Light neutrino and heavy particle exchange in 0νββ-decay

Gary Prézeau

Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA

Received 9 August 2005; received in revised form 31 October 2005; accepted 7 November 2005

Available online 28 November 2005

Editor: W. Haxton

Abstract

A simple and precise method is presented to compare contributions to neutrinoless double-beta decay (0νββ-decay) from heavy particle exchange and light Majorana neutrino exchange. This procedure makes no assumptions about the momentum transfer between the two nucleons involved in the 0νββ-decay process. It is shown that for a general particle physics model, the characteristic 0νββ-decay scale > 4.4 TeV when all the coupling constants are assumed to be natural and of \(\mathcal{O}(1) \).

© 2005 Elsevier B.V. Open access under CC BY license.

PACS: 23.40.-s

Keywords: Neutrinoless double-beta decay; Neutrino

With the discovery of neutrino oscillations a few years ago [1–3], the fundamental question of whether at least some neutrinos have mass has been answered in the positive. The parallel questions of (a) the magnitudes of the neutrino masses and (b) the nature of the neutrino mass matrix remain to be answered. If the neutrinos have a Dirac mass matrix, then lepton number is not violated by neutrino interactions while the right-handed neutrinos and left-handed anti-neutrinos are electroweak singlets. Alternatively, for a Majorana neutrino mass matrix, lepton number is violated by two units, and processes like neutrinoless double-beta decay (0νββ-decay) are permitted as demonstrated by the Feynman diagram of Fig. 1(a).

The observation of 0νββ-decay would shed light on the neutrino mass magnitude and whether it is Dirac or Majorana, but additional input would be required. Indeed, a number of particle physics model beyond the standard model (SM) have lepton-number violating (LNV) operators that allow 0νββ-decay through the exchange of heavy particles such as the neutralino [4–6] or a heavy right-handed neutrino [7–9]. Thus, the observation of 0νββ-decay would provide a unique window on physics beyond the SM with broad implications for LNV particle physics models, and the way neutrino masses are generated within them. It follows that disentangling contributions to 0νββ-decay due to light Majorana neutrino exchange from the heavy particle contributions is crucial if one is to use this data to constrain the neutrino mass matrix and the models that generate it and LNV.

Although it has been known for some time that heavy particle exchange and light Majorana neutrino exchange contributions to 0νββ-decay can be comparable, the comparisons have usually been performed by making assumptions about the momentum flow through the light Majorana neutrino and estimating orders of magnitude [10,11]. In this current work, a simple and more precise procedure is presented to compare the relative importance of both processes to 0νββ-decay. Operators stemming from light neutrino exchange that have precisely the same form as the leading order (LO) heavy particle exchange 0νββ-decay operators [12] are derived and used for the comparison. Hence, there is no need to make an estimate of the average momentum flowing through νM in Fig. 1(a).

This might seem counter-intuitive since 0νββ-decay mediated by light neutrino exchange is suppressed by the ratio of the neutrino mass to \(Q^2 \) (the momentum squared flowing through
the neutrino propagator $|Q| \sim 100$ MeV). In contrast, $0\nu\beta\beta$-decay is suppressed by $\Lambda_{\beta\beta}$ when it occurs through heavy particle exchange, where $\Lambda_{\beta\beta}$ is the heavy scale (typically of the order of 1 TeV or larger) that characterizes the strength of the $0\nu\beta\beta$-decay operator.

The SM low-energy effective Lagrangian with Majorana neutrinos

$$\mathcal{L}_{\text{SM}} \equiv \frac{4}{\sqrt{2}} G_F \bar{u}_L \gamma^\mu d_L \bar{e}_L \gamma_\mu v_L + \text{h.c.}, \quad (1)$$

gives rise to the $0\nu\beta\beta$-decay operator of Fig. 1(a) where a light Majorana neutrino is exchanged. In Eq. (1), $G_F = \sqrt{2} g^2 / (8 M_W^2)$ is the Fermi constant, M_W the charged weak boson mass, $g = 0.65265$, u and d are the up and down quark fields respectively, e the electron field and ν the neutrino field. From the Feynman rules, the amplitude for this diagram is simply

$$8 G_F^2 \bar{u}_L \gamma^\mu d_L \frac{m_\nu}{Q^2 - m_\nu^2} \bar{e}_L \gamma_\mu v_L \equiv \frac{g^4}{16 M_W^2} m_\nu \bar{u}_L \gamma^\mu (1 - \gamma^5) \bar{d}_L \gamma_\mu (1 - \gamma^5) \bar{e}_L \gamma_\mu v_L, \quad (2)$$

where m_ν is the neutrino mass.

