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Abstract

This is the first in a series of articles devoted to deformation quantization of gerbes. We introduce basic
definitions, interpret deformations of a given stack as Maurer–Cartan elements of a differential graded Lie
algebra (DGLA), and classify deformations of a given gerbe in terms of Maurer–Cartan elements of the
DGLA of Hochschild cochains twisted by the cohomology class of the gerbe. We also classify all deforma-
tions of a given gerbe on a symplectic manifold, as well as provide a deformation-theoretic interpretation
of the first Rozansky–Witten class.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of deformation quantization, as well as the term, was first introduced in [1]. Both
became standard since then. A deformation quantization of a manifold M is a multiplication
law on the ring of functions on M which depends on a formal parameter h̄. This multiplication
law is supposed to satisfy certain properties, in particular its value at h̄ = 0 must be equal to
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the usual multiplication. A deformation quantization defines a Poisson structure on M ; therefore
it is natural to talk about deformation quantization of Poisson manifolds. In the case when M

is a symplectic manifold, deformation quantizations of C∞(M) were classified up to isomor-
phism in [10,11,14]. In the case of a complex manifold M with a holomorphic symplectic form,
deformation quantizations of the sheaf of algebras OM are rather difficult to study. They were
classified, under additional cohomological assumptions, in [32] (Theorem 5.2.1 of the present
paper; cf. also [3] for the algebraic case). If one moves away from symplectic to general Poisson
manifolds, the problem becomes much more complicated. All deformation quantizations of OM

were classified by Kontsevich in [28]. For the algebraic case, cf. [43].
In this paper we start a program of studying deformation quantization of stacks and gerbes.

Stacks are a natural generalization of sheaves of algebras. They appear in geometry, microlocal
analysis and mathematical physics, cf. [7,9,18,25,29–31,35], and other works.

The main results of this paper are as follows.

(1) We prove that deformations of every stack (in the generality adopted by us here) are classified
by Maurer–Cartan elements of a differential graded Lie algebra, or DGLA (Theorems 6.2.2
and 6.2.7). This generalizes the results of Gerstenhaber [17] for associative algebras and of
Hinich [21] for sheaves of associative algebras.

(2) We show that the DGLA controlling deformations of a gerbe on a manifold is equivalent to
the Hochschild cochain complex of this manifold, twisted by the cohomology class of the
gerbe (Theorem 7.1.2).

(3) We classify deformation quantizations of all gerbes on a symplectic manifold (Theo-
rems 4.2.1 and 8.1.1). This generalizes the classification results for deformation quantiza-
tions of C∞ symplectic manifolds [10,11,13,14].

(4) We show that the first Rozansky–Witten class of a holomorphic symplectic manifold is an
obstruction for a canonical stack deformation quantization to be a sheaf of algebras (Theo-
rem 5.3.1).

We start by defining stacks, gerbes and their deformations in the generality suited for our
purposes (Section 2). We then recall (in Sections 3.1, 3.2) the language of differential graded
Lie algebras (DGLAs) in deformation theory, along the lines of [12,17,19,22,37,38]. Then we
pass to a generality that suits us better, namely to the case of cosimplicial DGLAs (Section 3.3).
We define descent data for the Deligne two-groupoid (cf. [15,16] and references thereof) of a
cosimplicial DGLA and prove that the set of isomorphism classes of such data does not change
if one passes to a quasi-isomorphic cosimplicial DGLA (Proposition 3.3.1). Next, we recall the
construction of totalization of a cosimplicial DGLA (Section 3.4). We prove that isomorphism
classes of descent data of a cosimplicial DGLA are in one-to-one correspondence with isomor-
phism classes of Maurer–Cartan elements of its totalization.

After that, given a gerbe on a Poisson manifold, we define its deformation quantization. We
first classify deformations of the trivial gerbe, i.e. deformations of the structure sheaf as a stack,
on a symplectic manifold M , C∞ or complex (Theorem 4.2.1; this result is very close to the main
theorem of [34]). More precisely, we first reduce the classification problem to classifying certain
Q-algebras, using the term of A. Schwarz (or curved DGAs, as they are called in [4]). (Similar
objects were studied in several contexts, in particular in [8].) The link between these objects and
gerbes was rather well understood for some time; for example, it is through such objects that
gerbes appear in [24]. We also give a new proof of the classification theorem for deformations of
the sheaf of algebras of functions (Theorem 5.2.1). Then we show how the first Rozansky–Witten
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class [23,26,36] can be interpreted as an obstruction for a certain canonical deformation of the
trivial gerbe to be a sheaf, not just a stack. This canonical stack is very closely related to stacks
of microdifferential operators defined in [25,35].

Next, we show how to interpret deformations of any gerbe in the language of DGLAs (Theo-
rems 7.1.2 and 7.1.3). The proof is based on a DGLA interpretation of the deformation theory of
any stack (within our generality); such an interpretation is provided by Theorem 6.2.2. We show
there that deformations of a stack are classified by the DGLA of De Rham–Sullivan forms with
coefficients in local Hochschild cochains of the twisted matrix algebra associated to this stack.

Note that De Rham–Sullivan forms were used in [43] to classify deformation quantizations of
algebraic varieties.

(The DGLA above is actually a DGLA of Hochschild cochains of a special kind of an asso-
ciative DGA; the cyclic homology of this DGA is the natural recipient of the Chern character of
a twisted module over a stack. We will study this in the sequel.)

Afterwards we prove a classification theorem for deformation quantizations of any gerbe
on a symplectic manifold (Theorems 8.1.1 and 8.1.2). This can be viewed as an adaptation of
Fedosov’s methods [13,14] to the case of gerbes. Note that some ideas about deformation quanti-
zation of gerbes appeared already in Fedosov’s work; cf. also [27], as well as [25,35] and [40–42].

This paper was motivated by the index theory, in particular by index theorems for Fourier
integral operators or by index theorems such as in [31]. Among the applications other than index
theory, we would like to mention dualities between gerbes and noncommutative spaces, as in
[2,4,24,29,30]. The deformation-theoretical role of the first Rozansky–Witten class is also quite
intriguing and worthy of further study.

2. Stacks and cocycles

2.1. Let M be a smooth manifold (C∞ or complex). In this paper, by a stack on M we will
mean the following data:

(1) an open cover M = ⋃
Ui ;

(2) a sheaf of rings Ai on every Ui ;
(3) an isomorphism of sheaves of rings Gij :Aj |(Ui ∩ Uj )

∼−→ Ai |(Ui ∩ Uj) for every i, j ;
(4) an invertible element cijk ∈Ai (Ui ∩ Uj ∩ Uk) for every i, j, k satisfying

GijGjk = Ad(cijk)Gik (2.1)

such that, for every i, j, k, l,

cijkcikl = Gij (cjkl)cij l . (2.2)

If two such data (U ′
i ,A′

i ,G
′
ij , c

′
ijk) and (U ′′

i ,A′′
i ,G

′′
ij , c

′′
ijk) are given on M , an isomorphism

between them is an open cover M = ⋃
Ui refining both {U ′

i } and {U ′′
i } together with isomor-

phisms Hi :A′
i

∼−→ A′′
i on Ui and invertible elements bij of A′

i (Ui ∩ Uj ) such that

G′′
ij = Hi Ad(bij )G

′
ijH

−1
j (2.3)

and

H−1(c′′
ijk

) = bijG
′
ij (bjk)c

′
ijkb

−1. (2.4)
i ik
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A gerbe is a stack for which Ai = OUi
and Gij = id. In this case cijk form a two-cocycle in

Z2(M,O∗
M).

2.2. Categorical interpretation

Here we remind the well-known categorical interpretation of the notions introduced above.
Though not used in the rest of the paper, this interpretation provides a very strong motivation for
what follows.

A stack defined as above gives rise to the following categorical data:

(1) a sheaf of categories Ci on Ui for every i;
(2) an invertible functor Gij :Cj |(Ui ∩ Uj )

∼−→ Ci |(Ui ∩ Uj ) for every i, j ;
(3) an invertible natural transformation

cijk :GijGjk|(Ui ∩ Uj ∩ Uk)
∼−→ Gik|(Ui ∩ Uj ∩ Uk)

such that, for any i, j, k, l, the two natural transformations from GijGjkGkl to Gil that one
can obtain from the cijk’s are the same on Ui ∩ Uj ∩ Uk ∩ Ul .

If two such categorical data (U ′
i ,C′

i ,G
′
ij , c

′
ijk) and (U ′′

i ,C′′
i ,G′′

ij , c
′′
ijk) are given on M , an

isomorphism between them is an open cover M = ⋃
Ui refining both {U ′

i } and {U ′′
i }, to-

gether with invertible functors Hi :C′
i

∼−→ C′′
i on Ui and invertible natural transformations

bij :HiG
′
ij |(Ui ∩ Uj )

∼−→ G′′
ijHj |(Ui ∩ Uj ) such that, on any Ui ∩ Uj ∩ Uk , the two natural

transformations HiG
′
ijG

′
jk

∼−→ G′′
ijG

′′
jkHk that can be obtained using Hi ’s, bij ’s, and cijk’s are

the same. More precisely:

((
c′′
ijk

)−1
Hk

)
(bik)

(
Hic

′
ijk

) = (
G′′

ij bjk

)(
bijG

′
jk

)
. (2.5)

The above categorical data are defined from (Ai ,Gij , cijk) as follows:

(1) Ci is the sheaf of categories of Ai -modules;
(2) given an Ai -module M, the Aj -module Gij (M) is the sheaf M on which a ∈ Ai acts via

G−1
ij (a);

(3) the natural transformation cijk between GijGjk(M) and Gjk(M) is given by multiplication
by G−1

ik (c−1
ijk).

