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KEYWORDS Summary Telomeres are structures composed of deoxyribonucleic acid repeats that protect
Telomere; the end of chromosomes, but shorten with each cell division. They have been the subject of
Cardiovascular many studies, particularly in the field of oncology, and more recently their role in the onset,
diseases; development and prognosis of cardiovascular disease has generated considerable interest. It has
Cardiovascular risk already been shown that these structures may deteriorate at the beginning of the atheroscle-
factors; rotic process, in the onset and development of arterial hypertension or during myocardial
Oxidative stress infarction, in which their length may be a predictor of outcome. As telomere length by its

nature is a marker of cell senescence, it is of particular interest when studying the lifespan and
fate of endothelial cells and cardiomyocytes, especially so because telomere length seems to
be regulated by various factors notably certain cardiovascular risk factors, such as smoking, sex
and obesity that are associated with high levels of oxidative stress. To gain insights into the links
between telomere length and cardiovascular disease, and to assess the usefulness of telomere
length as a new marker of cardiovascular risk, it seems essential to review the considerable
amount of data published recently on the subject.
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Résumé Les télomeéres sont des structures nucléoprotéiques protégeant l’extrémité des chro-
mosomes, et dont la longueur est susceptible de se raccourcir au cours des divisions cellulaires.
Ils ont fait l’objet de trés nombreuses études, particulierement dans le domaine de la can-
cérologie mais depuis peu, un intérét croissant est porté sur leur role dans installation, le
développement et le pronostic des maladies cardiovasculaires. En effet, il a déja été démon-
tré que ces structures sont potentiellement altérées au cours de U'installation du processus
athéromateux, dans Uinitiation et le développement de I’hypertension artérielle ou encore au
cours de Uinfarctus du myocarde pour lequel leur longueur pourrait jouer un role pronostique.
Comme la longueur des télomeres constitue par nature un marqueur de la sénescence cellu-
laire, leur intérét est certain lorsque ’on étudie ’espérance de vie et le devenir des cellules
endothéliales et des cardiomyocytes. De plus, la longueur des téloméres semble régulée par
différents facteurs, notamment certains facteurs de risque cardiovasculaires comme la consom-
mation de tabac, le genre ou encore [’obésité pour laquelle un stress oxydatif important est
rencontré. Pour cela, il est intéressant de réaliser un bilan bibliographique sur les nombreuses
données récentes concernant la longueur des téloméres dans le cadre des pathologies cardio-
vasculaires et ainsi d’apprécier leur intérét en tant que nouveau marqueur de susceptibilité

cardiovasculaire.

© 2010 Elsevier Masson SAS. Tous droits réservés.

Background

The length of telomeres, which are located at the ends
of chromosomes, reflects the lifespan of a cell. Telomere
length decreases with each cell division and this process
is necessary for appropriate DNA replication in eukaryotes.
The regular shortening of telomere length will eventually
lead to exposure of the genome and trigger the expres-
sion of proteins involved in apoptosis. These events make
up the phenomenon called cellular senescence. Cellular
senescence is associated with the onset and development of
certain diseases. In this context, it is interesting to explore
telomere ‘‘dynamics’’ in ischaemic and non-ischaemic car-
diovascular diseases, and to determine whether these
structures could be potential pharmacological targets
(destroyed to treat a tumour or restored in the case of heart
failure to preserve the integrity of myocardial cells).

Telomere biology
Location and function of telomeres

Telomeres are composed of nucleotides and are located at
the end of chromosomes in eukaryotic cells. They cap the
termination of the double strands of DNA and thus preserve
the integrity and stability of the genome during replication
[1]. Telomeres are made up of a repetitive sequence of six
nitrogenous bases rich in guanine (TTAGGG). This sequence
is repeated over several thousand base pairs at the 3’ end of
DNA (4 to 15 kilobases in humans). In most human somatic
cells, the length of the telomeres decreases by 20 to 200
base pairs with each cell division. This loss of genetic
material corresponds to the phenomenon called ‘‘the end
replication problem’’. If this shortening of telomeres is
not repaired, it eventually leads to cessation of the cell
cycle and cell death by apoptosis [2]. The synthesis of
telomere DNA requires the activity of specialized enzyme
complexes: telomerases. These complexes are made up of

various proteins (TRAF1, TRAF2, Ku86, TIN2, etc.) [3]. Their
function is to lengthen telomeres by the synthesis of two
supplementary TTAGGG sequences at their ends. Typically,
telomerase activity is diminished or even absent in most
adult somatic cells, the exception being cells with a strong
potential for division, like active lymphocytes and certain
types of stem cells [4].

