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Summary Telomeres are structures composed of deoxyribonucleic acid repeats that protect
the end of chromosomes, but shorten with each cell division. They have been the subject of
many studies, particularly in the field of oncology, and more recently their role in the onset,
development and prognosis of cardiovascular disease has generated considerable interest. It has
already been shown that these structures may deteriorate at the beginning of the atheroscle-
rotic process, in the onset and development of arterial hypertension or during myocardial
infarction, in which their length may be a predictor of outcome. As telomere length by its
nature is a marker of cell senescence, it is of particular interest when studying the lifespan and
fate of endothelial cells and cardiomyocytes, especially so because telomere length seems to
be regulated by various factors notably certain cardiovascular risk factors, such as smoking, sex
and obesity that are associated with high levels of oxidative stress. To gain insights into the links
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between telomere length and cardiovascular disease, and to assess the usefulness of telomere
length as a new marker of cardiovascular risk, it seems essential to review the considerable
amount of data published recently on the subject.
© 2010 Elsevier Masson SAS. All rights reserved.
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Résumé Les télomères sont des structures nucléoprotéiques protégeant l’extrémité des chro-
mosomes, et dont la longueur est susceptible de se raccourcir au cours des divisions cellulaires.
Ils ont fait l’objet de très nombreuses études, particulièrement dans le domaine de la can-
cérologie mais depuis peu, un intérêt croissant est porté sur leur rôle dans l’installation, le
développement et le pronostic des maladies cardiovasculaires. En effet, il a déjà été démon-
tré que ces structures sont potentiellement altérées au cours de l’installation du processus
athéromateux, dans l’initiation et le développement de l’hypertension artérielle ou encore au
cours de l’infarctus du myocarde pour lequel leur longueur pourrait jouer un rôle pronostique.
Comme la longueur des télomères constitue par nature un marqueur de la sénescence cellu-
laire, leur intérêt est certain lorsque l’on étudie l’espérance de vie et le devenir des cellules
endothéliales et des cardiomyocytes. De plus, la longueur des télomères semble régulée par
différents facteurs, notamment certains facteurs de risque cardiovasculaires comme la consom-
mation de tabac, le genre ou encore l’obésité pour laquelle un stress oxydatif important est
rencontré. Pour cela, il est intéressant de réaliser un bilan bibliographique sur les nombreuses
données récentes concernant la longueur des télomères dans le cadre des pathologies cardio-
vasculaires et ainsi d’apprécier leur intérêt en tant que nouveau marqueur de susceptibilité
cardiovasculaire.
© 2010 Elsevier Masson SAS. Tous droits réservés.
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Background

The length of telomeres, which are located at the ends
of chromosomes, reflects the lifespan of a cell. Telomere
length decreases with each cell division and this process
is necessary for appropriate DNA replication in eukaryotes.
The regular shortening of telomere length will eventually
lead to exposure of the genome and trigger the expres-
sion of proteins involved in apoptosis. These events make
up the phenomenon called cellular senescence. Cellular
senescence is associated with the onset and development of
certain diseases. In this context, it is interesting to explore
telomere ‘‘dynamics’’ in ischaemic and non-ischaemic car-
diovascular diseases, and to determine whether these
structures could be potential pharmacological targets
(destroyed to treat a tumour or restored in the case of heart
failure to preserve the integrity of myocardial cells).

Telomere biology

Location and function of telomeres

Telomeres are composed of nucleotides and are located at
the end of chromosomes in eukaryotic cells. They cap the
termination of the double strands of DNA and thus preserve
the integrity and stability of the genome during replication
[1]. Telomeres are made up of a repetitive sequence of six
nitrogenous bases rich in guanine (TTAGGG). This sequence
is repeated over several thousand base pairs at the 3′ end of
DNA (4 to 15 kilobases in humans). In most human somatic
cells, the length of the telomeres decreases by 20 to 200
base pairs with each cell division. This loss of genetic
material corresponds to the phenomenon called ‘‘the end

replication problem’’. If this shortening of telomeres is
not repaired, it eventually leads to cessation of the cell
cycle and cell death by apoptosis [2]. The synthesis of
telomere DNA requires the activity of specialized enzyme
complexes: telomerases. These complexes are made up of
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arious proteins (TRAF1, TRAF2, Ku86, TIN2, etc.) [3]. Their
unction is to lengthen telomeres by the synthesis of two
upplementary TTAGGG sequences at their ends. Typically,
elomerase activity is diminished or even absent in most
dult somatic cells, the exception being cells with a strong
otential for division, like active lymphocytes and certain
ypes of stem cells [4].

