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The size effect on the fracture process zone in notched and unnotched three point bending tests of con-
crete beams is analysed by a meso-scale approach. Concrete is modelled at the meso-scale as stiff aggre-
gates embedded in a soft matrix separated by weak interfaces. The mechanical response of the three
phases is modelled by a discrete lattice approach. The model parameters were chosen so that the global
model response in the form of load-crack mouth opening displacement curves were in agreement with
experimental results reported in the literature. The fracture process zone of concrete is determined
numerically by evaluating the average of spatial distribution of dissipated energy densities of random
meso-scale analyses. The influence of size and boundary conditions on the fracture process zone in con-
crete is investigated by comparing the results for beams of different sizes and boundary conditions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A major question for extrapolating the results of small-scale
laboratory tests to large-scale applications is size effect. For plain
concrete structures subjected to bending, the nominal strength de-
pends strongly on the size of the structure. Here, size effect is the
dependence of the dimensionless nominal strength of a beam on
its depth, when geometrically similar structures are compared.
The smaller the structure, the greater is the nominal strength.
Experimental results show that this size effect follows neither
the strength limit nor linear elastic fracture mechanics (Bažant,
2002). Currently, three main theories for describing the size effect
are promoted in the literature, namely statistical theories of ran-
dom strength, stress-redistribution and energy release, and theory
of crack fractality (Bažant, 2002). There is no full consensus on the
range of applicability of these theories for concrete structures of
different geometries and subjected to different loading, since the
results of several of these theories are similar for the size range
of experimental results available (Bažant and Yavaris, 2005). Most
experimental studies are only able to demonstrate the effect on the
strength for a small size range, since large scale experiments are
too difficult to carry out. Furthermore, in most experiments, only
global quantities, such as the overall strength of the structure,
are determined. If local quantities, such as the spatial distribution
of dissipated energy and fracture patterns could be obtained, our
understanding of fracture processes would improve, which might
reduce the ambiguity in the modelling of the size effect on nominal
ll rights reserved.
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strength. Experimentally, local results have been obtained by
acoustic emission measurements (Landis, 1999; Otsuka and Date,
2000; Haidar et al., 2004) and X-ray tomography (Landis et al.,
2003). Digital image correlation techniques have been applied to
study fracture processes in concrete (Choi and Shah, 1997) and
other materials (Grégoire et al., 2011; Espinosa et al., 2011). How-
ever, more detailed results are required to fully understand the
mechanics of the evolution of fracture processes of concrete, espe-
cially for different sizes.

The objective of this work is to contribute to the understanding
of fracture processes by investigating numerically the size effect on
fracture process zones in concrete structures. Here, fracture pro-
cess zone is defined as the zone in which energy is dissipated at
a certain stage of analysis. Three point bending beams of different
sizes and geometries were simulated using a meso-scale model, in
which aggregates embedded in a matrix separated by weak inter-
facial transition zones were discretised by a network of lattice ele-
ments. The input parameters of the model were chosen so that the
global model response in the form of load-crack mouth opening
displacement (CMOD) curves were in agreement with recently ob-
tained experimental results reported by Grégoire et al. (submitted
for publication). The fracture processes were evaluated by comput-
ing the rate of dissipated energy of individual lattice elements. The
fracture process zone was determined from the average of spatial
distributions of dissipated energy densities of multiple analyses
with randomly arranged aggregates following the same aggregate
distributions and random fields of material properties. This strat-
egy for determining the fracture process zone by averaging the
spatially distributed rate of dissipation has been developed re-
cently by Jirásek and Grassl (2007) and Grassl and Jirásek (2010).
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The contribution of the present study is to apply this strategy to
the meso-scale modelling of the size effect on the fracture process
zone, which should provide a better insight into fracture processes
and, therewith, a better description of size effect.