Regulation of telomere length

The maintenance of telomere length depends on several
factors, including the composition in associated proteins,
the level of oxidative stress and the level of telomerase
activation as well as telomere length itself [1,5]. This is
why telomere length varies considerably from one species
to another and from one individual to another. Moreover,
it seems that telomere length may be affected by certain
genetic factors, notably linked to chromosome X [6]: this
was shown in a study by Nawrot et al. in 2004 involving a
cohort of families.

Telomerase activity, however, seems to be one of the key
elements in the maintenance of telomere integrity. Indeed,
cells with short telomeres and an absence of telomerase
activity become senescent and go into apoptosis more
quickly than do cells with telomeres that are long enough
not to require telomerase activity to survive [2,3]. Inversely,
some cells are deficient in TERC, TERT and other proteins
necessary for telomerase function. This is illustrated by the
transfection of primary B and T lymphocytes from patients
with dyskeratosis congenita with exogenous TERC, which
restored telomerase activity and increased telomere length
[71.

Moreover, the role of the Rad54, which is involved in DNA
repair, in the regulation of telomere length was brought
to light recently. Indeed, Rad54-deficient mice presented
severe telomere shortening, and this in the absence of any
modification in telomerase activity [8]. These findings tend
to show that Rad54 protein is involved in a mechanism
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that maintains the integrity of telomeres independently of
telomerases.

The regulation of telomere length also depends on the
level of methylation of certain histones, namely histones
H3 and H4, associated with subtelomeric regions. The
methylation of these histones decreases access to telom-
ere sequences and thus diminishes telomerase activity [9].
Therefore, proteins that play a role in the regulation of
these methylations have an impact on telomere length. For
example, proteins of the retinoblastoma family increase
the methylation of subtelomeric regions and thus diminish
telomere length [10]. In contrast, retinoblastoma protein
2, which depresses the activity of DNA methytransferase,
responsible for the methylation of subtelomeric regions,
plays a role in increasing telomere length [11,12].

The existence of telomeric RNA (called TERRA or TelRNA),
which is transcribed by RNA polymerase I, has been shown
recently. These telomeric RNA transcriptions may have a
negative impact on telomere length [13]. Finally, one of
the major mechanisms of telomere shortening is the activ-
ity of exonucleases 5-3' [5,14]. Indeed, the role of these
exonucleases is to degrade the RNA primer used in the repli-
cation of the DNA necessary for DNA polymerase activity.
This deterioration creates lesions in which the DNA is in
the single strand form within the replication loop. The pres-
ence of single-strand DNA prevents the formation of Okazaki
fragments and thus elongates the DNA, but can lead to an
increase in: damage to DNA; the risk of fusion of chromo-
some extremities [15]; and the activation of p53-dependent
responses to DNA damage [16].

The maintenance of telomere length within eukaryotic
cells is thus a complex phenomenon that involves a wide
range of factors. Several mechanisms acting in a synergistic
fashion thus appear to stabilize telomere length. The differ-
ent mechanisms mentioned above involved in the regulation
of telomere length are shown schematically in Fig. 1.