egulation of telomere length

he maintenance of telomere length depends on several
actors, including the composition in associated proteins,
he level of oxidative stress and the level of telomerase
ctivation as well as telomere length itself [1,5]. This is
hy telomere length varies considerably from one species

o another and from one individual to another. Moreover,
t seems that telomere length may be affected by certain
enetic factors, notably linked to chromosome X [6]: this
as shown in a study by Nawrot et al. in 2004 involving a
ohort of families.

Telomerase activity, however, seems to be one of the key
lements in the maintenance of telomere integrity. Indeed,
ells with short telomeres and an absence of telomerase
ctivity become senescent and go into apoptosis more
uickly than do cells with telomeres that are long enough
ot to require telomerase activity to survive [2,3]. Inversely,
ome cells are deficient in TERC, TERT and other proteins
ecessary for telomerase function. This is illustrated by the
ransfection of primary B and T lymphocytes from patients
ith dyskeratosis congenita with exogenous TERC, which

estored telomerase activity and increased telomere length
7].

Moreover, the role of the Rad54, which is involved in DNA

epair, in the regulation of telomere length was brought
o light recently. Indeed, Rad54-deficient mice presented
evere telomere shortening, and this in the absence of any
odification in telomerase activity [8]. These findings tend

o show that Rad54 protein is involved in a mechanism
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hat maintains the integrity of telomeres independently of
elomerases.

The regulation of telomere length also depends on the
evel of methylation of certain histones, namely histones
3 and H4, associated with subtelomeric regions. The
ethylation of these histones decreases access to telom-

re sequences and thus diminishes telomerase activity [9].
herefore, proteins that play a role in the regulation of
hese methylations have an impact on telomere length. For
xample, proteins of the retinoblastoma family increase
he methylation of subtelomeric regions and thus diminish
elomere length [10]. In contrast, retinoblastoma protein
, which depresses the activity of DNA methytransferase,
esponsible for the methylation of subtelomeric regions,
lays a role in increasing telomere length [11,12].

The existence of telomeric RNA (called TERRA or TelRNA),
hich is transcribed by RNA polymerase II, has been shown

ecently. These telomeric RNA transcriptions may have a
egative impact on telomere length [13]. Finally, one of
he major mechanisms of telomere shortening is the activ-
ty of exonucleases 5′-3′ [5,14]. Indeed, the role of these
xonucleases is to degrade the RNA primer used in the repli-
ation of the DNA necessary for DNA polymerase activity.
his deterioration creates lesions in which the DNA is in
he single strand form within the replication loop. The pres-
nce of single-strand DNA prevents the formation of Okazaki
ragments and thus elongates the DNA, but can lead to an
ncrease in: damage to DNA; the risk of fusion of chromo-
ome extremities [15]; and the activation of p53-dependent
esponses to DNA damage [16].

The maintenance of telomere length within eukaryotic
ells is thus a complex phenomenon that involves a wide
ange of factors. Several mechanisms acting in a synergistic
ashion thus appear to stabilize telomere length. The differ-
nt mechanisms mentioned above involved in the regulation
f telomere length are shown schematically in Fig. 1.