The current–current interaction of Eq. (1) gives rise to lepton–hadron vertices ($\pi \nu e$, $NN\nu e$) that contribute to $0\nu\beta\beta$-decay through the operators shown in Fig. 2 [12]

$$\mathcal{L}_{\pi\nu e} \equiv \sqrt{2} G_F \left(f_\pi \bar{u}_L \gamma_\mu - \bar{e}_L \gamma_\mu \right) v_L + \bar{p} \gamma^\mu (g_V - g_A \gamma^5) n\bar{e}_L \gamma_\mu v_L + \text{h.c.}, \quad (3)$$

Considering that the parity-conserving pion–nucleon vertex is $(g_A/f_\pi) N \gamma^\mu \gamma^5 N \partial_\nu \pi$ and noting the derivative in the pion–lepton operator in Eq. (3), one finds that the $0\nu\beta\beta$-decay operators of Fig. 2 are all of $\mathcal{O}(p^{-2})$. From Ref. [12], it is seen that these operators have the same chiral power as the LO $0\nu\beta\beta$-decay heavy particle exchange operators. This observation suggests a more precise method to compare heavy and light particle exchange contributions to $0\nu\beta\beta$-decay.

Consider the amplitude for the Feynman graph of Fig. 2(a):

$$\text{Fig. 2(a)} = 8 G_F^2 g_A^2 M^2 m_\nu \frac{q_1 \cdot q_2}{Q^2 - m_\nu^2} \frac{\bar{p} \gamma^5 n_3}{q_1^2 - m_\pi^2} \frac{\bar{p}_2 \gamma^5 n_4}{q_2^2 - m_\pi^2} \times \bar{e}_L e_L^c,$$

where the error stemming from writing $q_1 \cdot q_2 / Q^2 \equiv 1$ is of $\mathcal{O}(Q \cdot (k_1 - k_2) / Q^2)$ with $|k_1 + k_2| \approx 2.5$ MeV being the en-
ergy carried off by the electrons. The approximation in Eq. (4) is therefore very good. Eq. (4) has the same form as the LO 0νββ-decay hadronic operators stemming from the exchange of a heavy particle [12]. It follows that to a high degree of precision, one can introduce a new “short-distance” 0νββ-decay operator that stems from light neutrino exchange:

\[\mathcal{L}_{\pi\pi e e} = 2\alpha\beta \pi_\nu^2 \pi_\nu \tilde{e}_L e_L^c + \text{h.c.} \]

(5)

This LO operator combined with the parity-conserving pion–nucleon vertex yields Eq. (4). In this form, comparing heavy and light particle exchange contributions to 0νββ-decay is relatively easy. The only caveat is the existence of a possible suppression of Fig. 2(a) relatively to Fig. 2(c) due to the fact that the pion has a finite range smaller than the size of the nucleus, while the neutrino exchanged in the latter graph does not. In coordinate space, the suppression of the nuclear matrix elements will occur through exponentials of the form \(e^{-m_\pi r} \). In momentum space, the suppression is due to a factors of the form \(Q^2/m_\pi^2 \). The way to handle this is discussed further below.

From Ref. [12], a LO operator has the form

\[\frac{\lambda^2}{\Lambda_{\beta\beta}^5} \tilde{u}_d \tilde{u}_e \tilde{e}_L \tilde{e}_L^c, \]

(6)

where the general 0νββ-decay vertex is assumed to be suppressed by five powers of the 0νββ-decay scale, \(\Lambda_{\beta\beta} \) as occurs in many popular particle physics models. For example, this suppression by five powers occurs in R-parity violating supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM).