Oxidative stress

One of the principal mechanisms involved in telomere short-
ening is represented by the level of free radical oxidative
stress. Oxidative damage to telomeric DNA appears as the
formation of an adduct of guanine, 8-oxodG, which is
involved in the initiation of disturbances in the mainte-
nance of telomere length. Moreover, ROS, and especially
the hydroxyl radical, induce breaks in DNA and deteriorate
DNA base repair [17]. Unlike the rest of the genome, telom-
eres seem to be unable to repair breaks in single-strand
DNA [18]. Because of this, telomeres are particularly sen-
sitive to the accumulation of the guanine oxide adduct [19].
This sensitivity to oxidation in telomeres was revealed by
Oikawa et al. in two studies. The first, in 1999 [20], con-
cerned the exposure of DNA from calf thymus to hydrogen
peroxide associated with copper (ll). The results showed the
presence of DNA lesions especially at the level of the 5'-GGG-
3’ triplet. The second study, in 2001 [21], showed that the
exposure of fibroblasts to ultraviolet A also induced damage,
highlighted by the presence of 8-oxodG localized at telom-
eres. Moreover, the presence of non-matched bases within
the telomeric sequence interferes with the DNA replica-
tion mechanisms necessary for the maintenance of structure

integrity. Oxidative stress may thus induce premature short-
ening of telomeres independently of age [22]. Telomeres are
unable to repair oxidized DNA, which therefore accentuates
the damage caused by ROS. Petersen et al. [18] showed that
lesions caused by hydrogen peroxide were repaired slowly
and incompletely at the level of the telomeres, which is
not the case at the level of the mini-satellites. One of the
hypotheses put forward is that TRF2 binding at the level of
the telomere could prevent DNA repair enzymes from reach-
ing the site [23]. Moreover, TRF2 interacts with polymerase B
and thus has a potential negative effect on the repair of DNA
damage [23]. TRF2 also inhibits ataxia telangiectasia muted
kinase phosphorylation, which is involved in the initiation
process of DNA repair [24].

One important point, which must always be underlined,
is the in vivo concomitance between increased production
of ROS and the development of an inflammatory process
[25]. In this context, the proinflammatory cytokines pro-
duced can cause telomere shortening directly. In this field,
several studies have shown that telomerase activity corre-
lated inversely with levels of tumour necrosis factor alpha.
The latest, via the activation of two transcription factors
(nuclear factor-kappa B and activator protein 1), is respon-
sible for an increase in the expression of proinflammatory
genes [26,27]. In this context, the studies of Beyne-Rauzy
et al. [26] showed that the reduction in telomere length
induced by exposure of cells to tumour necrosis factor alpha
brought about a negative regulation in the level of expres-
sion of human TERT.

Telomeres and cardiovascular disease in
humans

A reduction in and/or loss of function in cells that make
up the myocardium or vessels is at the root of both acute
and chronic onset of dysfunction that occurs during normal
or pathological ageing [28]. Because they shorten gradually
according to the number of cell cycles, telomeres can be
considered markers of the cellular senescence [29].

Atherothrombosis and cardiovascular risk
factors

Independently of age, telomeres may be involved in the ini-
tiation and/or progression of cardiovascular disease. The
studies of Brouilette et al. [30] and Samani et al. [31] showed
that patients with CAD or early myocardial infarction had
shorter telomeres compared with control subjects of the
same age and sex [32]. This relationship was confirmed in
other studies [32,33], although it was not possible to deter-
mine whether the shortening of telomere length was a cause
or a consequence of the onset of the CAD. The aim of
these studies was to determine telomere length in circu-
lating cells, such as white cells, which does not necessarily
reflect telomere ‘‘dynamics’’ in tissues that are affected
directly by the disease (e.g., the myocardium and the coro-
nary vessels). Recently, a study by Wilson et al. answered
this question in part; they showed a significant relationship
between telomere length in leukocytes and telomere length
in vascular tissues, in this case in vascular cells from a human
ascending aorta aneurysm [34].
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Figure 1.

Schematic representation of telomere structure in the eukaryotic cell and the principal mechanisms involved in the regulation

(positive or negative) of telomere length. AP-1: activator protein 1; ATM: ataxia telangiectasia muted; c-Fos: cellular proto-oncogene

belonging to the immediate early gene family of transcription factors;

c-Jun: a gene, which in combination with c-Fos, forms the AP-1

early response transcription factor; DNMT: DNA methyltransferase; h-TERT: human telomerase reverse transcriptase; Me: methyl; Rad54:
eukaryotic homologue of the prokaryotic RecA protein 54; Rb: retinoblastoma; Rbl2: retinoblastoma protein 2; RNA: ribonucleic acid;
TERC: telomerase RNA component; TERRA or TelRNA: telomeric RNA; TIN2: TATA binding protein-related factor 1 (TRF1)-interacting nuclear

protein 2; TRAF1: tumour necrosis factor receptor-associated factor 1;
TATA binding protein-related factor 2.