xidative stress

ne of the principal mechanisms involved in telomere short-
ning is represented by the level of free radical oxidative
tress. Oxidative damage to telomeric DNA appears as the
ormation of an adduct of guanine, 8-oxodG, which is
nvolved in the initiation of disturbances in the mainte-
ance of telomere length. Moreover, ROS, and especially
he hydroxyl radical, induce breaks in DNA and deteriorate
NA base repair [17]. Unlike the rest of the genome, telom-
res seem to be unable to repair breaks in single-strand
NA [18]. Because of this, telomeres are particularly sen-
itive to the accumulation of the guanine oxide adduct [19].
his sensitivity to oxidation in telomeres was revealed by
ikawa et al. in two studies. The first, in 1999 [20], con-
erned the exposure of DNA from calf thymus to hydrogen
eroxide associated with copper (II). The results showed the
resence of DNA lesions especially at the level of the 5′-GGG-
′ triplet. The second study, in 2001 [21], showed that the

xposure of fibroblasts to ultraviolet A also induced damage,
ighlighted by the presence of 8-oxodG localized at telom-
res. Moreover, the presence of non-matched bases within
he telomeric sequence interferes with the DNA replica-
ion mechanisms necessary for the maintenance of structure
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ntegrity. Oxidative stress may thus induce premature short-
ning of telomeres independently of age [22]. Telomeres are
nable to repair oxidized DNA, which therefore accentuates
he damage caused by ROS. Petersen et al. [18] showed that
esions caused by hydrogen peroxide were repaired slowly
nd incompletely at the level of the telomeres, which is
ot the case at the level of the mini-satellites. One of the
ypotheses put forward is that TRF2 binding at the level of
he telomere could prevent DNA repair enzymes from reach-
ng the site [23]. Moreover, TRF2 interacts with polymerase �
nd thus has a potential negative effect on the repair of DNA
amage [23]. TRF2 also inhibits ataxia telangiectasia muted
inase phosphorylation, which is involved in the initiation
rocess of DNA repair [24].

One important point, which must always be underlined,
s the in vivo concomitance between increased production
f ROS and the development of an inflammatory process
25]. In this context, the proinflammatory cytokines pro-
uced can cause telomere shortening directly. In this field,
everal studies have shown that telomerase activity corre-
ated inversely with levels of tumour necrosis factor alpha.
he latest, via the activation of two transcription factors
nuclear factor-kappa B and activator protein 1), is respon-
ible for an increase in the expression of proinflammatory
enes [26,27]. In this context, the studies of Beyne-Rauzy
t al. [26] showed that the reduction in telomere length
nduced by exposure of cells to tumour necrosis factor alpha
rought about a negative regulation in the level of expres-
ion of human TERT.

elomeres and cardiovascular disease in
umans

reduction in and/or loss of function in cells that make
p the myocardium or vessels is at the root of both acute
nd chronic onset of dysfunction that occurs during normal
r pathological ageing [28]. Because they shorten gradually
ccording to the number of cell cycles, telomeres can be
onsidered markers of the cellular senescence [29].

therothrombosis and cardiovascular risk
actors

ndependently of age, telomeres may be involved in the ini-
iation and/or progression of cardiovascular disease. The
tudies of Brouilette et al. [30] and Samani et al. [31] showed
hat patients with CAD or early myocardial infarction had
horter telomeres compared with control subjects of the
ame age and sex [32]. This relationship was confirmed in
ther studies [32,33], although it was not possible to deter-
ine whether the shortening of telomere length was a cause

r a consequence of the onset of the CAD. The aim of
hese studies was to determine telomere length in circu-
ating cells, such as white cells, which does not necessarily
eflect telomere ‘‘dynamics’’ in tissues that are affected
irectly by the disease (e.g., the myocardium and the coro-

ary vessels). Recently, a study by Wilson et al. answered
his question in part; they showed a significant relationship
etween telomere length in leukocytes and telomere length
n vascular tissues, in this case in vascular cells from a human
scending aorta aneurysm [34].
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Figure 1. Schematic representation of telomere structure in the eukaryotic cell and the principal mechanisms involved in the regulation
(positive or negative) of telomere length. AP-1: activator protein 1; ATM: ataxia telangiectasia muted; c-Fos: cellular proto-oncogene
belonging to the immediate early gene family of transcription factors; c-Jun: a gene, which in combination with c-Fos, forms the AP-1
early response transcription factor; DNMT: DNA methyltransferase; h-TERT: human telomerase reverse transcriptase; Me: methyl; Rad54:
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eukaryotic homologue of the prokaryotic RecA protein 54; Rb: re
TERC: telomerase RNA component; TERRA or TelRNA: telomeric RNA
protein 2; TRAF1: tumour necrosis factor receptor-associated facto
TATA binding protein-related factor 2.