This LO operator leads to the \(\pi e e \) operator

\[\frac{\lambda^2}{\Lambda_{\beta\beta}^5} \tilde{u}_d \tilde{u}_e \tilde{e}_L \tilde{e}_L^c \rightarrow \beta \frac{\lambda^2}{\Lambda_{\beta\beta}^5} \Lambda_{\beta\beta}^2 f_{\pi^2} \pi^- \pi^- \tilde{e}_L e_L^c, \]

(7)

Comparing Eq. (7) with Eq. (5), it is seen that the contributions to 0νββ-decay from light neutrino exchange and heavy particle exchange processes are equal when

\[m_\nu \text{ TeV}^5 = 3.8 \times 10^3 \frac{\lambda^2}{\alpha_M \Lambda_{\beta\beta}^5}, \]

(8)

where \(\alpha_M \) is a number that takes into account the fact that the matrix elements of the pion exchange diagram of Fig. 2(a) is suppressed with respect to the matrix element of the operator generated by the graph of Fig. 2(c).

In Ref. [14], the nuclear matrix elements from pseudoscalar couplings (corresponding to Fig. 2(a)) and axial-vector couplings (corresponding to Fig. 2(c)) were computed for nine nuclei and tabulated in their Table II. On average, for light neutrino exchange, the matrix elements stemming from pseudoscalar coupling and denoted \(M_{\text{light}}^{\text{light}} \) in Ref. [14] are ten times smaller than the matrix elements stemming from axial-vector coupling and denoted \(M_{\text{Ax}}^{\text{light}} \). The value \(\alpha_M = 10 \) will therefore be used. Limits on \(\Lambda_{\beta\beta} \) derived below are not very sensitive to the exact value of \(\alpha_M \) since \(\Lambda_{\beta\beta} \) appears to the fifth power in Eq. (8): factors of two or three in \(\alpha_M \) can change the results appearing below by at most 1.2.

Eq. (8) is plotted in Fig. 3. Above the LHE line, light neutrino exchange is larger than the heavy particle contribution to 0νββ-decay; the reverse is true below the LHE line.

The dashed line in Fig. 3 is the upper-limit on \(m_\nu \) < 0.23 eV from the WMAP [15]. The upper-limit on \(m_\nu \) implies that the 0νββ-decay heavy particle exchange operator is always larger than the light neutrino exchange contribution for

\[\Lambda_{\beta\beta} \lambda^{-2/5} \ll 4.4 \text{ TeV}, \]

(9)

indicated by the first arrow in Fig. 3. This is essentially a model independent limit in the sense that it does not depend on the details of the underlying particle physics model that sets the heavy scale \(\Lambda_{\beta\beta} \). If one uses the neutrino mass limit \(m_\nu < 0.04 \text{ eV} \) that could be reached by the future Planck mission [16], and represented by the dotted line in Fig. 3, then

\[\Lambda_{\beta\beta} \lambda^{-2/5} \ll 6.2 \text{ TeV}, \]

(10)

as indicated by the second arrow in the plot.

We can evaluate in specific models the point at which heavy particle exchange becomes larger than light neutrino exchange. Considering the LRSM first, we have

\[\frac{\lambda^2}{\Lambda_{\beta\beta}^5} \equiv \frac{\xi g^4 M_W^2}{32 M_W^2 M_{W_R}^4 N_R}, \]

(11)

\[\lambda^2 \equiv \frac{\xi g^4 M_W^2}{32 M_W^2} < 5 \times 10^{-4}, \]

(12)

where the limits \(\xi < 10^{-3}, M_R > 800 \text{ GeV} \) on the weak gauge boson mixing angle and the right-handed weak boson mass were used in evaluating Eq. (12). Thus, the upper-limit on the right-handed particle masses below which the heavy particle exchange contribution must dominate is \(M_R \sim N_R \sim A_R < 0.9 \text{ TeV} \). Using the lower-limit on the half-life of 0νββ-decay of \(T^{0\nu\beta\beta} > 10^{27} \text{ years} \), one obtains a lower-bound on the mass of the heavy right-handed particles of \(\sim 1 \text{ TeV} \) [12]; this implies that the region in the LRSM parameter space where the heavy particles always dominate over the light neutrino exchange contributions is essentially ruled out for the current limits on \(m_\nu \).