From the categorical data defined above, one defines a sheaf of categories on M as follows.
For an open V in M , an object of C(V ) is a collection of objects Xi of Ci (Ui ∩ V ), together with
isomorphisms gij :Gij (Xj )

∼−→ Xi on every Ui ∩ Uj ∩ V , such that

gijGij (gjk) = gikcijk

on every Ui ∩ Uj ∩ Uk ∩ V . A morphism between objects (X′
i , g

′
ij ) and (X′′

i , g′′
ij ) is a collection

of morphisms fi :X′
i → X′′

i (defined for some common refinement of the covers), such that
fig

′ = g′′ Gij (fj ).
ij ij
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Remark 2.2.1. What we call stacks are what is referred to in [9] as descent data for a special
kind of stacks of twisted modules (cf. Remark 1.9 in [9]). Both gerbes and their deformations are
stacks of this special kind. We hope that our terminology, which blurs the distinction between
stacks and their descent data, will not cause any confusion.

2.3. Deformations of stacks

Definition 2.3.1. Let k be a field of characteristic zero. Let a be a local Artinian k-algebra with
the maximal ideal m. A deformation of a stack A(0) over a is a stack A where all Ai are sheaves
of a-algebras, free as a-modules, Gij are isomorphisms of algebras over a, and the induced stack
A/mA is equal to A(0). An isomorphism of two deformations is an isomorphism of stacks which
is identity modulo m and such that Hi are isomorphisms of algebras over a.

Consider the filtration of a by powers of m. Choose a splitting of the filtered k-vector space

a =
N⊕

m=0

mm

where mm = mm/mm+1.

Given a deformation, we can identify Ai = A(0)
i ⊗ a; the multiplication on Ai is determined

by

f ∗i g = fg +
N∑

m=1

P
(m)
i (f, g)

with P
(m)
i :A(0)

i

⊗2 → A(0)
i ⊗ mm. Similarly, Gij is determined by

Gij (f ) = f +
N∑

m=1

T
(m)
ij (f )

with T
(m)
ij :A(0) →A(0)

i ⊗ mm, and

cijk =
N∑

m=0

c
(m)
ijk

with c
(m)
ijk ∈ mm. For an isomorphism of two stacks, Hi is determined by

Hi(f ) = f +
N∑

R
(m)
i (f )
m=1
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with H
(m)
i :A(0) → A(0)

i ⊗ mm;

bij =
N∑

m=0

b
(m)
ij

with b
(m)
ij ∈ mm.

Definition 2.3.2. Consider a gerbe A(0) given by a two-cocycle c
(0)
ijk . A deformation of A(0) is

by definition its deformation as a stack, such that P
(m)
i (f, g) are (holomorphic) bidifferential

expressions and T
(m)
ij are (holomorphic) differential expressions.

An isomorphism between two deformations is an isomorphism (Hi, bij ) where R
(m)
i are

(holomorphic) differential expressions.

3. Differential graded Lie algebras and deformations

3.1. Here we give some definitions that lie at the foundation of the deformation theory
program along the lines of [12,17,19,22,37,38], as well as of the notions such as Deligne two-
groupoid (cf. [15,16] and references thereof). Let

L=
⊕

m�−1

Lm

be a differential graded Lie algebra (DGLA). Let a be a local Artinian k-algebra with the maximal
ideal m. We call a Maurer–Cartan element an element λ of L1 ⊗ m satisfying

dλ + 1

2
[λ,λ] = 0. (3.1)

A gauge equivalence between two Maurer–Cartan elements λ and μ is an element G = expX

where X ∈ L0 ⊗ m such that

d + μ = exp adX(d + λ). (3.2)

The latter equality takes place in the cross product of the one-dimensional graded Lie algebra
kd concentrated in dimension one and L1 ⊗ m. Given two gauge transformations G = expX,
H = expY between λ and μ, a two-morphism from H to G is an element c = exp t of L−1 ⊗ m

such that

exp(X) = exp
(
dt + [μ, t]) expY (3.3)

in the unipotent group exp(L0 ⊗ m). The composition of gauge transformations G and H is the
product GH in the unipotent group exp(L0) ⊗ m. The composition of two-morphisms c1 and c2
is the product c1c2 in the prounipotent group exp(L−1 ⊗ m). Here L−1 ⊗ m is viewed as a Lie
algebra with the bracket

[a, b]μ = [
a, db + [μ,b]]. (3.4)
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We denote the above pronilpotent Lie algebra by (L−1 ⊗ m)μ. The above definitions, together
with the composition, provide the definition of the Deligne two-groupoid of L⊗ m (cf. [15]).

Remark 3.1.1. Recently Getzler gave a definition of a Deligne n-groupoid of a DGLA concen-
trated in degrees above −n, cf. [16].

3.2. Descent data for Deligne two-groupoids

Let L be a sheaf of DGLAs on M . A descent datum of the Deligne two-groupoid of L ⊗ m

are the following:

(1) a Maurer–Cartan element λi ∈ L1 ⊗ m on Ui for every i;
(2) a gauge transformation Gij :λj |(Ui ∩ Uj )

∼−→ λi |(Ui ∩ Uj ) for every i, j ;
(3) a two-morphism

cijk :GijGjk|(Ui ∩ Uj ∩ Uk)
∼−→ Gik|(Ui ∩ Uj ∩ Uk)

such that, for any i, j , k, l, the two two-morphisms from GijGjkGkl to Gil that one can
obtain from the cijk’s are the same on Ui ∩ Uj ∩ Uk ∩ Ul .

If two such data (U ′
i , λ

′
i ,G

′
ij , c

′
ijk) and (U ′′

i , λ′′
i ,G

′′
ij , c

′′
ijk) are given on M , an isomorphism

between them is an open cover M = ⋃
Ui refining both {U ′

i } and {U ′′
i }, together with gauge

transformations Hi :λ′
i

∼−→ λ′′
i on Ui and two-morphisms

bij :HiG
′
ij |(Ui ∩ Uj )

∼−→ G′′
ijHj |(Ui ∩ Uj )

such that, on any Ui ∩ Uj ∩ Uk , the two two-morphisms HiG
′
ijG

′
jk

∼−→ G′′
ijG

′′
jkHk that can be

obtained using Hi ’s, bij ’s, and cijk’s are the same.
Finally, given two isomorphisms (H ′

i , b
′
ij ) and (H ′′

i , b′′
ij ) between the two data (Ui, λ

′
i ,

G′
ij , c

′
ijk) and (Ui, λ

′′
i ,G

′′
ij , c

′′
ijk), define a two-isomorphism between them to be a collection of

two-morphisms ai :H ′
i → H ′′

i such that

b′′
ij ◦ (

ai ◦ G′
ij

) = (
G′′

ij ◦ ai

) ◦ b′
ij

as two-morphisms from H ′
i ◦ G′

ij → G′′
ij ◦ H ′′

j .

3.3. Cosimplicial DGLAs and descent data

The notion of a descent datum above, as well as an analogous notion for simplicial sheaves
of DGLAs that we use below, is a partial case of a more general situation that we are about to
discuss. Recall that a cosimplicial object of a category C is a functor X :Δ → C where Δ is
the category whose objects are sets [n] = {0, . . . , n} with the standard linear ordering (n � 0),
and morphisms are nondecreasing maps. We denote X([n]) by Xn. For 0 � i � n, let di : [n] →
[n + 1] be the only injective map such that i is not in the image, and si : [n + 1] → [n] the
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only surjection for which every element of [n − 1] except i has exactly one preimage. For a
cosimplicial Abelian group A, one defines the standard differential

∂ =
n∑

i=0

(−1)idi :An → An+1.

For a cosimplicial set X, let x ∈ Xk . Let n � k and 0 � i0 < · · · < ik � n. By xi0...ik we denote
the object of Xn which is the image of x under the map in Δ which embeds [k] into [n] as the
subset {i0, . . . , ik}.

Let L be a cosimplicial DGLA. We will denote by Ln,p the component of degree p of the
DGLA Ln, n � 0.

Let a be a local Artinian algebra over k with the maximal ideal m. Consider a cosimplicial
DGLA L such that Ln,p = 0 for p < −1. A descent datum for the Deligne two-groupoid of L⊗m

is the following:

(1) a Maurer–Cartan element λ ∈ L0,1 ⊗ m;
(2) a gauge transformation G :λ1

∼−→ λ0 in exp(L1,0);
(3) a two-morphism

c :G01G12
∼−→ G02

in exp(L2,−1
λ0

) such that, for any i, j, k, l, the two two-morphisms from G01G12G23 to G03

that one can obtain from the cijk’s are the same.

An isomorphism between two data (λ′,G′, c′) and (λ′′,G′′, c′′) is a pair of a gauge trans-
formation H :λ′ ∼−→ λ′′ and a two-morphism b01 :H0G

′
01

∼−→ G′′
01H1 such that the two two-

morphisms H0G
′
01G

′
12

∼−→ G′′
01G

′′
12H2 that can be obtained using Hi ’s, bij ’s, and c are the same.