Modelling approaches for fracture in concrete are divided in
three groups. Continuum approaches describe the fracture process
by higher-order constitutive models, such as integral-type nonlocal
models (Bažant and Jirásek, 2002). In continuum models with dis-
continuities, cracks are described as displacement discontinuities,
which are embedded into the continuum description (Jirásek and
Zimmermann, 2001). Finally, discrete approaches describe the
nonlinear fracture process as failure of discrete elements, such as
lattices of trusses and beams (Kawai, 1978; Cundall and Strack,
1979). In lattice approaches, the connectivity between nodes is
not changed so that contact determination is simplified. Lattice
models are mainly suitable for analyses involving small strains
(Herrmann et al., 1989; Schlangen and van Mier, 1992; Bolander
and Saito, 1998). In recent years, one discrete approach based on
a lattice determined by Voronoi tesselation has been shown to be
suitable for fracture simulations (Bolander and Saito, 1998). This
lattice approach is robust, computationally efficient, and allows
for fracture description by a stress–inelastic displacement relation-
ship, similar to continuum models with discontinuities. Therefore,
this approach is suitable for modelling interfaces at the meso-scale
of concrete. Furthermore, with a specially designed constitutive
model, the crack openings obtained with this approach were
shown to be independent of the size of the elements (Bolander
and Sukumar, 2005). This type of model is used in the present
study. In the lattice framework, the meso-structure of concrete is
either idealised by modelling the interaction of two aggregates
by a single element (Zubelewicz and Bažant, 1987) or by mapping
the meso-structure of concrete on the lattice by employing a field
of spatially varying material properties (Schlangen and van Mier,
1992). The latter approach is chosen in the present study, since
the finer resolution allows for a detailed description of the tortuos-
ity of crack patterns, which is important for the modelling of the
fracture process zone (Grassl and Jirásek, 2010). The constitutive
response for the individual phases can either be described by mi-
cro-mechanics or phenomenological constitutive models, com-
monly based on the theory of plasticity, damage mechanics or a
combination of the two. For predominantly tensile loading, an iso-
tropic damage model has shown to provide satisfactory results
(Grassl and Jirásek, 2010). Such a model is used here.

The present work is based on several assumptions. In the cho-
sen idealisation of the meso-structure only large aggregates were
considered, which are embedded in a mortar matrix separated by
interfacial transition zones. The aggregates were assumed to be lin-
ear elastic and stiffer than the matrix, whereas the interfacial tran-
sition zone was assumed to be weaker and more brittle than the
matrix. The material constants for the constitutive models of the
three phases were chosen by comparing the global results of anal-
yses and experiments assuming certain ratios of the properties of
different phases. For instance, aggregates were assumed to be
twice as stiff as the matrix, which in turn is twice as strong and
ductile as the interfacial transition zone. These chosen ratios are
supported by experimental results reported in the literature (Hsu
and Slate, 1963; van Mier, 1997). Furthermore, the present study
was limited to two-dimensional plane stress analyses with
aggregates idealised as cylindrical inclusions.

2. Meso-scale modelling approach

The present 2D plane stress modelling approach for fracture in
concrete is based on a lattice formed by discrete structural
elements (Grassl and Jirásek, 2010). The nodes of the lattice are
randomly located in the domain, subject to the constraint of a
minimum distance dmin. The lattice elements are obtained from
the edges of the triangles of the Delaunay triangulation of the do-
main (solid lines in Fig. 1a), whereby the middle cross-sections of
the lattice elements are the edges of the polygons of the dual Voro-
noi tesselation (dashed lines in Fig. 1a). For the discretely modelled
aggregates, the lattice nodes are placed at special locations, such
that the middle cross-sections of the lattice elements form the
boundaries between aggregates and mortar (Bolander and Berton,
2004) (Fig. 1b).