In many cases, CAD appears in the context of
atherothrombosis and cellular senescence, both of which
have been the subject of many studies in recent years [28].
It has been suggested that telomere length in vascular cells
may play a critical role in the development of CAD, by setting
up a particular phenotype of senescence in smooth muscle
cells and endothelial cells [28,33]. Brouilette et al. [35], in
a case-control study of 104 subjects (45 presenting with a
family history of CAD and 59 control subjects), showed an
association between a family history of CAD and telomere
shortening. These results suggest that the presence of short
telomeres is a principal anomaly in atherosclerotic coro-
nary diseases. With regard to hypertensive patients, a recent
study showed that such patients had shorter telomeres than
healthy subjects [36].

Other cardiovascular risk factors also appear to be associ-
ated significantly with leukocyte telomere length in humans.
In a cohort of 1122 women, Valdes et al. showed a significant
negative association between leukocyte telomere length, a
history of smoking (r = −0.087) and BMI (r = −0.077) [37]. As
for metabolic-type risk factors, it appears that the level of
homocysteine correlates negatively with leukocyte telom-
ere length. This was studied by Richards et al. in 2008 in
a cohort of 1319 subjects [38]. Concerning the effect of
smoking, the study by Morla et al. in 2006 [39] confirmed
the results of Valdes et al. in 2005 [37] on the negative
effect of smoking on leukocyte telomere length. The aim
of the preliminary study by Morla et al. was to determine
the impact of smoking on leukocyte telomere length in the
onset of chronic obstructive pulmonary disease (50 smokers

vs 26 non-smokers). The results, however, showed no differ-
ence in leukocyte telomere length between subjects with
chronic obstructive pulmonary disease and those without.
They confirmed the results of Valdes et al. by showing that
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lastoma; Rbl2: retinoblastoma protein 2; RNA: ribonucleic acid;
2: TATA binding protein-related factor 1 (TRF1)-interacting nuclear
RAF2: tumour necrosis factor receptor-associated factor 2; TRF2:

xposure to cigarette smoke shortened leukocyte telomeres
r = −0.45). With regard to the risk induced by obesity, the
ssociation between BMI and telomere length was confirmed
ecently in a study by Nordfjall et al. in 2008 [40]. There was
negative association between BMI and leukocyte telomere

ength in women but not in men (r = −0.106).
Going beyond the hypothesis that telomere shorten-

ng could be involved in the onset and development of
AD, recent studies have shown that telomere length is
lso associated with increased mortality, independently of
ther cardiovascular risks factors in patients with stable
AD [41]. This suggests that, on the one hand, telomere

ength could be used in risk stratification, and on the other
and, leukocyte telomere length is a marker that incorpo-
ates a wide range of environmental and genetic factors,
hich alone or in combination cause cellular stress. One

tudy has shown that telomere length, although correlating
ith mortality, was in no way associated with other markers

uch as C-reactive protein, BMI or the taking of supposedly
rotective treatments such as inhibitors of 3-hydroxy-3-
ethyl-glutaryl-CoA reductase (statins) [41]. These results,

owever, are not in keeping with other recently published
tudies [32,37].

To summarize, at the present time, it is still difficult to
efine with any degree of certainty the role of telomeres
n and the impact of telomere length on the atheroscle-
otic process. It is, however, accepted that the degree of
elomere shortening is related to the likelihood of develop-
ng atherosclerotic plaques and is a predictor of mortality in
AD patients.
eart failure

nother field of interest for the study of telomere length
n CAD is chronic or ischaemic heart failure. Indeed, cer-
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ain studies have tended to show that patients presenting
ith chronic heart failure have shorter leukocyte telomeres

han do healthy subjects (ratio T/S respectively 0.64 vs 1.05,
< 0.001). In addition, this association seems to be more
arked in more severe forms of heart failure, according

o the study of Van der Harst et al. [42]. Moreover, telom-
re length was inversely proportional to the grade of heart
ailure according to the New York Heart Association clas-
ification (ratio T/S of 0.67 for grade II, 0.63 for grade III
nd 0.55 for grade IV, p < 0.05). These studies also showed
hat the presence of ischaemic aetiologies (coronary, cere-
ral or peripheral artery disease) reinforced this association
ratio T/S 0.72 for subjects with no ischaemic aetiologies,
.65 for one aetiology, 0.48 for two aetiologies and 0.43 for
hree aetiologies, p < 0.001).