For two isomorphisms (H ′, b′) and (H ′′, b′′) between the two data (λ′,G′, c′) and
(λ′′,G′′, c′′), define a two-isomorphism between them to be a collection of two-morphisms
a :H ′ → H ′′ such that

b′′
01 ◦ (

a0 ◦ G′
01

) = (
G′′

01 ◦ a0
) ◦ b′

01

as two-morphisms from H ′
0 ◦ G′

01 → G′′
01 ◦ H ′′

1 .

Proposition 3.3.1. (a) A morphism f :L1 → L2 of cosimplicial DGLAs induces a map from the
set of isomorphism classes of descent data of the Deligne two-groupoid of L1 ⊗ m to the set of
isomorphism classes of descent data of the Deligne two-groupoid of L2 ⊗ m.

(b) Assume that f induces a quasi-isomorphism of total complexes of the double complexes
Ln,p

1 → Ln,p

2 . Then the map defined in (a) is a bijection.
(c) Under the assumptions of (b), let A be a descent datum of the Deligne two-groupoid of

L1 ⊗ m, and let f (A) be its image under the map from (a). The morphism f induces a bijection

Iso(A,A′) ∼−→ Iso(f (A), f (A′))
.

2-Iso 2-Iso
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(d) For two isomorphisms φ,ψ :A → A′, denote their images under the above bijection by
f (φ), f (ψ). Then f induces a bijection

2-Iso(φ,ψ)
∼−→ 2-Iso

(
f (φ), f (ψ)

)
.

In other words, f induces an equivalence of two-groupoids of descent data, compare
to [15,16].

Proof. What follows is essentially a standard deformation theoretical proof. We start by estab-
lishing a rigorous expression of the following intuitive statement. First, a descent datum (λ,G, c)

is a non-Abelian version of a two-cocycle of the double complex L•,•, ∂ +d; second, if one takes
an arbitrary datum (λ,G, c) and measures its deviation from being a descent datum, the result
will be a non-Abelian version of a three-cocycle. This is, in essence, what enables us to study
deformations of descent data by homological methods.

3.3.1. Consider a triple (λ,G, t) with λ ∈ L0,1 ⊗m, G ∈ exp(L1,0 ⊗m), and t ∈ L2,−1 ⊗m.

Define the operation a ·λ b on L−1 ⊗ m to be the Campbell–Dynkin–Hausdorff series corre-
sponding to the bracket [a, b]λ = [a, db + [λ,b]]. If λ is a Maurer–Cartan element, this is a
group multiplication. If not, one can still define the operation which is no longer associative;
zero is the neutral element, and every element is invertible. Denote the set L−1 ⊗ m with the
operation a ·λ b by exp((L−1 ⊗ m)λ). For t ∈ L−1 ⊗ m, we will denote by exp(t) the element t

viewed as an element of exp((L−1 ⊗ m)λ).

A notation convention. For G ∈ exp(L1,0 ⊗m) and X ∈ L⊗m, we will denote AdG(X) simply
by G(X). For λ ∈ L0,1 ⊗ m, G(d + λ) will stand for d + λ′ where λ′ is the image of λ under the
gauge transformation by G.

Given (λ,G, t) as above; let c = exp(t) and γ = exp(dt + [λ0, t]) in exp(L1,0 ⊗ m). Define

R = dλ + 1

2
[λ,λ] ∈ L0,2 ⊗ m; (3.5)

Z = G(d + λ1) − (d + λ0) ∈ L1,1 ⊗ m; (3.6)

G02 = T γG01G12 ∈ exp
(
L2,0 ⊗ m

)
(3.7)

(this is a definition of T );

Φ = ((
G01(c123)

−1c−1
013

)
c023

)
c012 ∈ exp

((
L3,−1 ⊗ m

)
λ0

)
(3.8)

(the order of parentheses is in fact irrelevant for our purposes).
Define I to be the cosimplicial ideal of L ⊗ m generated by [Ri,L ⊗ m], [Zij ,L ⊗ m],

(Ad(Tijk) − Id)(L⊗ m). Note that the operation a ·λ b becomes a group law modulo exp(I).

Lemma 3.3.2. (1) (The Bianchi identity): dR + [λ,R] = 0;
(2) (Gauge invariance of the curvature):

R0 + dZ + [λ0,Z] + 1 [Z,Z] − G(R1) = 0;

2
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(3) T γ (d + λ0) − (d + λ0) + Z01 + G01(Z12) − Z02 = 0;
(4) T013(γ013G01)(T123)γ013G01(γ123) = T023γ023(T012)γ023γ012 modulo exp(I);
(5) (The pentagon equation):

G01(Φ1234)AdG01(c123)
−1(Φ0134)Φ0123 = AdG01G12(c234)

−1(Φ0124)Φ0234

modulo exp(I).

Proof. The first equality is straightforward. The second follows from (G(d + λ1))
2 =

G((d + λ1)
2). The third is obtained by applying both sides of (3.7) to d + λ2. The fourth can

be seen by transforming G01(G12G23) = (G01G12)G23 in two different orders, using (3.7). The
fifth equation compares two two-morphisms from ((G01G12)G23)G34 to G01(G12(G23G34))

corresponding to the two different routes along the perimeter of the Stasheff pentagon. (This is
just a motivation for writing the formula which is then checked directly. We could not think of a
reason for this formula to be true a priori.) �
Corollary 3.3.3. Let (λ,G, t) be as in the beginning of 3.3.1. Assume that they define a de-
scent datum modulo mn+1. Then (R(n+1),Z(n+1), T (n+1),−Φ(n+1)) is a d + ∂-cocycle of degree
three. �

3.3.2. We need analogues of the above statements for isomorphisms and two-morphisms. Let
(λ,G, c) and (λ′,G′, c′) be two descent data. Consider a pair (H, s) where H ∈ exp(L0,0 ⊗ m)

and s ∈ L1,−1 ⊗ m. Put b = exp(s) in exp((L1,−1 ⊗ m)λ′
0
). Define also β = exp(ds + [λ′

0, s]) in
exp(L1,0 ⊗ m).

As above, we measure the deviation of the pair (H,b) from being an isomorphism of descent
data. Put

C = H(d + λ) − (d + λ′) ∈ L0,1 ⊗ m; (3.9)

H0G = SβG′H1 ∈ exp
(
L1,0 ⊗ m

)
(3.10)

(this is a definition of S);

Ψ = b−1
02 c′

012G
′
01(b12)b01H0(c012) (3.11)

in exp((L2,−1 ⊗ m)λ′
0
). The pair (H,b) is an isomorphism between the two descent data if and

only if C = 0, S = 1, Ψ = 1.

Let J be the cosimplicial ideal of L⊗m generated by [Ci,L⊗m] and (Ad(Sij )− Id)(L⊗m).

Lemma 3.3.4.

(1) dC + [λ′,C] + 1
2 [C,C] = 0;

(2) Sβ(d + λ′
0) − (d + λ′

0) + C0 − G′
01(C1) = 0;

(3) S01β01G
′
01(S12β12) = H0(γ012)S02β02γ

′−1
012 modulo exp(J );

(4) Ψ023 AdH0(c023)(Ψ012) = Adb03
−1c013G

′
01(b13)

(G′
01(Ψ123))Ψ012 modulo exp(J ).
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Proof. The first equality follows from (H(d + λ))2 = 0; the second from comparing the action
of both sides of (3.10) on d + λ′

1; the third is obtained by comparing two different expressions
for H0G01G12 that can be obtained from (3.10). The fourth equality compares two different two-
morphisms from H0G03 to itself. If one passes to two-morphisms from H0G01G12G03 to itself,
it becomes the pentagon equation which compares two different routes from ((H0G01)G12)G03

to H0(G01(G12G03)). One side of the pentagon, namely the edge between H0((G01G12)G03)

and H0(G01(G12G03)), degenerates into a point. �
Corollary 3.3.5. Let (H, s) be as in the beginning of 3.3.2. Assume that they define an isomor-
phism of descent data (λ,G, c) and (λ′,G′, c′) modulo mn+1. Then (C(n+1), S(n+1),−Ψ (n+1))

is a d + ∂-cocycle of degree two. �
3.3.3. Finally, we need an analogous statement for two-morphisms. Let (H,b) and (H̃ , b̃)

be isomorphisms between the descent data (λ,G, c) and (λ′,G′, c′). Let r ∈ L0,−1 ⊗ m and
a = exp(r) in exp((L0,−1 ⊗ m)λ′). Define P and Ω by

H̃ = PαH (3.12)

where α = exp((d + λ′)a). Let K be the cosimplicial ideal generated by all (AdPi
− Id)(L⊗ m).

b̃01a0 = ΩG′
01(a1)b01. (3.13)

a : (H,b) → (H̃ , b̃) is a two-morphism if and only if P = 1 and Ω = 1.

Lemma 3.3.6.

(1) (Pα)(d + λ′) = 0;
(2) Adβ̃ (P −1

0 )G′(P1) = (β̃α0)(G
′(α1)β)−1 where β = exp((d + λ′)b) and β̃ = exp((d + λ′)b̃);

(3) Ad
G′

01(b̃12)
(Ω01)G

′
01(Ω12)Adc′

012
(Ω−1

02 ) = 1 modulo exp(K).