Similarly in RPV-SUSY, the diagram that provides the strongest constraints on \(\lambda_{111}^{\prime} \) is the one with gluino exchange shown in Fig. 1(b). From Ref. [17], we have

\[\frac{\lambda^2}{\Lambda_{\beta\beta}^5} \equiv \frac{\alpha_s g}{9} \frac{\lambda_{111}^{\prime 2}}{m_{\tilde{g}}^2 m_{\tilde{q}}^2}, \]

(13)
Taking $m_\tilde{q} = m_\tilde{g} = \Lambda_S = 1$ TeV, $\alpha_S = 1$, and substituting in Eq. (9), one obtains that the heavy particle exchange contribution is largest when $\lambda_{111}^{11} > 1.5 \times 10^{-2}$. The lower-limit on λ_{111}^{11} extracted from $0\nu\beta\beta$-decay and $T_{1/2}^{0\nu\beta\beta} > 10^{25}$ years is $\lambda_{111}^{11} < 6.3 \times 10^{-2}$ and $\lambda_{111}^{11} < 2 \times 10^{-2}$ derived from $0\nu\beta\beta$-decay in Refs. [17] and [18], respectively. Hence, the region in RPV-SUSY where the heavy particle exchange contribution always dominates over the light neutrino exchange is also ruled out for current limits on m_ν.

Using the limit in Eq. (10) instead, one obtains

$$\Lambda_R < 1.4 \text{ TeV}, \quad \lambda_{111}^{11} > 6.3 \times 10^{-3}$$

(14)

instead.

Note that with current limits on $0\nu\beta\beta$-decay, one requires the coupling constant λ in Eq. (6) to be $\ll 1$ if one demands that $\Lambda_R \gtrsim 1$ TeV. This observation is here verified in the LRSM and RPV SUSY. Although such a small value of λ is clearly allowed, it should be explained since naturalness suggests $\lambda \sim 1$ instead. In this case, one would expect $\Lambda_R > 4.4$ TeV.

It should be mentioned that the limits on the neutrino mass depend on the data used to constrain neutrino masses or whether extra neutrino flavors are allowed. In particular, if one does not include Lyman-α forest data, the upper-limit on the sum of that active neutrino masses goes up to 1.01 eV [19]. Similarly, cosmological models that include more than three neutrino flavors increase the upper-limit on neutrino masses [20]. Excluding Lyman-α data yields $m_\nu \lesssim 0.34$ eV and Eq. (9) becomes

$$\Lambda_{\beta\beta} \lambda^{-2/5} < 4.0 \text{ TeV}.$$ (15)

The change is small because the sum on neutrino masses is divided by three and the fifth root of that must be taken (as was the case for α_M). Thus, the limits derived above for $0\nu\beta\beta$-decay will change by a factor close to one when different upper-limits on the neutrino masses are used. Even for the extreme case where one disregards cosmological limits and uses the limit $m_{ee} \lesssim 2.2$ eV extracted from tritium-decay [21], the limits derived in this Letter change only by a factor of $10^{1/5} = 1.6$.

In this Letter, a simple and precise method of comparing contributions to $0\nu\beta\beta$-decay was presented. It was shown that $\text{LO} \pi e^- e^-$ operators can be written down for both light neutrino exchange and heavy particle exchange contributions to $0\nu\beta\beta$-decay. This observation facilitated their comparison and allowed us to plot a graph in the neutrino mass and heavy particle scale $\Lambda_{\beta\beta}$ parameter space to discern the regions where one contribution may be larger than the other. Using current limits on $0\nu\beta\beta$-decay, it was also shown that $\Lambda_{\beta\beta} \gtrsim 4.4$ TeV in a general particle physics model where the $0\nu\beta\beta$-decay operator coupling constant is assumed to be of $\mathcal{O}(1)$.

Acknowledgements

The author would like to thank Petr Vogel and Vincenzo Cirigliano for useful discussions and comments in the preparation of this manuscript.

References