In many cases, CAD appears in the context of
atherothrombosis and cellular senescence, both of which
have been the subject of many studies in recent years [28].
It has been suggested that telomere length in vascular cells
may play a critical role in the development of CAD, by setting
up a particular phenotype of senescence in smooth muscle
cells and endothelial cells [28,33]. Brouilette et al. [35], in
a case-control study of 104 subjects (45 presenting with a
family history of CAD and 59 control subjects), showed an
association between a family history of CAD and telomere
shortening. These results suggest that the presence of short
telomeres is a principal anomaly in atherosclerotic coro-
nary diseases. With regard to hypertensive patients, arecent
study showed that such patients had shorter telomeres than
healthy subjects [36].

Other cardiovascular risk factors also appear to be associ-
ated significantly with leukocyte telomere length in humans.
In a cohort of 1122 women, Valdes et al. showed a significant
negative association between leukocyte telomere length, a
history of smoking (r=—0.087) and BMI (r=—0.077) [37]. As
for metabolic-type risk factors, it appears that the level of
homocysteine correlates negatively with leukocyte telom-
ere length. This was studied by Richards et al. in 2008 in
a cohort of 1319 subjects [38]. Concerning the effect of
smoking, the study by Morla et al. in 2006 [39] confirmed
the results of Valdes et al. in 2005 [37] on the negative
effect of smoking on leukocyte telomere length. The aim
of the preliminary study by Morla et al. was to determine
the impact of smoking on leukocyte telomere length in the
onset of chronic obstructive pulmonary disease (50 smokers
vs 26 non-smokers). The results, however, showed no differ-
ence in leukocyte telomere length between subjects with
chronic obstructive pulmonary disease and those without.
They confirmed the results of Valdes et al. by showing that

TRAF2: tumour necrosis factor receptor-associated factor 2; TRF2:

exposure to cigarette smoke shortened leukocyte telomeres
(r=—0.45). With regard to the risk induced by obesity, the
association between BMI and telomere length was confirmed
recently in a study by Nordfjall et al. in 2008 [40]. There was
a negative association between BMI and leukocyte telomere
length in women but not in men (r=-0.106).

Going beyond the hypothesis that telomere shorten-
ing could be involved in the onset and development of
CAD, recent studies have shown that telomere length is
also associated with increased mortality, independently of
other cardiovascular risks factors in patients with stable
CAD [41]. This suggests that, on the one hand, telomere
length could be used in risk stratification, and on the other
hand, leukocyte telomere length is a marker that incorpo-
rates a wide range of environmental and genetic factors,
which alone or in combination cause cellular stress. One
study has shown that telomere length, although correlating
with mortality, was in no way associated with other markers
such as C-reactive protein, BMI or the taking of supposedly
protective treatments such as inhibitors of 3-hydroxy-3-
methyl-glutaryl-CoA reductase (statins) [41]. These results,
however, are not in keeping with other recently published
studies [32,37].

To summarize, at the present time, it is still difficult to
define with any degree of certainty the role of telomeres
in and the impact of telomere length on the atheroscle-
rotic process. It is, however, accepted that the degree of
telomere shortening is related to the likelihood of develop-
ing atherosclerotic plaques and is a predictor of mortality in
CAD patients.

Heart failure

Another field of interest for the study of telomere length
in CAD is chronic or ischaemic heart failure. Indeed, cer-
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tain studies have tended to show that patients presenting
with chronic heart failure have shorter leukocyte telomeres
than do healthy subjects (ratio T/S respectively 0.64 vs 1.05,
p<0.001). In addition, this association seems to be more
marked in more severe forms of heart failure, according
to the study of Van der Harst et al. [42]. Moreover, telom-
ere length was inversely proportional to the grade of heart
failure according to the New York Heart Association clas-
sification (ratio T/S of 0.67 for grade Il, 0.63 for grade Il
and 0.55 for grade IV, p<0.05). These studies also showed
that the presence of ischaemic aetiologies (coronary, cere-
bral or peripheral artery disease) reinforced this association
(ratio T/S 0.72 for subjects with no ischaemic aetiologies,
0.65 for one aetiology, 0.48 for two aetiologies and 0.43 for
three aetiologies, p<0.001).