Proof. The first equality follows from the fact that H and H̃ both preserve d + λ′. The second
is obtained by comparing the equalities H0G = βG′H1, H̃0G = β̃G′H̃1, and (3.12). The third
equality is obtained by comparing two different expressions for G′

01(b̃12)b̃01a0 using (3.13). �
Corollary 3.3.7. Let r be as in the beginning of 3.3.3. Assume that it defines a two-isomorphism
(H,b) → (H̃ , b̃) modulo mn+1. Then (P (n+1),−Ω(n+1)) is a d + ∂-cocycle of degree one. �
3.3.4. End of the proof of Proposition 3.3.1

The statement (a) is obvious. Let us prove the surjectivity of (b). Let (μ,G, c) be a descent
datum for L2. Let G = exp(y) in exp(L1,−0

2 ⊗ m) and c = exp(t) in exp((L2,−1
2 ⊗ m)μ). We

write

y =
∑

y(k); t =
∑

t (k);
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etc., where y(k), t (k) ∈ L2 ⊗ mk. Note that the triple (μ(1), y(1), t (1)) is a two-cocycle. By our
assumption, (

μ(1), y(1), t (1)
) = f

(
λ(1), x(1), s(1)

) + (d + ∂)
(
u(1), r(1)

)
for some cocycle (λ(1), x(1), s(1)) and some cochain (u(1), r(1)). Apply the gauge transfor-
mation H = exp(u(1)), b = exp(r(1)) to (μ, G, c). We may assume that (μ(1), y(1), t (1)) =
f (λ(1), x(1), s(1)) where (λ(1), x(1), s(1)) is a cocycle.

By induction, we can replace (μ, G, c) by an isomorphic descent datum and assume that,
modulo mn+1, it is equal to f (λ,F,a) where (λ,G,a) is a descent datum modulo mn+1.

By Corollary 3.3.3, the cochain (R(n+2), Z(n+2), T (n+2), −Φ(n+2)) is a cocycle. It is a cobound-
ary, because its image under f is (since f (λ,F,a) is a descent datum), and f is a quasi-
isomorphism. Therefore, one can modify (λ,F, a) in the component mn+1, so that it will become
a descent datum modulo mn+2. Furthermore,

(d + ∂)
(
μ(n+1), y(n+1), t (n+1)

) − f
(
λ(n+1), x(n+1), s(n+1)

) = 0,

therefore

(
μ(n+1), y(n+1), t (n+1)

) − f
(
λ(n+1), x(n+1), s(n+1)

)
= (d + ∂)

(
u(n+1), r(n+1)

) + f
(
λ′(n+1), x′(n+1), s′(n+1)

)
where (λ′(n+1), x′(n+1), s′(n+1)) is a cocycle. Replace (λ(n+1), x(n+1), s(n+1)) by (λ(n+1) +
λ′(n+1), x(n+1)+x′(n+1), s(n+1)+s′(n+1)), then apply the gauge transformation H = exp(u(n+1)),

b = exp(r(n+1)) to (μ,G,c). We get a new (λ,G,a) which is a descent datum modulo mn+2,

and f (λ,G,a) = (μ,G, c) modulo mn+2.

Now let us prove the injectivity in (b). Let (λ, F, a) and (λ′,F ′, a′) be two descent data
whose images under f are isomorphic. Denote the isomorphism by (H, b). Let F = exp(y),

F ′ = exp(y′), a = exp(s), a′ = exp(s′), H = exp(x), b = exp(r). We have

f
(
λ(1), y(1), s(1)

) − f
(
λ′(1), y′(1), s′(1)

) = (d + ∂)
(
u(1), r(1)

);
therefore, since f is a quasi-isomorphism, the cocycle(

λ(1), y(1), s(1)
) − (

λ′(1), y′(1), s′(1)
)

is a coboundary. After replacing the datum (λ′,F ′, a′) by a datum which is isomorphic to it and
identical to it modulo m2, we may assume that f (λ,F,a) = f (λ′,F ′, a′) modulo m2. By induc-
tion, we may assume that (λ,F, a) and (λ′,F ′, a′) coincide modulo mn+1 and that their images
are isomorphic, the isomorphism being equal to identity modulo mn. Apply Corollary 3.3.5 to
study the failure of (H = 1, b = 1) to be an isomorphism between (λ,F, a) and (λ′, F ′, a′). The
corresponding cocycle is a coboundary because its image under f is. Therefore we can act upon
(H = 1, b = 1) by a two-morphism and obtain a new (H,b) which is an isomorphism between
(λ,F, a) and (λ′,F ′, a′) modulo mn+1. Now one can assume that (λ,F, a) and (λ′,F ′, a′) coin-
cide modulo mn+1 and that their images are isomorphic, the isomorphism being equal to identity
modulo mn+1. We have

f
(
λ(n+1), y(n+1), s(n+1)

) − f
(
λ′(n+1), y′(n+1), s′(n+1)

) = (d + ∂)
(
u(n+1), r(n+1)

);
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since f is a quasi-isomorphism, the cocycle (λ(n+1), y(n+1), s(n+1)) − (λ′(n+1), y′(n+1), s′(n+1))

is a coboundary. After replacing the datum (λ′,F ′, a′) by a datum which is isomorphic to it and
identical to it modulo mn+2, we may assume that f (λ,F,a) = f (λ′,F ′, a′) modulo mn+2.

This proves the statement (b). The proofs of (c) and (d) are very similar, and we leave them to
the reader. �

3.4. Totalization of cosimplicial DGLAs

Here we recall how one can construct a DGLA from a cosimplicial DGLA by the procedure
of totalization (sf. [6]). We then prove that isomorphism classes of descent data for a cosimplicial
DGLA are in one-to-one correspondence with isomorphism classes of Maurer–Cartan elements
of its totalization. This is a two-groupoid version of a theorem of Hinich [20].

Define for p � 0

Q
[
Δp

] = Q[t0, . . . , tp]/(t0 + · · · + tp − 1)

and

Ω•[Δp
] = Q[t0, . . . , tp]{dt0, . . . , dtp}/(t0 + · · · + tp − 1, dt0 + · · · + dtp).

The collection {Ω•[Δp]},p � 0, is a simplicial DGA.
Let M be the category whose objects are morphisms f : [p] → [q] in Δ and a morphism from

f : [p] → [q] to f ′ : [p′] → [q ′] is a pair a : [p′] → [p], b : [q] → [q ′] such that f ′ = bf a. Given
(a, b) :f → f ′ and (a′, b′) :f ′ → f ′′, define their composition to be (a′a, bb′).

Given a cosimplicial DGLA L, we can construct a functor from M to the category of vector
spaces by assigning to the object f : [p] → [q] the space Ω•[Δp] ⊗Lq . Set

Tot(L) = lim dirM Ω•[Δp
] ⊗Lq .

This is a DGLA with the differential being induced by dDR.

Proposition 3.4.1. (a) There is a bijection between the set of isomorphism classes of descent data
of the Deligne two-groupoid of L and the set of Maurer–Cartan elements of Tot(L).

(b) For a descent datum A of L, denote by λ(A) a Maurer–Cartan element from the isomor-
phism class given by (a). Then there is a bijection

Iso(A,A′)
2-Iso

∼−→ Iso(λ(A), λ(A′))
2-Iso

.

(c) For two isomorphisms φ,ψ :A → A′, denote their images under the above bijection by
G(φ), G(ψ). Then f induces a bijection

2-Iso(φ,ψ)
∼−→ 2- Iso

(
G(φ),G(ψ)

)
.

Proof. Recall that for every small category M and for every functor C :M → Vectk one can
define a cosimplicial space

(R lim invM C)n =
∏

α1 α2 αn

C(fn)
f0−→f1−→···−→fn
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with the standard maps di and si . The product is taken over all composable chains of morphisms
in M. If C is a functor from M to the category of DGLAs then R lim invM C is a cosimplicial
DGLA.

Consider the cosimplicial DGLA R lim invM Ω•[Δp]⊗Lq, together with the constant cosim-
plicial DGLA Tot(L) and the cosimplicial DGLA R lim invΔ(L). The second and the third
DGLAs embed into the first, and these embeddings are quasi-isomorphisms with respect to the
differentials d + ∂. By Proposition 3.3.1, our statement is true if we replace the cosimplicial
DGLA L by R lim invΔ(L). But these two cosimplicial DGLA are quasi-isomorphic, whence
the statement. �
3.5. The Hochschild complex

Definition 3.5.1. For any associative algebra A, let LH (A) be the Hochschild cochain com-
plex equipped with the Gerstenhaber bracket [17]. The standard Hochschild differential is de-
noted by δ. For a sheaf of algebras A, let LH (A) denote the sheafification of the presheaf of
DGLA U �→ LH (A(U)). For the sheaf of algebras C∞

M on a smooth manifold, respectively OM

on a complex analytic manifold, let LH
M be the sheaf of Hochschild cochains D(f1, . . . , fn)

which are given by multi-differential, respectively holomorphic multi-differential, expressions in
f1, . . . , fn.