Each lattice node possesses three degrees of freedom, namely
two translations and one rotation. In the global coordinate system,
shown in Fig. 1c and d, the degrees of freedom ue ¼ ðu1;v1;/1;

u2;v2;/2Þ
T of the lattice nodes are linked to three displacement

discontinuities uc ¼ ðuc;vc;/cÞ
T in the local co-ordinate system at

point C, which is located at the centre of the middle cross-section
of the element. The distance e between the center C and the mid-
point of the lattice element is defined to be positive if it is located
on the left of the element. The relation between the degrees of free-
dom and the displacement discontinuities at C is

uc ¼ Bue ð1Þ

where

B ¼
� cos a � sin a �e cos a sina e

sina � cos a �h=2 cos a sina �h=2
0 0

ffiffiffiffiffiffiffi
I=A

p
0 0 �

ffiffiffiffiffiffiffi
I=A

p
2
64

3
75 ð2Þ

Here, the cross-sectional area is defined as A ¼ ‘� t, where ‘ is the
width of the middle cross-section and t is the out-of-plane thick-
ness. Accordingly, the second moment of area is I ¼ ‘3t=12.

The displacement discontinuities uc at point C are transformed
into strains e ¼ uc=h ¼ ðen; es; e/ÞT , where h is the distance between
the two lattice nodes. The strains are related to the stresses
r ¼ ðrn;rs;r/ÞT by an isotropic damage model. The subscripts n
and s refer to the normal and shear components of the strain and
stress vector. The stiffness matrix of the lattice element has the
form

K ¼ A
h

BTDB ð3Þ

where D is the material stiffness matrix.
Heterogeneous materials are characterised by spatially varying

material properties. In the present work this is reflected at two lev-
els. Aggregates with diameters greater than /min are modelled di-
rectly. The random distribution of the aggregate diameters / is
defined by the cumulative distribution function (Grassl and
Rempling, 2008). The aggregates are placed randomly within the
domain to be analysed, avoiding overlap of aggregates. The heter-
ogeneity represented by finer particles is described by autocorre-
lated random fields of tensile strength and fracture energy,
which are assumed to be fully correlated. The random fields are
characterised by an autocorrelation length that is independent of
the spacing of lattice nodes (Grassl and Bažant, 2009).

An isotropic damage model is used to describe the constitutive
response of ITZ and mortar. In the following section, the main
equations of the constitutive model are presented. The stress–
strain law reads

r ¼ 1�xð ÞDee ¼ 1�xð Þ�r ð4Þ

where x is the damage variable, De is the elastic stiffness and
�r ¼ �rn; �rs; �r/

� �T is the effective stress.
The elastic stiffness

De ¼
E 0 0
0 cE 0
0 0 E

2
64

3
75 ð5Þ



Fig. 1. (a) Set of lattice elements (solid lines) with middle cross-sections (dashed lines) obtained from the Voronoi tesselation of the domain, (b) arrangement of lattice
elements around inclusions. (c) and (d) Lattice element in the global coordinate system.
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depends on model parameters E and c, which control Young’s mod-
ulus and Poisson’s ratio of the equivalent continuum (Griffiths and
Mustoe, 2001). Eqs. (2) and (5) were chosen so that for h ¼ ‘ and
e ¼ 0 the stiffness matrix K reduces to the Bernoulli beam stiffness
matrix (Bolander and Saito, 1998). For a regular triangular lattice
and plane stress, the continuum Poisson’s ratio is

mc ¼
1� c
3þ c

ð6Þ

and the continuum Young’s modulus is

Emc ¼ 2E
1þ c
3þ c

� �
ð7Þ

For a positive shear stiffness, i.e. c > 0, Poisson’s ratio is limited
to mc < 1=3, which is acceptable for concrete but may be unrealistic
for certain other materials. For the irregular lattice used in the
present study, the expressions in (7) and (6) are only approximate.
The damage parameter x is a function of a history variable j,
which is determined by the loading function

f ðe;jÞ ¼ eeq eð Þ � j ð8Þ

and the loading-unloading conditions

f 6 0; _j P 0; _jf ¼ 0 ð9Þ

Here, the equivalent strain is defined as

eeqðen; esÞ ¼
1
2
e0 1� cð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
e0ðc � 1Þ þ en