In an RNA telomeric Terc-deficient (Terc−/−) mouse
odel, which has decreased telomere length [43], an asso-

iation was found between the apparition of heart failure
nd telomere shortening [44] from the fifth generation of
nockout mice onwards. This suggests that the mechanisms
hat lead to the onset of heart failure and telomere short-
ning are closely linked. In the same way, the studies by Van
er Harst et al. [42] brought to light a hereditary component
f telomere length suggesting the existence of a phenotype
hat was predisposed to the onset of heart failure.

Another study conducted in a population of individuals
ver 85 years of age (the Newcastle 85+ study, reported by
ollerton et al.), showed a positive association between left
entricular function and telomere length [29]. This associa-
ion also seems to be independent of a history of ischaemia
r any other cardiovascular risk factor.

Although the mechanisms thought to be involved in the
ssociation between telomere shortening and heart failure
ave not yet been elucidated totally, apoptotic phenomena
ave to be considered, and cell ageing as well as oxidative
tress probably play a key role in these pathophysiological
ardiovascular processes.

ellular senescence and the vascular
ndothelium

ascular ageing, which involves endothelial cells, has been
he subject of many studies since physiological function is
eteriorating [45]. Indeed, this endothelial dysfunction is
ound in young subjects who present cardiovascular disease
46]. At the cellular level, the ageing of healthy endothe-
ial cells leads to a state of ‘‘stasis’’, which is characterized
y metabolic activity over several months, but the inabil-
ty of the cell to respond to mitotic stimuli [47]. This
ellular senescence may be accelerated by successive cell
ivisions via the progressive and cumulative shortening of
he telomere. When telomere length falls below a certain
hreshold, cells go into senescence and a process of apopto-
is [35]. However, these phenomena of cellular senescence
ay occur prematurely in the wake of exposure to various

actors, including oxidative stress [48].
urther perspectives of research

essons from experimental studies have shown that oxida-
ive stress induces telomeric DNA base damage, and could
S. Saliques et al.

epresent a major pathway of telomere attrition in vitro.
owever, the physiopathological mechanisms linking lev-
ls of oxidative stress and telomere homeostasis are far
rom being elucidated fully. Moreover, it is not known
hether ROS-induced 8-oxoguanine lesions or other oxida-

ive guanine lesions could accumulate in telomeres in
ivo. Interesting studies in 8-oxoguanine glycosylase null
OGG1−/−) mice have suggested recently that oxidative
amage can arise in telomeric DNA, and that repairing gua-
ine oxidative damage is required in the maintenance of
elomere integrity in mammals [49]. Furthermore, emerg-
ng data suggested paradoxically a beneficial role for the
xidation product of guanine under given conditions (low
evels of oxidative stress) [50]. As telomere shortening
as been linked to human ageing, cancer and cardiovascu-
ar diseases, whether these phenomena could be involved
n such pathologies remains a major challenge for future
esearch. Moreover, observational and randomized studies
nalysing the influence of treatments interfering with oxida-
ive stress, such as statin therapy or lifestyle intervention
e.g., Mediterranean diet or physical activity), on telomere
ength are required to better understand the pathophysiol-
gy of CAD and the role of biological ageing.

onclusion

n conclusion, telomeres provide an overall index of global
xposition of the body to inflammatory and oxidative
henomena. The mechanisms that link the onset and/or pro-
ression of cardiovascular disease to the integrity of telom-
res need further investigation. At the moment, there is
nsufficient evidence to validate the associations and deter-
ine whether telomere shortening is a cause or consequence

f disease. The non-specific modulation of telomere length
y modifiable and non-modifiable risk factors suggests a lim-
ted potential as a ‘‘biomarker’’ of cardiovascular disease.
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