One gets directly from the definitions the following

Lemma 3.5.2. The set of isomorphism classes of deformations over a of a sheaf of k-algebras A
as a stack is in one-to-one correspondence with the set of isomorphism classes of descent data
of the Deligne two-groupoid of LH (A) ⊗ m. Similarly, the set of isomorphism classes of defor-
mations of the trivial gerbe on M is in one-to-one correspondence with the set of isomorphism
classes of descent data of the Deligne two-groupoid of LH

M ⊗ m. �
3.6. Hochschild cochains at the jet level

For a manifold M , let J , or JM , be the bundle of jets of smooth, respectively holomorphic,
functions on M . By ∇can we denote the canonical flat connection on the bundle J . Let C•(J, J )

be the bundle of Hochschild cochain complexes of J . More precisely, the fibre of this bundle is
the complex of jets of multi-differential multi-linear expressions D(f1, . . . , fn). We denote by δ

the standard Hochschild differential.

Proposition 3.6.1. The set of isomorphism classes of deformations of the trivial gerbe on M is
in one-to-one correspondence with the set of isomorphism classes of Maurer–Cartan elements of
the DGLA LH,J (M) ⊗ m where

LH,J (M) = A•(M,C•+1(J, J )
)

with the differential ∇can + δ. Here by A• we mean C∞ forms with coefficients in a bundle.

Proof. We have an embedding of sheaves of DGLA:

LH
M → A•

M

(
C•+1(J, J )

)
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which is a quasi-isomorphism, and the sheaf on the right-hand side has zero cohomology in
positive degrees. The proposition follows from Proposition 3.3.1. �
4. Deformation quantization of the trivial gerbe on a symplectic manifold

4.1. Deformation quantization of gerbes

Definition 4.1.1. A deformation quantization of a gerbe A(0) on a manifold M is a collection of
deformations A(N) over a = C[h̄]/(h̄N+1), N � 0 (cf. Definition 2.3.1), such that A(N)/h̄N =
A(N−1). An isomorphism of two deformation quantizations is a collection of isomorphisms of
deformations ϕN :A(N) →A′(N) such that ϕN = ϕN−1 mod h̄N .

Given a deformation quantization of a gerbe, one can define a stack of C[h̄]-algebras
A = lim invA(N). Usually we will not distinguish between the deformation quantization and
this stack.

4.2. Let (M,ω) be a symplectic manifold (C∞ or complex analytic with a holomorphic
symplectic form). In this section, we extend Fedosov’s methods from [14] to deformations of
the trivial gerbe. We say that a deformation quantization of the trivial gerbe on M corresponds
to ω if, on every Uk , f ∗ g − g ∗ f = √−1h̄{f,g} + o(h̄) where { , } is the Poisson bracket
corresponding to ω.

Let us observe that the group H 2(M, h̄C�h̄�) acts on the set of equivalence classes of de-
formations of any stack: a class γ acts by multiplying cijk by expγijk where γijk is a cocycle
representing γ .

Theorem 4.2.1. Denote by Def(M,ω) the set of isomorphism classes of deformation quanti-
zations of the trivial gerbe on M compatible with the symplectic structure ω. The action of
H 2(M, h̄C�h̄�) on Def(M,ω) is free. The space of orbits of this action is in one-to-one corre-
spondence with an affine space modelled on the vector space H 2(M,C) (in the C∞ case) or
H 1(M,OM/C) (in the complex case).

Proof. As in [13], we will reduce the proof to a classification problem for certain connections in
an infinite-dimensional bundle of algebras.

Let us observe that Proposition 3.6.1 is true if we replace deformations over Artinian rings by
deformation quantizations. Indeed, the proof of Proposition 3.3.1 works verbatim for the DGLAs
that are needed for Proposition 3.6.1, since one can start with a good cover, and all cohomological
obstructions are zero already in the Čech complex of this cover; one has no need of refining the
cover, and therefore one can carry out the induction procedure infinitely many times. Next, note
that in Proposition 3.6.1 we can replace the bundle of algebras J by the bundle of algebras

grJ =
∏

Sm
(
T ∗

M

)
.

Indeed, a standard argument shows that they are isomorphic as C∞ bundles of algebras.
Under this isomorphism, the canonical connection ∇can becomes a connection ∇0 on

grJ . We are reduced to classifying up to isomorphism those Maurer–Cartan elements of
(A•(M,C•+1(grJ,grJ )),∇0 + δ) whose component in A0(M,C2) is equal to 1

2

√−1h̄{f,g}
modulo h̄. In other words, these components must be, pointwise, deformation quantizations of
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∏
Sm(T ∗

M) corresponding to the symplectic structure. But all such deformations are isomorphic
to the standard Weyl deformation from the definition below:

Definition 4.2.2. The Weyl algebra of T ∗
M is the bundle of algebras

W = grJ �h̄� =
∏

Sm
(
T ∗

M

)
�h̄�

with the standard Weyl product ∗.

Moreover, a smooth field of such deformations on M admits a smooth gauge transformation
making it the standard Weyl deformation. Therefore, we have to classify up to isomorphism
those Maurer–Cartan elements of A•(M,C•+1(grJ,grJ )) whose component in the subspace
A0(M,C2) is equal to f ∗ g − fg. Here ∗ is the product in the standard Weyl deformation.

Proposition 4.2.3. Deformations of the trivial gerbe on M compatible with a symplectic structure
ω are classified up to isomorphism by pairs (A, c) where

A ∈ h̄A1(M,hom(grJ,grJ )
)
�h̄�; (4.1)

c ∈ h̄A2(M,grJ )�h̄�, (4.2)

such that, if

∇ = ∇0 + A,

then

∇(f ∗ g) = ∇(f ) ∗ g + f ∗ ∇(g); (4.3)

∇2 = ad(c); ∇(c) = 0. (4.4)

Two pairs (A, c) and (A′, c′) are equivalent if one is obtained from the other by a composition
of transformations of the following two types.

(a) (A, c) �→ (
exp

(
ad(X)

)
(A), exp

(
ad(X)

)
(c)

)
(4.5)

where X ∈ h̄Der(W);

(b) (A, c) �→
(

A + B,c + ∇B + 1

2
[B,B]

)
(4.6)

where B ∈ h̄W .

It is straightforward that the set of Maurer–Cartan elements discussed above, up to isomor-
phism, is in one-to-one correspondence with the set of pairs (A, c) up to equivalence. Indeed,
given (A, c), the Maurer–Cartan element is constructed as follows: the component in A0(M,C2)

is the difference between the Weyl product and the commutative product; the component in
A1(M,C1) is ∇ − ∇0, and the component in A2(M,C0) is c. It remains to show that the pairs
(A, c) are classified as in Theorem 4.2.1.
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Let us start with notation. Let

g̃0 = grJ

be the bundle of Lie algebras of formal power series with the standard Poisson bracket. Let
g0 = grJ/C be the quotient bundle of Lie algebras. In other words, the fibre of g0 is the Lie
algebra of formal Hamiltonian vector fields on the tangent space. Also, put

g̃ = 1

h̄
W

with the bracket a ∗ b − b ∗ a where ∗ is the Weyl product, and

g = g̃/
1

h̄
C�h̄�.

This is the Lie algebra of continuous derivations of the Weyl algebra. It maps surjectively to g0

via 1
h̄
(f0 + h̄f1 + · · ·) �→ f0. Put |a| = m for a ∈ Sm(T ∗

M) and |h̄| = 2. This defines the degree

of any monomial in Sm(T ∗
M)[h̄]. By g̃0

m we denote the subspace Sm+2(T ∗
M), and by g̃m the set of

1
h̄
f where f is a polynomial from Sm+2(T ∗

M)[h̄]. Then

[
g̃0
m, g̃0

r

] ⊂ g̃0
m+r ;

[
g̃m, g̃r

] ⊂ g̃m+r ;
g̃0 =

∏
m�−2

g̃0
m; g̃ =

∏
m�−2

g̃m.

One defines g0
m and gm accordingly. We have

g0 =
∏

m�−1

g0
m; g =

∏
m�−1

gm.

In particular, the bundle g̃0
−1 = g0

−1 = g̃−1 = g−1 is the cotangent bundle T ∗
M . The symplectic

form identifies this bundle with TM .

Definition 4.2.4. By A−1 we denote the canonical form id ∈ A1(M,TM) which we view as a
form with values in g̃0

−1, etc., under the identifications above.

The form A−1 is smooth in the C∞ case and holomorphic in the complex case.
The connection ∇0 can be expressed as

∇0 = A−1 + ∇0,0 +
∞∑

k=1

Ak = ∇0,0, (4.7)

where ∇0,0 is an spn-valued connection in the tangent bundle TM and Ak ∈ A1(M,g0
k). Define

A(−1) =
∞∑

Ak.
k=1
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(Here n = 1
2 dim(M).) The form A−1 is in fact the canonical form from the above definition. In

the case of a complex manifold, locally ∇0,0 = ∂ + ∂ + A0,0 where A0,0 is a (1,0)-form with
values in spn. The form A(−1) can be viewed as a g̃0-valued one-form:

A(−1) ∈ A1(M, g̃0). (4.8)

Let us look for ∇ of the form

∇ = ∇0 +
∞∑

m=0

(√−1h̄
)m

A(m) (4.9)

where A(m) ∈ A1(M,g0). The condition ∇2 = o(h̄) is equivalent to

∇0A
(0) + 1

2

[
A(−1),A(−1)

]
2 = 0. (4.10)

Here we use the notation

a ∗ b − b ∗ a =
∞∑

m=1

(√−1h̄
)m[a, b]m

(in particular, [ , ]0 is the Poisson bracket); we then extend the brackets [a, b]m to forms with
values in the Weyl algebra. Since [∇can, [∇can,∇can� = 0 and [∇0,∇0] = 0, we conclude that

∇0
[
A(−1),A(−1)

]
2 = 0

in A2(M, g̃0). Moreover, observe that the left-hand side lies in fact in A2(M,
∏

m�0 g̃0
m).