� �2

þ cc2e2
s

q2

s
ð10Þ

where e0; c and q are model parameters, which are directly related
to the strength and stiffness of the equivalent continuum of the
lattice elements. The present equivalent strain definition depends
only on the first two strain components. However, all three effective
stress components in (4) are reduced by the damage parameter x.
This equivalent strain definition results in an elliptic strength enve-
lope shown in Fig. 2. For pure tension, the nominal stress is limited
by the tensile strength ft ¼ Ee0. For pure shear and pure compres-
sion, the nominal stress is limited by the shear strength fq ¼ qft

and the compressive strength fc ¼ cft, respectively.
The expression for the damage parameter x is derived by con-

sidering the case of pure tension. The softening curve of the stress–
strain response in pure tension is chosen as

rn ¼ ft exp �wcn

wf

� �
ð11Þ

where wcn ¼ xhen is considered as a crack opening in monotonic
pure tension (Fig. 2b). The stress–strain relation in pure tension
can also be expressed by (4) in terms of the damage variable as

rn ¼ 1�xð ÞEen ð12Þ

Comparing the right-hand sides of (11) and (12), and replacing
en by j, we obtain the equation

1�xð Þj ¼ e0 exp �xhj
wf

� �
ð13Þ

from which the damage parameter x can be determined iteratively
using, for instance, a Newton–Raphson method. Parameter wf

determines the initial slope of the softening curve and is related
to the meso-level fracture energy Gf ¼ ftwf , which corresponds to
the total area under the stress crack opening curve in Fig. 2b. The
crack openings obtained with this constitutive model are indepen-



Fig. 2. (a) Elliptic strength envelope in the nominal stress space and (b) exponential stress crack opening curve.
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dent of the length of the element, which has been shown for a very
similar constitutive model in Grassl and Jirásek (2010).
3. Analysis of three point bending tests

In the present section the geometry, loading setup and results of
meso-scale analyses of notched and unnotched three-point bending
tests are described. The numerical results are compared to experi-
ments reported in Grégoire et al. (submitted for publication). A
schematic drawing of the geometries of notched and unnotched
beams is shown in Fig. 3a and b. Four beam depths,
d ¼ 50;100;200 and 400 mm, and three notch lengths, a ¼ 0;0:2
and 0.5, were considered. For the different sizes, all dimensions
were scaled proportionally to the beam depth, except the out-of-
plane thickness, which was kept constant for all sizes at
t ¼ 0:05 m, see Grégoire et al. (submitted for publication). In the
analyses, a zero notch thickness was assumed, which idealises
the experimental procedure in which a thin metal plate of constant
thickness was used to cast the notch. The load and support reac-
tions were applied by support plates of a width of 0.2d. Only the
middle parts of the beams were modelled using the meso-scale ap-
proach (Fig. 3a and b). The remaining parts of the beam were mod-
elled by elastic properties describing the average of the elastic
response of matrix, aggregate and interfacial transition zone of
the composite in the meso-scale region. The aggregate volume
fraction was chosen as q ¼ 0:3 with a maximum and minimum
aggregate diameter of /max ¼ 10 mm and /min ¼ 5 mm, respec-
tively. The approach to generate the distribution of aggregate
diameters is described in Grassl and Rempling (2008). Further-
more, the random field was characterised by the autocorrelation
length la ¼ 1 mm and the coefficient of variation cv ¼ 0:2. For more
information on the generation of random fields and the definition
of la, see Grassl and Bažant (2009). For the random placement of
Fig. 3. Geometries of three-point bending tests
the aggregates, a trial and error approach is chosen so that overlap
of aggregates is avoided. Overlap with specimen boundaries and
the notch are allowed.

The model constants for the three phases were chosen accord-
ing to Table 1, where parameters �f t and Gf in Table 1 are the mean
values of the random fields of tensile strength ft and fracture en-
ergy Gf , respectively.

