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1. Introduction

Fuzzy logic is almost 40 years old and was developed largely outside mainstream
artificial intelligence (AI). As a consequence, fuzzy logic methods are not always well-
understood by the AI community, in spite of some valuable efforts such as the organization
of fuzzy logic workshops in AI conferences, e.g., [14,43,50,51]. Yet, an important part
of the concern and research in fuzzy logic and possibility theory does focus on issues
such as knowledge representation, approximate reasoning and reasoning under uncertainty,
which are central to AI. These research concerns are indeed less widely known than the
engineering applications of fuzzy if-then rules, where control laws are synthesized by
means of interpolation techniques based on matching degrees [46,59,61]. Originally, fuzzy
logic control was very close in spirit to expert, AI-based control. This field has however
drifted away from main AI interests in the recent years, and the emphasis on knowledge
representation issues in these works now tends to fade. Fuzzy control more and more
becomes a subchapter of nonlinear control.

In contrast, this Special Issue is meant to bridge the gap between mainstream AI
and current fuzzy set research, and to provide an organized view of recent works by
gathering representative applications of fuzzy set and possibility theory-based methods
to AI problems. Before providing a brief presentation of the contents of the special issue,
basic facts and key issues in fuzzy set and possibility theories, which are relevant for AI
applications, are first recalled and emphasized.
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2. The modeling framework
2.1. What a fuzzy set can model

From a mathematical point of view, a fuzzy set is a mapping from a set of elements
into an evaluation range that possesses a lattice structure at least, and is usually a linear
order. This range is often taken in practice as the real interval [0,1] (or a subset of it), as
originally proposed by Zadeh [65]. Such a basic idea of a set with gradual membership,
or with weighted elements proved to be very fruitful in knowledge representation and
information processing. Indeed grades of membership may convey different meanings,
such as similarity, preference, uncertainty, or even permission. Thus, a class with
borderline elements, represented by a fuzzy set, is modeled in terms of similarity or
proximity to prototypical elements. A fuzzy set of more or less satisfactory or acceptable
choices encodes a preference profile. An ill-known attribute value can be represented by
a fuzzy set of more or less plausible values. See [20] for a discussion of the different
interpretations that a fuzzy set can convey.

As generalized sets, fuzzy sets can be combined by extended set-theoretic operations,
their images via mappings can be defined by means of an extension principle, as well as
their composition with fuzzy relations. For instance, arithmetic operations can be extended
to fuzzy subsets of the real line, in a way that agrees with interval calculus for each cut
of the fuzzy sets (a cut is a classical set of elements whose membership grades are above
some threshold).

2.2. Qualitative and quantitative possibility theories

Beside the above-mentioned operations that build a new fuzzy set from fuzzy set(s),
set-functions can be associated with fuzzy sets. In particular, a possibility measure Π

[66] can be defined from a fuzzy set viewed as a possibility distribution π (namely
Π(A) = sup{π(x) | x ∈ A}). This gives birth to a max-decomposable set-function Π , such
that Π(A ∨ B) = max(Π(A),Π(B)). By duality, a necessity function is associated with
Π , namely N(A) = 1 − Π(¬A), which thus satisfies N(A ∧ B) = min(N(A),N(B)). It
provides a graded account of the classical interrelationship between modalities expressing
possibility and necessity respectively. Π(A) evaluates the consistency of A with the
graded information encoded by π . When π represents the uncertainty about the possible
values of a variable, Π(A) (respectively N(A)) expresses the plausibility (respectively
certainty) that range A contains the value of the variable. Another noticeable set-function
∆, expressing guaranteedpossibility, defined by ∆(A) = inf{π(x) | x ∈ A}, is such that
∆(A∨B) = min(∆(A),∆(B)). The joint use of Π and ∆ leads to a bipolar representation
framework, where positive and negative information can be processed independently, yet in
a coherent way [17]. In this setting, positive information describes what is possible for sure
(e.g., because it has been observed), and negative information refers to what is impossible
(e.g., because it is ruled out by some laws or constraints). Besides, scalar evaluations of
sets such as cardinality can be also extended to fuzzy sets, as well as probabilities to fuzzy
events.
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Possibility and necessity measures can take their values on qualitative ranges (e.g.,