Lemma 4.2.5. If c ∈ Ap(M, g̃0
m), m � −1, satisfies [A−1, c] = 0, then c = [A−1, c

′] for
c′ ∈ Ap−1(M, g̃0

m+1).

Proof. Indeed, the complex A•(M, g̃0) with the differential [A−1, ] is isomorphic to the complex
of smooth sections of, respectively, A0,• forms with coefficients in, the bundle of complexes
S�T ∗

M�⊗ ∧(T ∗
M) with the standard De Rham differential. �

We now know that pairs (∇, c) exist. The theorem is implied by the following lemma (we use
the notation of (4.1)–(4.6)).

Lemma 4.2.6. (1) For any two connections ∇ and ∇′, A(0) − A′ (0) is a cocycle in A1(M,J/C);
a pair (∇, c) is equivalent to a pair (∇′, c′) for some c′ by some transformation (X,B) if and
only if A(0) − A′ (0) is a coboundary;

(2) for any two pairs (∇, c) and (∇, c′) with the same ∇, c − c′ is a closed form in
A2(M, h̄C�h̄�); two such pairs are equivalent if and only if c − c′ is exact.

Proof. (1) The first statement of (1) follows from (4.10). To prove the second, note that
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∇′ = exp ad(X)(∇) + ad(B),

B ∈ A1(M, h̄g̃)

with

X =
∞∑

m=0

(√−1h̄
)m

X(m)

and X(m) ∈ A0(M,g0), is possible if and only if

∇0X
(0) + A(0) − A′ (0) = 0.

(2) The first statement of (2) follows from (4.4). To prove the second, consider a lifting of ∇
to a g̃-valued connection ∇̃. We have

c = ∇̃2 + θ

where θ ∈ A2(M, h̄C�h̄�). One has

∇ = exp ad(X)(∇) + B

if and only if the following two equalities hold:

∇̃ = exp ad(X)(∇̃) + B + α

for some α ∈ A1(M,C�h̄�);

c′ = exp ad(X)(c) + exp ad(X)(B) + 1

2
[B,B].

But in this case

c′ = exp ad(X)
(∇̃2 + θ

) + [
exp ad(X)

(∇̃)
, ∇̃ − exp ad(X)

(∇̃) − α
]

+ 1

2

[∇̃ − exp ad(X)
(∇̃)

, ∇̃ − exp ad(X)
(∇̃)]

= 1

2

[
exp ad(X)

(∇̃)
, exp ad(X)

(∇̃)]
+ θ + [

exp ad(X)∇̃, ∇̃] − 1

2

[
exp ad(X)

(∇̃)
, exp ad(X)

(∇̃)] − dα + 1

2

[∇̃, ∇̃]
− [∇̃, exp ad(X)

(∇̃)] + 1

2

[
exp ad(X)

(∇̃)
, exp ad(X)

(∇̃)] = ∇̃2 + θ − dα

= c − dα.

This proves the theorem. �
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5. The characteristic class of a deformation and the Rozansky–Witten class

5.1. The characteristic class

Given a deformation of the trivial gerbe on a symplectic manifold (M,ω), one defines its
characteristic class

θ = 1√−1h̄
ω +

∞∑
k=0

(√−1h̄
)k

θk ∈ 1√−1h̄
ω + H 2(M)�h̄�

as follows. Represent the deformation by a pair (∇, c) as in Proposition 4.2.3. Choose a lifting
∇̃ of ∇ to a g-valued connection; define

θ = ∇̃2 − c.

It is easy to see that:

(i) θ ∈ A2(M, 1
h̄
C�h̄�);

(ii) dθ = 0, and the cohomology class of θ is invariant under the equivalence and independent
of the lifting.

The above construction generalizes Fedosov’s Weyl curvature. It is easy to see that the
class of θ0 coincides with the image of the class from Theorem 4.2.1 under the morphism
∂ :H 1(M,OM/C) → H 2(M,C). In particular, if this map is not injective, there may be non-
isomorphic deformations with the same class θ .

5.2. Deformation quantization of the sheaf of functions

Here we recall a theorem from [32] (cf. [3] for the algebraic case).
Let (M,ω) be either a symplectic C∞ manifold or a complex manifold with a holomorphic

symplectic structure. By OM we denote the sheaf of smooth, respectively holomorphic, func-
tions.

In what follows we will study deformation quantization of OM as a sheaf. In the language
adopted in this article, these are deformation quantizations of the trivial gerbe such that cijk = 1.
An isomorphism is by definition an isomorphism of deformation quantizations such that bij = 1.

Theorem 5.2.1. Assume that the maps Hi(M,C) → Hi(M,OM) are onto for i = 1,2. Set

H 2
F (M,C) = ker

(
H 2(M,C) → H 2(M,OM)

)
.

Choose a splitting

H 2(M,C) = H 2(M,OM) ⊕ H 2
F (M,C).

The set of isomorphism classes of deformation quantizations of OM as a sheaf which are com-
patible with ω is in one-to-one correspondence with a subset of the affine space

1√ ω + H 2(M,C)�h̄�
−1h̄
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whose projection to

1√−1h̄
ω + H 2

F (M,C)�h̄�

is a bijection.

5.3. The first Rozansky–Witten class

We have seen in the previous section that, under the assumptions of Theorem 5.2.1, deforma-
tions of the sheaf of algebras OM are classified by cohomology classes θ as in (5.7) where θ−1 =

1√−1h̄
ω; the (non-natural) projection of the set of all possible classes θ to 1√−1h̄

ω+H 2
F (M,C�h̄�)

is a bijection. More precisely, the (natural) projection of θn+1 to H 2(M,OM) is a nonlinear func-
tion in θi,0 � i � n. We are going to describe this function for the case n = 0.

Let M be a complex manifold with a holomorphic symplectic structure ω. We start by describ-
ing two ways of constructing cohomology classes in H 2(M,OM). The first one was invented by
Rozansky and Witten, cf. [23,26,36]. Let ∇0,0 be a torsion-free connection in the tangent bundle
which is locally of the form d +A0 for A0 ∈ A1,0(M, sp). Let R = ∂A0 be the (1,1) component
of the curvature of ∇0,0. We can view R as a (1,1) form with coefficients in S2(T ∗

M). Let zi be
holomorphic coordinates on M. By ẑi we denote the corresponding basis of T ∗

M. We write

R =
∑

Rabij̄ ẑ
a ẑb dzi dz̄j . (5.1)

Put

RWΓ0(M,ω) =
∑

Rabij̄Rcdkl̄ω
acωbdωik dz̄j dz̄l . (5.2)

Here Γ0 refers to the graph with two vertices and three edges connecting them. In fact a similar
form RWΓ (M,ω) can be defined for any finite graph Γ for which every vertex is adjacent to
three edges; the cohomology class of this form is independent of the connection [36].

The other way of obtaining (0,2) classes is as follows. For α = ∑
αij̄ dzi dz̄j and β =∑

βij̄ dzi dz̄j , put

ω(α,β) =
∑

αij̄ βkl̄ωik dz̄j dz̄l . (5.3)

It is straightforward that the above operation defines a symmetric pairing

ω :H 1,1(M) ⊗ H 1,1(M) → H 0,2(M).

Combined with the projection H 2
F (M) → H 1,1(M), this gives a symmetric pairing

ω :H 2
F (M) ⊗ H 2

F (M) → H 2(M,OM).

Theorem 5.3.1. Under the assumptions of Theorem 5.2.1, let a deformation of the sheaf of alge-
bras OM corresponds to a cohomology class

θ =
∑(√−1h̄

)m
θm, θm ∈ H 2(M).



P. Bressler et al. / Advances in Mathematics 214 (2007) 230–266 251
Then the projection of the class of θ1 to H 2(M,OM) is equal to

RWΓ0(M,ω) + ω(θ0, θ0).

Proof. First, observe that Lemma 3.5.2 and Proposition 3.6.1 have their analogs for deformations
of the structure sheaf as a sheaf of algebras. The only difference is that the Hochschild complex
C•+1 is replaced everywhere by C•+1,• � 0. Similarly to (4.1)–(4.6), one has

Lemma 5.3.2. Deformations of the sheaf of algebras OM which are compatible with a symplectic
structure ω are classified by forms A ∈ h̄A1(M,hom(grJ,grJ ))�h̄� such that, if

∇ = ∇0 + A,

then

∇(f ∗ g) = ∇(f ) ∗ g + f ∗ ∇(g) (5.4)

and ∇2 = 0. Two such forms are equivalent if, for X ∈ A0(M, h̄Der(W)),

∇′ = exp ad(X)∇.

The proof is identical to the proof of Lemma 4.2.3.
Let us now classify pairs (∇, c).
We start by constructing a flat connection ∇ . We use a standard proof from the homological

perturbation theory. One has to solve recursively

Rn + ∇0A
(n+1) = 0 (5.5)

where

Rn = 1

2

∑
i,j�0;i+j+m=n+1

[
A(i),A(j)

]
m
.