These values were chosen so that the global model results in
form of load-CMOD curves for different beam sizes and boundary
conditions were in agreement with experimental results reported
in Grégoire et al. (submitted for publication). However, not all
parameters were varied independently of each other to obtain this
agreement. Instead, several constraints were applied, motivated by
experimental and numerical results reported in the literature.
Firstly, the ratio of the stiffnesses for aggregate and matrix was
kept constant and equal to two. Furthermore, the tensile strength
of matrix was assumed to be twice of the strength of the interfacial
transition. These ratios are in the range of experimental results re-
ported in the literature (Hsu and Slate, 1963; van Mier, 1997). Sec-
ondly, lattice elements crossing the boundary between aggregates
and cement paste represent the average response of the interfacial
transition zones and the two adjacent materials (Grassl and Jirásek,
2010). In all the analyses, the length of the lattice elements is sig-
nificantly greater than the width of the interfacial transition zone.
Therefore, the Young’s modulus of the interface elements is

EI ¼
2

1
Em
þ 1

Ea

ð14Þ

where Em and Ea are the Young’s moduli of matrix and aggregate,
respectively. Furthermore, the model parameters for the elastic re-
sponse outside the meso-scale region were chosen so that the re-
sponse represents the average elastic behaviour of the meso-scale
region. Consequently, the peak and post-peak response was mainly
for (a) notched and (b) unnotched beams.



Table 1
Model parameters.

E [GPa] c �f t [MPa] q c Gf [N/m]

Matrix 44 0.33 3.8 2 10 86
Interface 58.7 0.33 1.9 2 10 43
Aggregate 88 0.33 – – – –
Average 53 0.33 – – – –
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Fig. 4. Comparison of load versus CMOD of analyses and experiments for the beams
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400 mm. Error bars of the numerical results show the mean plus and minus one
standard deviation of 100 analyses.
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controlled by two free parameters, namely the tensile strength ft;m

and fracture energy Gf ;m of the matrix.
The analyses were controlled by the crack mouth opening dis-

placement CMOD, which is the relative horizontal displacement
of the points A and B shown in Fig. 3. For the notched specimens
(a ¼ 0:2 and 0.5), the points were located at the end of the notch.
For the unnotched specimen (a ¼ 0), the two points were apart a
distance d, since the location of the fracture process zone initiating
from the surface was indeterminate. The CMOD was increased
incrementally up to complete failure of the specimen, which in
the present analyses was defined as a residual load of less than
1/100 of the peak value. For the unnotched specimen, for which
the region in which the meso-scale model is applied is smaller than
the depth of the beam (d ¼ 200 and 400 mm), the analyses were
stopped shortly after the peak of the load-CMOD curve.

The load-CMOD curves obtained in the analyses for long
notched, short notched and unnotched beams for the four sizes
are compared with experimental results in Figs. 4–6, respectively.
The load-CMOD curves presented are averages of 100 analyses with
random meso-structures and autocorrelated fields. The error bars
indicate the mean plus and minus one standard deviation obtained
in the meso-scale analyses. For the experiments, standard devia-
tions are not presented, since only a small number of beams for
each size and geometry was tested, rendering any estimate of stan-
dard deviation inaccurate (Grégoire et al., submitted for publica-
tion). The agreement between numerical and experimental results
for both the peak and post-peak part is very good considering that
the same set of model parameters were used for obtaining all
twelve load-CMOD curves. In particular, the shape of the post-peak
part of the load-CMOD curve is in very good agreement with the
experimental results. However, some differences are present. For
the long notched beams, the analyses overestimate the peaks ob-
served in experiments for the small sizes (Fig. 4). On the other hand,
for the short notched and unnotched beams, the numerical analyses
underestimate the peaks obtained in the experiments for the larg-
est specimen (Figs. 5 and 6). Overall, the model shows a tendency
to overestimate the size effect observed in experiments.
4. Analysis of fracture processes

In addition to the global results in the form of load-CMOD
curves, local results such as damage patterns and spatial distribu-
tions of dissipated energy densities were studied. Firstly, the pro-
cedure to determine these results are illustrated for the largest
specimen with the long notch (a ¼ 0:5; d ¼ 400 mm). Then selected
distributions of dissipated energy densities are compared for dif-
ferent beam sizes and boundary conditions.