a totally ordered chain, finite or not), or on a numerical scale (such as [0,1]). This
leads to two different forms of conditioning for qualitative and quantitative possibility
measures, namely Π(A ∧ B) = Π(A|B) ∗ Π(B) holds taking ∗ as the minimum and
the product respectively. We may also use a reversed scale, [0,+∞) or the positive
integer scale, where +∞ expresses full impossibility, and 0 now means ‘fully possible’
(rather than ‘impossible’ as in a [0,1]-graded possibility distribution). Then, taking ∗
as the sum (counterpart of the product in the scale transformation), we come very close
to Spohn [58]’s ordinal conditional (“kappa”) functions [19]. Williams [62] provides a
qualitative counterpart to Spohn’s conditioning, which turns out to be closely related
to the possibilistic approach to belief revision. Qualitative necessity relations, which
underlie necessity measures, are indeed epistemic entrenchment relations in the sense of
Gardenförs’ [32] revision operators. See [19,21] for details and developments. Qualitative
possibility measures can be also closely related to the framework of so-called “plausibility
functions” (valued on a partially ordered set) that has been proposed by Friedman and
Halpern [30]. Moreover, there is a decision-theoretic foundation of qualitative possibility
[27] that parallels Savage’s [53] methodology justifying probabilities and expected utility.
Quantitative possibility and necessity measures can be viewed as a simple non-trivial upper
and lower probability system [60], or as consonant plausibility and belief functions in the
sense of Shafer [56]. They also possess an operational semantics in the setting of belief
functions [28]. See [22], [23, Chapter 7] for general introductions to possibility theory and
its relation to probability theory.

2.3. Partial truth is not uncertainty

There has been a long-lasting misunderstanding in the literature of artificial intelligence
and uncertainty modeling regarding the role of fuzzy set theory and many-valued logics.
This is also related to the latent confusion between ‘degrees of truth’ and ‘degrees of
belief’, although the former are usually compositional, while the latter cannot be so. Indeed
‘degrees of truth’ express the extent to which non-Boolean statements (involving gradual
properties) hold in a given interpretation of the language, and their compositionality is
allowed, but the underlying structures are for instance an MV-algebra, a Heyting algebra
but no longer a Boolean algebra [35]. On the contrary, ‘degrees of belief’, be they
probability degrees, necessity degrees or others, do apply to Boolean propositions and
cannot be compositional with respect to all the connectives, since an ordered scale with
more than two levels cannot be isomorphic to a Boolean structure [25].

In the fuzzy set framework, the distinction between ‘degrees of truth’ and ‘degrees of
belief’, is captured in terms of degrees of membership to fuzzy classes (representing the
extensions of fuzzy predicates) on the one hand, and necessity and possibility degrees
on the other hand. This has given birth to two very different kinds of fuzzy set-based
logics (see [26,48]). Namely, fuzzy logics in the “narrow sense” [35,36,47] are many-
valued logics whose semantics can be expressed in terms of degrees of truth and fuzzy
set connectives; see [13,29,31,44,55] for important developments on this type of logics.
In contrast, possibilistic logic [1,18,39] handles pieces of information with their level
of uncertainty, or with their level of priority if goals are represented. There is a major
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difference between possibilistic logic and weighted many-valued logics although they look

alike syntactically. Namely, in the latter, a weight t attached to a (many-valued) formula
p acts as a truth-value threshold, and (p, t) in a fuzzy knowledge base expresses the
requirement that the truth-value of p should be at least equal to t , for (p, t) to be valid. So
in such fuzzy logics, while truth is many-valued, the validity of a weighted formula is two-
valued. On the contrary, in possibilistic logic, which in its basic form, handles classical
logic formulas associated with lower bounds of necessity degrees, truth is two-valued
(since p is Boolean), but the validity of a possibilistic formula (p,α) is many-valued (since
the models of (p,α) form a fuzzy set, where counter-models of p have membership 1−α).
In some sense, weights defuzzify many-valued logics, while they fuzzify Boolean formulas
in possibilistic logic. The levels of certainty in possibilistic logic also provide a basis for
a form of inconsistency handling by identifying a maximal level at which inconsistency
takes place. Namely, formulas having a certainty level greater than this level are safe from
any conflict.

3. Fuzzy set-based applications to artificial intelligence

An important feature of fuzzy sets is to provide a framework for interfacing in a non-
rigid way classes, encoded by symbolic labels, and numerical values. This is in relation
with the ability of fuzzy sets to model perceptions [68]. In classification problems the use of
fuzzy classes obviates the need for arbitrarily classifying borderline cases, at the beginning
of a reasoning stage. Numerical data can be summarized by means of linguistically labeled
fuzzy sets so as to feed a symbolic reasoning machinery, or as a part of a learning process.

Main application areas of fuzzy set and possibility theory-based methods in AI include:

– approximate reasoning [38,67], [6, Chapter 1] where pieces of information are
represented by possibility distributions expressing fuzzy restrictions on the values of
variables, which are combined and projected on variables of interest;

– reasoning under uncertainty as in possibilistic logic, or in possibilistic Bayesian-like
networks [4];

– nonmonotonic reasoning where default rules such as “if p then q , generally” can be
represented by constraints of the form “p and q is more possible than p and not q”
[5,33], in a way fully equivalent to approaches by Lehmann and Magidor [40], and by
Pearl [49]; see also [54];

– case-based reasoning that can be modeled in terms of fuzzy rules involving graded
similarity relations [10,15];

– qualitative reasoning on absolute or relative orders of magnitude [34,57];
– diagnosis for handling qualitative uncertainty or modeling the intensity of effects (e.g.,

[24,41,42,64]);
– soft constraint satisfaction problems (CSPs), where preference profiles on possible

instantiations of variables, as well as prioritized constraints are handled in an egalitarist
setting using a minimum-based aggregation [12,16], which is an important particular
case of more general frameworks such as semi-ring-valued CSPs [8,9];
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– qualitative decision or planning under uncertainty, and with a logical representation of

preferences [3,27,52];

– pattern classification and computer vision, where the ideas of fuzzy clusters and fuzzy
classes play a key role [2,7];

– learning of fuzzy rules [11,45];
– multiple source data fusion [6, Chapter 6];
– multiple agents systems [37,63].