At every stage ∇0Rn = 0; the class of Rn is in the image of the map

H 2(M,OM) → H 2(M,OM/C)

which is zero under our assumptions.
We have shown that flat connections ∇ exist. For any such connection we can consider its

lifting to a g̃-valued connection ∇̃. Put

∇̃2 = θ =
∞∑

m=−1

(√−1h̄
)m

θm ∈ A2
(

M,
1

h̄
C�h̄�

)
. (5.6)

Let us try to determine all possible values of θ.
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Lemma 5.3.3. Under the assumptions of Theorem 5.2.1, the map ∇ �→ θ establishes a one-to-
one correspondence between the set of equivalence classes of connections ∇ and a subset of the
affine space

1√−1h̄
ω + H 2(M,C)�h̄�

whose projection to

1√−1h̄
ω + H 2

F (M,C)�h̄�

is a bijection.

First of all, θ−1 = 1√−1h̄
ω. There exists ∇̃ with θ0 = 0 (see (4.10) and the argument after it).

To obtain other possible θ0 we have to add to ∇̃ a form A′(0) −A(0) whose image in A1(M,J/C)

is ∇̃-closed. Therefore, the cohomology class of a possible θ0 must be in the image of the map

H 1(M,OM/C) → H 2(M,C),

which is precisely H 2
F (M,C) under our assumptions.

Proceeding by induction, we see that, having constructed θi, i � n, and ∇̃(n) such that

∇̃2
(n) =

n∑
m=−1

(√−1h̄
)m

θm + o
(
h̄n

)
, (5.7)

we can find θn+1 and ∇̃(n+1) = ∇̃(n) + o(h̄n) such that

∇̃2
(n+1) =

n+1∑
m=−1

(√−1h̄
)m

θm + o
(
h̄n+1).

The cohomology class of such θn+1 can be changed by adding any element of H 2
F (M).

Proceeding by induction, we see that we can construct unique ∇̃ with any given projection
of θ to H 2

F (M)�h̄�. Now observe that, if ∇′ = exp ad(X)∇, then ∇̃′ = exp ad(X)∇̃ + α for
α ∈ A1(M,C�h̄�) and therefore θ ′ = exp ad(X)(θ) + dα. Therefore two connections with non-
cohomologous curvatures are not equivalent. An inductive argument, similar to the ones above,
shows that two connections with cohomologous curvatures are equivalent. Indeed, by adding an
α we can arrange for θ ′ and θ to be equal. Then we find X = ∑

(
√−1h̄)mXm by induction. At

each stage we will have an obstruction in the image of the map

H 1(M,OM) → H 1(M,OM/C).

But this image is zero under our assumptions.
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5.3.1. End of the proof of Theorem 5.3.1
Let us start by observing that one can define the projection

Proj :
(
A•,•(M,grJ ),∇0

) → (
A0,•(M), ∂

)
(5.8)

as follows: if I is the DG ideal of the left-hand side generated by dzi and by the augmentation
ideal of grJ then the right-hand side is identified with the quotient of the left-hand side by I. It
is straightforward that Proj is a quasi-isomorphism.

Using the notation introduced in and after Definition 4.2.4, we can write

∇0A
(0) + 1

2

[
A(−1),A(−1)

]
2 = θ0 (5.9)

and

∇0A
(1) + 1

2

[
A(−1),A(−1)

]
3 + [

A(−1),A(0)
]

2 + [
A(−0),A(0)

]
1 = θ1. (5.10)

Observe that:

(a) Proj[A(−1),A(−1)]2 = Proj[A(−1),A(−0)]2 = 0;
(b) Proj[A(−1),A(−1)]3 depends only on the (0,1) component of the form A

(−1)
1 ;

(c) Proj[A(0),A(0)]1 depends only on the (0,1) component of the form A
(0)
−1.

The connection ∇0 can be chosen in such a way that the form from (b) is equal to∑
Rijkl̄ ẑ

i ẑj ẑk dz̄l; (5.11)

therefore for this connection

1

2
Proj

[
A(−1),A(−1)

]
3 = RWΓ0(M,ω).

Since [A(−1),A(−1)]2 ∈ A2(M, g̃�0), we can choose A(0) ∈ A1(M, g̃�1); we conclude, because
of (b) and (c), that there exists ∇̃ with θ0 = 0 such that the projection of θ1 to H 2(M,OM) is
equal to RWΓ0(M,ω).

Now we can produce a connection with a given θ0 by adding to the above connection a form
A′ − A; for this new connection, the form from (c) may be chosen as∑

αij ẑ
i dz̄j

where

α =
∑

αij dzi dz̄j

is the (1,1) component of a form representing the class θ. This implies

Proj
[
A(0),A(0)

]
1 = ω(θ0, θ0). �
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Remark 5.3.4. In [33, 4.8], we defined the canonical deformation of the trivial gerbe on a sym-
plectic manifold. It is easy to see that the characteristic class θ of this deformation is equal
to 1√−1h̄

ω. We see from Theorem 5.3.1 that the first Rozansky–Witten class is an obstruction for
the canonical stack deformation to be a sheaf of algebras.

6. Deformation complex of a stack as a DGLA

In this section we will construct a DGLA whose Maurer–Cartan elements classify deforma-
tions of any stack (Theorem 6.2.2). In order to that, we will start by noticing that a stack datum
can be defined in terms of the simplicial nerve of a cover; if we replace the nerve by its first
barycentric subdivision, we arrive at a notion of a descent datum for L where L is a simplicial
sheaf of DGLAs (Definitions 6.2.3, 6.2.4). We reduce the problem to classifying such descent
data in Proposition 6.2.6. Then we replace our simplicial sheaf of DGLAs by a quasi-isomorphic
acyclic simplicial sheaf of DGLAs. For the latter, classifying descent data is the same as classi-
fying Maurer–Cartan elements of the DGLA of global sections, whence Theorem 6.2.2. It states
that deformations of a stack are classified by Maurer–Cartan elements of De Rham–Sullivan
forms with values in local Hochschild cochains of the twisted matrix algebra.

6.1. Twisted matrix algebras

For any simplex σ of the nerve of an open cover M = ⋃
Ui corresponding to Ui0 ∩ · · · ∩ Uip ,

put Iσ = {i0, . . . , ip} and Uσ = ⋂
i∈I Ui. Define the algebra Matrσtw(A) whose elements are finite

matrices

∑
i,j∈Iσ

aijEij

such that aij ∈Ai (Uσ ). The product is defined by

aijEij · alkElk = δjlaijGij (ajk)cijkEik.

We call a Hochschild k-cochain D of Matrσtw(A) local if:

(a) for k = 0, D = ∑
i∈Iσ

aiEii;
(b) for k > 0, D(Ei1j1, . . . ,Eikjk

) = 0 whenever jp �= ip+1 for some p between 1 and k − 1;
(c) for k > 0, D(Ei1j1, . . . ,Eikjk

) is a product of an element of Ei1jk
and an element of A.

Local cochains form a DGL subalgebra of all Hochschild cochains C•+1(Matrσtw(A),

Matrσtw(A)). Denote it by LH,local(Matrσtw(A)).

Remark 6.1.1. It is easy to define a sheaf of categories on Uσ whose complex of Hochschild
cochains is exactly the complex of local Hochschild cochains above.
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6.2. De Rham–Sullivan forms

For any p-simplex σ of the nerve of an open cover M = ⋃
Ui corresponding to Ui0 ∩· · ·∩Uip ,

let

Q[Δσ ] = Q[ti0, . . . , tip ]/(ti0 + · · · + tip − 1)

and

Ω•[Δσ ] = Q[ti0 , . . . , tip ]{dti0, . . . , dtip }/(ti0 + · · · + tip − 1, dti0 + · · · + dtip ).

As usual (cf. [5]), given a sheaf L on M , define De Rham–Sullivan forms with values in L as
collections ωσ ∈ Ω•[Δσ ] ⊗L(Uσ ) where σ runs through all simplices, subject to ωτ |Δσ = ωσ

on Uτ whenever σ ⊂ τ . De Rham–Sullivan forms form a complex with the differential (ωσ ) �→
(dDRωσ ). We denote the space of all k-forms by Ωk

DRS(U,L), or simply by Ωk
DRS(U) in the

case when L = C. The complex (Ω•
DRS(U,L), dDR) computes the Čech cohomology of M with

coefficients in L. Finally, put

Ωk
DRS(M,L) = lim dirU Ωk

DRS(U,L)

where the limit is taken over the category of all open covers.
We need to say a few words about the functoriality of Hochschild cochains. Usually, given a

morphism of algebras A → B , there is no natural morphism between C•(A,A) and C•(B,B)

(both map to C•(A,B)). Nevertheless, in our special case, there are maps Matrσtw → Matrτtw
on Uτ if σ ⊂ τ. These maps do induce morphisms of sheaves of local cochains on the open subset
Uτ in the opposite direction; we call these morphisms the restriction maps. And, as before, we
consider Hochschild cochain complexes already as sheaves of complexes. For example, in all the
cases we are interested in, Hochschild cochains are given by multi-differential maps.

Definition 6.2.1. Let Ω•
DRS(U,LH,local(Matrtw(A))) be the space of all collections

Dσ ∈ LH,local(Matrσtw(A)
) ⊗ Ωk(Δσ )

such that for σ ⊂ τ the restriction of the cochain Dτ |Δσ to Matrσtw(A) is equal to Dσ on Uτ .