In the nonlinear analyses, the fracture process is modelled by
damage in the lattice elements. The evolution of the resulting dam-
age patterns was studied for the long notch beam for three stages
marked in the mean load-CMOD curve shown in Fig. 7. The damage
patterns are shown in Figs. 8–10, respectively, for three random
analyses for stages 1, 2 and 3. Red (dark grey) lines mark the mid-



Fig. 7. Load-CMOD curve (average of 100 analyses) for the long notch and largest
size (a ¼ 0:5; d ¼ 400 mm) with indications of three stages and CMOD increments
used for the analyses of evolution of the fracture process zone.

Fig. 8. Damage patterns for the largest beam d ¼ 400 mm with the long notch
(a ¼ 0:5) for stage 1 (Fig. 7) for three random analyses. Red (dark grey) lines indicate
middle cross-sections with increasing damage at this stage. Light grey lines indicate
middle cross-sections of damaged elements, in which damage does not increase at
this stage. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Damage patterns for the largest beam d ¼ 400 mm with the long notch
(a ¼ 0:5) for stage 2 (Fig. 7) for three random analyses. Red (dark grey) lines indicate
middle cross-sections with increasing damage at this stage. Light grey lines indicate
middle cross-sections of damaged elements, in which damage does not increase at
this stage.

Fig. 10. Damage patterns for the largest beam d ¼ 400 mm with the long notch
(a ¼ 0:5) for stage 3 (Fig. 7) for three random analyses. Red (dark grey) lines indicate
middle cross-sections with increasing damage at this stage. Light grey lines indicate
middle cross-sections of damaged elements, in which damage does not increase at
this stage. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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dle cross-sections of elements in which damage increases at this
stage of the analysis. On the other hand, grey lines indicate middle
cross-sections of elements in which damage increased at an earlier
stage of analyses, but did not increase at this stage. From the dam-
age patterns it can be seen that the fracture process zone obtained
from the analyses consists of a localised tortuous row of cross-sec-
tions of elements, in which damage increases. The location of this
row of damaged elements differs considerably for the three ran-
dom analyses. Therefore, it is required to average the response of
the random analyses to be able to compare the results of beams
of different sizes and geometries. Otherwise, it would not be possi-
ble to distinguish between dependencies originating from the ran-
dom meso-structure and specimen size and boundary conditions.
Dissipated energy density, which is a physical quantity that can
be integrated and averaged, was used to analyse the results follow-
ing the approach proposed in Grassl and Jirásek (2010). The incre-
ment of dissipated energy in a lattice element of length h was
calculated as