In an RNA telomeric Terc-deficient (Terc~/~) mouse
model, which has decreased telomere length [43], an asso-
ciation was found between the apparition of heart failure
and telomere shortening [44] from the fifth generation of
knockout mice onwards. This suggests that the mechanisms
that lead to the onset of heart failure and telomere short-
ening are closely linked. In the same way, the studies by Van
der Harst et al. [42] brought to light a hereditary component
of telomere length suggesting the existence of a phenotype
that was predisposed to the onset of heart failure.

Another study conducted in a population of individuals
over 85 years of age (the Newcastle 85+ study, reported by
Collerton et al.), showed a positive association between left
ventricular function and telomere length [29]. This associa-
tion also seems to be independent of a history of ischaemia
or any other cardiovascular risk factor.

Although the mechanisms thought to be involved in the
association between telomere shortening and heart failure
have not yet been elucidated totally, apoptotic phenomena
have to be considered, and cell ageing as well as oxidative
stress probably play a key role in these pathophysiological
cardiovascular processes.

Cellular senescence and the vascular
endothelium

Vascular ageing, which involves endothelial cells, has been
the subject of many studies since physiological function is
deteriorating [45]. Indeed, this endothelial dysfunction is
found in young subjects who present cardiovascular disease
[46]. At the cellular level, the ageing of healthy endothe-
lial cells leads to a state of ‘‘stasis’’, which is characterized
by metabolic activity over several months, but the inabil-
ity of the cell to respond to mitotic stimuli [47]. This
cellular senescence may be accelerated by successive cell
divisions via the progressive and cumulative shortening of
the telomere. When telomere length falls below a certain
threshold, cells go into senescence and a process of apopto-
sis [35]. However, these phenomena of cellular senescence
may occur prematurely in the wake of exposure to various
factors, including oxidative stress [48].

Further perspectives of research

Lessons from experimental studies have shown that oxida-
tive stress induces telomeric DNA base damage, and could

represent a major pathway of telomere attrition in vitro.
However, the physiopathological mechanisms linking lev-
els of oxidative stress and telomere homeostasis are far
from being elucidated fully. Moreover, it is not known
whether ROS-induced 8-oxoguanine lesions or other oxida-
tive guanine lesions could accumulate in telomeres in
vivo. Interesting studies in 8-oxoguanine glycosylase null
(0OGG1~/~) mice have suggested recently that oxidative
damage can arise in telomeric DNA, and that repairing gua-
nine oxidative damage is required in the maintenance of
telomere integrity in mammals [49]. Furthermore, emerg-
ing data suggested paradoxically a beneficial role for the
oxidation product of guanine under given conditions (low
levels of oxidative stress) [50]. As telomere shortening
has been linked to human ageing, cancer and cardiovascu-
lar diseases, whether these phenomena could be involved
in such pathologies remains a major challenge for future
research. Moreover, observational and randomized studies
analysing the influence of treatments interfering with oxida-
tive stress, such as statin therapy or lifestyle intervention
(e.g., Mediterranean diet or physical activity), on telomere
length are required to better understand the pathophysiol-
ogy of CAD and the role of biological ageing.

Conclusion

In conclusion, telomeres provide an overall index of global
exposition of the body to inflammatory and oxidative
phenomena. The mechanisms that link the onset and/or pro-
gression of cardiovascular disease to the integrity of telom-
eres need further investigation. At the moment, there is
insufficient evidence to validate the associations and deter-
mine whether telomere shortening is a cause or consequence
of disease. The non-specific modulation of telomere length
by modifiable and non-modifiable risk factors suggests a lim-
ited potential as a ‘*biomarker’’ of cardiovascular disease.
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