Representative references provided above, complement the contents of this special issue
which could not insure an equal coverage of all application areas.

4. Contents of the special issue

The contents of the special issue can be roughly divided into two main parts. The first
five contributions can be viewed as applications of fuzzy sets only, while the six remaining
articles involve possibility theory aspects.

The first three papers take advantage of the idea of a fuzzy constraint. Miguel and Shen
discuss methods for solving dynamical constraint satisfaction problems (CSPs), viewed as
a sequence of CSPs linked by restrictions and relaxations adding and removing constraints.
The constraints are made flexible by the introduction of preferences and priorities. The
approach is applied to flexible planning (where satisfaction degrees are associated with
operators and goals) and illustrated on various examples and benchmarks. Luo, Jennings,
Shadbolt, Leung and Lee propose a fuzzy constraint-based knowledge model for bilateral,
multi-issue negotiations in semi-competitive environments (where the agents look for
solutions maximizing their own payoff, each agent remaining fair with respect to the
other agent). Prioritized fuzzy constraints are used, together with aggregation operators
called ‘uninorms’ which have a unit element in the middle of the value scale and can
express compromises, for representing trade-offs between the different possible values of
the negotiation issues and for finding concessions to be made. Félix, Barro and Marín deal
with networks defining temporal profiles expressed in terms of events referring to fuzzy
dates and of episodes describing evolutions on fuzzy time intervals. The paper provides
tools for checking local levels of consistency and discuss the application of their approach
to signal pattern recognition.

Bloch, Géraud and Maître take advantage of fuzzy sets for representing heterogeneous
pieces of knowledge about radiometry, space, morphology or structure, and for combining
them using fuzzy set operators. A fuzzy extension of mathematical morphology is used
for representing shapes and spatial relationships. The approach is applied to model-based
structural recognition of 3D brain images.

Schwartz presents a formal logical system for agent-oriented epistemic reasoning where
strengths of belief or disbelief are handled using the basic fuzzy set operators, in a way that
reminds of the possibilistic logic handling of certainty levels. However, in the proposed
logic language, “upper-level formulas” (which involve (dis)belief operators) obey the rules
of classical propositional calculus.
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The six remaining papers of the special issue exploit the possibility theory framework

for dealing with uncertainty. First, the paper by Raufaste, da Silva Neves and Mariné
reports on psychological experiments. They suggest that the way human judgment handles
uncertainty is qualitative in essence and close to the normative framework of possibility
theory. Dubois, Fargier and Perny investigate a purely qualitative approach to decision
under uncertainty, where utility and uncertainty scales are not comparable. The paper
identifies possibilistic structures as the only ones that are compatible with decision rules
obeying an ordinal invariance axiom and preserving the transitivity of the strict preference.

The next two articles present applications of possibilistic logic. Grabisch proposes an
approach to the modeling and the recognition of temporal scenarios. At the representation
level, the logical dependencies between the elements of a scenario, which can be
pervaded with uncertainty, are described by possibilistic logic expressions, while temporal
constraints on durations are handled separately. Then, a graded matching procedure
assesses to what extent a given scenario fits with observations. Benferhat and Kaci use
propositional logic formulas weighted in terms of guaranteed possibility measures for
representing prioritized pieces of information. This particular encoding is proved to be
efficient for computing distance-based fusion of classical logic bases. They also show how
to translate the particular representation they use into a “classical” possibilistic logic base
(where formulas are weighted in terms of necessity measures) and conversely.

The two last papers deal with two different learning problems. First, Hüllermeier studies
a method for instance-based learning, based on an extrapolation principle expressed in
terms of (guaranteed) possibility, and similarity between stored cases and the considered
situation. It allows for the handling of incomplete information. A comparison with classical
instance-based learning methods, as well as experimental results show the interest of
the approach. Borgelt and Kruse use possibilistic graphical models similar to Bayes
nets, for the decomposition of possibility distributions. This approach can also account
for imprecise information. The authors develop counterparts to probabilistic algorithms
for learning such possibilistic graphical models from imprecise data sets. Appropriate
evaluation measures for this learning task are thoroughly discussed.

Hopefully, this special issue will contribute to help understanding the main ideas
underlying fuzzy set and possibility theory-based approaches, and to show their merits
from representational and computational points of view, for a better handling of qualitative
information. It is also meant to be instrumental in favoring a dialogue between researchers
in the fuzzy set community and in artificial intelligence after decades of mutual ignorance
or misunderstanding.
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