DDd ¼ DxAh
1
2
eDe ð15Þ
where Dx is the increment of the damage parameter. This expres-
sion is a good approximation of the rate of dissipated energy, if
the increment of damage is very small. Therefore, subincrementa-
tion was applied for the evaluation of the dissipated energy, so that
the accuracy of the computed value is independent of the CMOD
increments used to control the analysis. For the averaging of
dissipated energy, the domain to be analysed was discretised by a
square grid, with a cell size of 3.125 mm, which is greater than
dmin ¼ 1 mm used to determine the length of lattice elements. For
this grid, the locations of the mid cross-section of lattice elements
determine the amount of energy that is dissipated in the cells. If a
mid cross-section of an element is located in multiple cells, the en-
ergy is allocated in proportion to the section of the mid cross-sec-
tion that is located in each cell. In the next step, the energy
density of a cell is determined as the sum of energy divided by
the cell area. The spatial distributions of dissipated energy densities
for the increment of CMOD just after stage 1 (Fig. 7) for the same
three random analysis presented before is shown in Figs. 11a, b
and 12a. This spatial distribution of dissipated energy density
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Fig. 12. (a) Mean of dissipated energy densities of 100 random analyses for the
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represents the fracture process zone at this stage of analysis. The
majority of energy is dissipated in a localised region, which is tortu-
ous. This has already been observed by studying the damage pat-
terns in Figs. 8–10. Similar results have been reported in the
literature (Cedolin et al., 1987; Planas and Elices, 1993; Nirmalen-
dran and Horii, 1992; Bolander et al., 1993). To be able to compare
the distribution of dissipated energy densities for different sizes and
geometries, the results of 100 random analyses were averaged for
an increment of CMOD at stage 1 (Fig. 12a). This average dissipated
energy density is distributed over a wider zone compared to the
densities of the individual random zones, whereby the width of
the average distribution is mainly determined by the tortuosity of
the fracture process zone of individual analyses. The maximum va-
lue of the density is at the notch (x ¼ y ¼ 0). See Fig. 3 for the def-
inition of the coordinate system. Further along the ligament (y > 0)
the fracture process zone widens and the density decreases. In
Fig. 12b and c, the average density distributions for CMOD incre-
ments at stage 2 and 3 are shown. All these CMOD increments were
chosen so that the mean dissipated energy increment is equal to
approximately 0.0115 J. The values of dissipated energy is much
higher in Fig. 11 than in Fig. 12, since for the individual analyses
the zone in which energy is dissipated is much smaller than the cor-
responding zone for the average distribution.

These plots of energy density are suitable to illustrate the frac-
ture process zone for one specimen and stage at a time. However,
for comparing quantitatively the results for different stages and
geometries, it is suitable to reduce the dimensions of the plots.
Therefore, the fracture process zones are presented by the distribu-
tion of dissipated energy in the x and y-direction only. These one-
dimensional distributions are obtained by integrating the dissi-
pated energy density in the opposite direction. In Figs. 13 and 14,
the two types of distribution of dissipated energy density are
shown for the three increments marked in Fig. 7.

The fracture process zone travels along the ligament towards
the top of the beam, whereas the distribution across the ligament
remains almost constant at a width of around 4 cm. At peak, the
fracture process zone in the y-direction is characterised by high
values of energy close to the notch (0 cm < y < 3 cm) which de-
crease with increasing y-coordinate. The length of the fracture pro-
cess zone (y-direction) increases from around 9 cm at peak (stage
1) to around 17 cm in the post-peak regime (increment 3), where
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still significant dissipation close to the notch takes place. However,
at increment 3 the density is greatest at around 13 cm, which is
close to the tip of the fracture process zone. Even at this stage,
the present meso-scale model predicts energy dissipation close
to the notch.

So far, only results for one beam size and geometry have been
presented. To investigate how beam size and geometry influence
the fracture process zones, the results for all other beams were
evaluated as well. The comparison of these results is limited to
an increment of CMOD just after peak of the respective load-CMOD
curves, which was chosen so that for all beams the corresponding
mean dissipated energy increment is DD ¼ 0:23 J/m. Firstly, the
distributions for the four sizes of beams with the long notch are
presented in Figs. 15 and 16.

The length of the fracture process zone at peak depends
strongly on the size of the beam. The length increases from around
19 mm for the smallest beam (d = 50 mm) to 82 mm for the great-
est beam (d = 400 mm). This strong dependence of the length on
the size can be explained by the decrease of the stress gradient
with increasing beam size. The width of the fracture process zone
is much less dependent on the size of the beam. It increases only
slightly with increasing beam size. This slight increase originates
from the increase of tortuosity with increasing length of fracture
process zone for greater beams.

