)
Dysregulation of phosphatidylinositol 3-kinase and downstream
effectors in human breast cancer. Int. J. Cancer 98, 148–154.

[89] Nassar, N., Cancelas, J., Zheng, J., Williams, D.A. and Zheng, Y.
(2006) Structure-function based design of small molecule inhib-
itors targeting Rho family GTPases. Curr. Top. Med. Chem. 6,
1109–1116.


	Rho GTPases in cancer cell biology
	Introduction
	Steps in cancer progression
	Rho subfamily
	Rac subfamily
	Cdc42 subfamily
	Wrch1 and Wrch2
	Rnd proteins
	RhoD and RhoF/Rif
	RhoH
	RhoBTB subfamily

	Rho regulators in cancer
	Conclusions and perspective
	References