The analogue distributions for the short notch specimens
(a ¼ 0:2) are depicted in Figs. 17 and 18. Very similar trends as
for the long notch specimens are observed. However, the fracture
process zones are longer in the y-direction than in the long
notched specimens. Nevertheless, the results for long and short
notched beams of the same beam depths are difficult to compare,
since the ligament length are different. Therefore, the stress gradi-
ent, which influences strongly the fracture process, is different as
well.

The third set of distributions are shown in Figs. 19 and 20.
Again, the beam size influences strongly the length of the fracture
process zone. The greater the beam size, the longer is the fracture
process zone. In contrary to the notched specimens, the distribu-
tion perpendicular to the ligament is strongly influenced by the
beam size. For the smallest beam, the width of the fracture process
zone is around 40 mm. For the largest beam (d ¼ 400 mm), the
width increases to around 200 mm. This very large width of the
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the beams with short notch (a ¼ 0:2) and four sizes d ¼ 50;100;200 and 400 mm
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Fig. 18. Dissipated energy density increment perpendicular to the ligament (x-
direction) for the beams with short notch (a ¼ 0:2) and four sizes d ¼ 50;100;200
and 400 mm for a CMOD increment just after the peak of the mean load-CMOD
curves. The results are based on an average of 100 random analyses.
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Fig. 19. Dissipated energy density increment along the ligament (y-direction) for
the unnotched beam (a ¼ 0) and four sizes d ¼ 50;100;200 and 400 mm for a
CMOD increment just after the peak of the mean load-CMOD curves. The results are
based on an average of 100 random analyses.
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direction) for the unnotched beam (a ¼ 0) and four sizes d ¼ 50;100;200 and
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Fig. 21. Dissipated energy density increment perpendicular to the ligament
(x-direction) for three random analyses for the unnotched beam (a ¼ 0) and
d ¼ 400 mm for a CMOD increment just after the peak of the mean load-CMOD
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fracture process results from the averaging of the densities of 100
random analyses. Each random analysis is characterised by a local-
ised fracture process zone similar to the profiles shown in Fig. 11
for the notched specimens. For these specimens the notch deter-
mines the horizontal centre (x = 0) of the fracture process zone.
On the other hand, for the unnotched specimen, the start of the
fracture process zone is determined by the interplay of the bending
moment distribution and the random properties of the material.
With increasing beam size, the gradient of the bending moment
distribution along the beam decreases, which increases the zone
in which the fracture process zone can be initiated. To illustrate
this phenomenon, the dissipated energy densities for three random
analyses is shown in Fig. 21. It could be argued that one should
shift the fracture process zones of individual analyses so that they
overlap in the centre of the beam, as in Grassl and Jirásek (2010)
for determining the fracture process zone in a periodic cell sub-
jected to uniaxial tension. However, since in the present three-
point bending analyses a stress gradient is present, a shift of the
fracture process zone is not required.
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The results for different notch types and the same beam depths
cannot be compared directly, as the ligament length differs. There-
fore, the results of the long notched and unnotched specimens with
the same ligament length are compared in Fig. 22. There is almost
no influence of the notch type on the distribution of dissipated
energy.

5. Conclusions

Random meso-scale analyses of three point bending tests were
performed to investigate the influence of the size effect on fracture
process zones, which were determined from an average of incre-
ments of energy just after peak load. The study resulted in the fol-
lowing conclusions:

1. The width of the fracture process zone does not depend on the
size of notched specimen. However, for the unnotched speci-
mens, the greater the specimen size, the wider is the fracture
process zone.

2. The length of the fracture process zone along the ligament
depends on the size of the specimens. The greater the specimen
size, the longer is the region of dissipated energy. However, the
length increases nonproportionally to the size.

3. There is no influence of the boundary type on the distribution of
the dissipated energy along the ligament for beams with the
same ligament length. However, the width of the fracture pro-
cess zone differs for notched and unnotched beams of the same
ligament length.

The modelling techniques used in the present study are based
on many simplifications stated in the introduction of this work.
Therefore, additional experiments, which provide local informa-
tion on fracture processes, should be carried out to verify the local
results presented here.
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