These spaces form a DGLA with the bracket [(Dσ ), (Eσ )] = ([Dσ ,Eσ ]) and the differential
(Dσ ) �→ ((dDR + δ)Dσ ). We put

Ω•
DRS

(
M,LH,local(Matrtw(A)

)) = lim dirU Ω•
DRS

(
U,LH,local(Matrtw(A)

))
.

Theorem 6.2.2. Isomorphism classes of deformations of any stack A are in one-to-one corre-
spondence with isomorphism classes of Maurer–Cartan elements of the DGLA

Ω•
DRS

(
M,LH,local(Matrtw(A)

))
.

The DGLAs above are examples of a structure that we call a simplicial sheaf of DGLAs.
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Definition 6.2.3. A simplicial sheaf L is a collection of sheaves Lσ on Uσ , together with mor-
phisms of sheaves rστ :Lτ → Lσ on Uτ for all σ ⊂ τ , such that rστ rτθ = rσθ for any σ ⊂ τ ⊂ θ.

A simplicial sheaf of DGLAs L is a simplicial sheaf such that all Lσ are DGLAs and all rστ are
morphisms of DGLAs.

Definition 6.2.4. For a simplicial sheaf of DGLAs L, a descent datum is a collection of Maurer–
Cartan elements λσ ∈ h̄L1(Uσ �h̄�), together with gauge transformations Gστ : rστ λτ → λσ

on Uτ and two-morphisms cστθ :Gστ rστ (Gτθ ) → Gσθ on Uθ for any σ ⊂ τ ⊂ θ, subject to

cστωGστ

(
rστ (cτθω)

) = cσθωcστθ

for any σ ⊂ τ ⊂ θ ⊂ ω.

We leave to the reader the definition of isomorphisms (and two-isomorphisms) of descent
data. Given a simplicial sheaf L, and denoting the cover by U, one defines the cochain complex

Cp(U,L) =
∏

σ0⊂···⊂σp

Lσ0(Uσp).

Put

(d0s)σ0...σp+1 = sσ1...σp+1;
(dis)σ0...σp+1 = sσ0...σ̂i ...σp+1, 1 � i � p;

(dp+1s)σ0...σp+1 = rσp,σp+1sσ0...σp .

We leave to the reader the definition of the maps si . We see that C•(U,L) is a cosimplicial space.
It is a cosimplicial DGLA if L is a simplicial sheaf of DGLAs.

Finally, note that, if a cover V is a refinement of the cover U, then there is a morphism of
cosimplicial spaces (DGLAs)

C•(U,L) → C•(V,L).

Let

C•(L) = lim dirU C•(U,L).

We say that L is acyclic if for every q the cohomology of this complex is zero for p > 0.

Definition 6.2.5. The cochain complex (C•(U,L), ∂ + d) where ∂ = ∑n
i=0(−1)idi is called the

Čech complex of L with respect to the cover U.

The collection of sheaves LH,local(Matrσtw(A)) forms a simplicial sheaf of DGLAs if one sets
rστ (ω) to be the restriction of the ω to the algebra Matrσtw(A). We denote this simplicial sheaf of
DGLAs by LH,local(Matrtw(A)).
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Proposition 6.2.6. Isomorphism classes of deformations over a of any stack A are in one-to-
one correspondence with isomorphism classes of descent data of the Deligne two-groupoid of
LH,local(Matrtw(A)) ⊗ a.

Proof. Given a deformation, it defines a Maurer–Cartan element of LH,local(Matrσtw(A)) for
every σ , namely the Hochschild cochain corresponding to the deformed product on Matrtw(A).
It is immediate that this cochain is local. The restriction rστ sends these cochains to each other,
so a deformation of A does define a descent datum for the Deligne two-groupoid of LH,local.
Conversely, to have such a descent datum is the same as to have a deformed stack datum Ãσ on
every Uσ (with respect to the cover by Ui ∩ Uσ = Uσ , i ∈ Iσ ), together with an isomorphism
Ãτ → Ãσ on Uτ for σ ⊂ τ and a two-isomorphism on Uθ for every σ ⊂ τ ⊂ θ. But the cover
consists of several copies of the same open set, which coincides with the entire space. All stack
data with respect to such a cover are isomorphic to sheaves of rings; all stack isomorphisms are
two-isomorphic to usual isomorphisms of sheaves. Trivializing the stacks Ãσ on Uσ according
to this, we see that isomorphism classes of such data are in one-to-one correspondence with
isomorphism classes of the following:

(1) a deformation Aσ of the sheaf of algebras Ai0 on Uσ where Iσ = {i0, . . . , ip};
(2) an isomorphism of deformations Gστ : Aτ → Aσ |Uτ for every σ ⊂ τ ;
(3) an invertible element of cστρ ∈ Aσ (Uθ ) for every σ ⊂ τ ⊂ θ , satisfying the equations that

we leave to the reader.

Finally, one can establish a one-to-one correspondence between isomorphism classes of the
above data and isomorphism classes of deformations of A. This is done using an explicit formula
utilizing the fact that sequences σ0 ⊂ · · · ⊂ σp are numbered by simplices of the barycen-
tric subdivision of σp (cf., for example, [39]). More precisely, given a datum Aσ ,Gστ , cστρ,

we would like to construct a stack datum Ai ,Gij , cijk. We start by putting Ai = A(i) and
Gij = G(i),(ij)G

−1
(j),(ij). Now we want to guess a formula for cijk. For that, observe that

G(i),(ij) = Ad(c(i),(ij),(ijk))G(i),(ijk)G
−1
(ij),(ijk)

and

G(j),(ij) = Ad(c(j),(ij),(ijk))G(j),(ijk)G
−1
(ij),(ijk),

therefore

Gij = Ad(c(i),(ij),(ijk))G(i),(ijk)G
−1
(j),(ijk)

Ad
(
c−1
(j),(ij),(ijk)

)
.

We see that

GijGjk = Ad(cijk)Gik

where

cijk = c(i),(ij),(ijk)

(
G(i),(ijk)G

−1
(j),(ijk)

)(
c−1
(j),(ij),(ijk)c(j),(jk),(ijk)

)
× (

G(i),(ijk)G
−1 )(

c−1 c(k),(ik),(ijk)

)
c−1
(k),(ijk) (k),(jk),(ijk) (i),(ik),(ijk)
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(as one would expect, this is an alternated product of terms corresponding to the six faces of the
first barycentric subdivision of the simplex (ijk), in the natural order). One checks directly that
the cocyclicity condition on the cijk’s holds. Furthermore, given an isomorphism Hσ ,bστ of the
data Aσ ,Gστ , cστρ and A′

σ ,G′
στ , c

′
στρ, one defines

Hi = H(i), bij = b(i),(ij)b
−1
(j),(ij)

and checks that this is indeed an isomorphism of the corresponding data Ai ,Gij , cijk and
A′

i ,G
′
ij , c

′
ijk. This ends the proof of Proposition 6.2.6. �

6.2.1. End of the proof of Theorem 6.2.2
Define the simplicial sheaf of DGLAs as follows. Put

Lσ = LH,local(Matrσtw(A)
) ⊗ Ωk(Δσ ),

with the differential dDR + δ and transition homomorphisms

rστ (Dτ ) = Dτ |Δσ restricted to Matrσtw(A).

We denote this simplicial sheaf of DGLAs by

Ω•
DRS

(
M,LH,local(Matrtw(A)

))
.

It is acyclic as a simplicial sheaf. Therefore, by Proposition 3.3.1, isomorphism classes of descent
data of its Deligne two-groupoid are in one-to-one correspondence with isomorphism classes of
Maurer–Cartan elements of the DGLA Ω•

DRS(M,LH,local(Matrtw(A))), because the latter is its
zero degree Čech cohomology. Now, the embedding

LH,local(Matrtw(A)
) → Ω•

DRS

(
M,LH,local(Matrtw(A)

))
is a quasi-isomorphism of simplicial sheaves of DGLAs (the left-hand side is the zero degree
De Rham cohomology, and the higher De Rham cohomology vanishes locally). Again by Propo-
sition 3.3.1, isomorphism classes of descent data are in one-to-one correspondence for the two
simplicial sheaves of DGLAs above.

6.2.2. Another version of Theorem 6.2.2
The language of the previous subsection allows one to classify deformations of a given stack

in terms of another DGLA which is a totalization of a cosimplicial DGLA. This is perhaps a little
bit more consistent with the framework of [20].

Theorem 6.2.7. Isomorphism classes of deformations of a stack A are in one-to-one correspon-
dence with isomorphism classes of Maurer–Cartan elements of the DGLA

TotC•(LH,local(Matrtw(A)
)) ⊗ a. �
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7. Deformations of a given gerbe

7.1. The aim of this section is to classify deformations of a given gerbe, trivial or not. As
above, let A be a gerbe on M ; by OM we will denote the sheaf of smooth functions (in the C∞
case) or the holomorphic functions (in the complex analytic case).

The two-cocycle cijk defining the gerbe belongs to the cohomology class in H 2(M,OM/

2πiZ). Project this class onto H 2(M,OM/C).

Definition 7.1.1. We denote the above class in H 2(M,OM/C) by R(A) or simply by R.

The class R can be represented by a two-form R in Ω2
DRS(OM/C), cf. 6.2.

Theorem 7.1.2. Given a gerbe A on a manifold M , the set of deformations over a of A up
to isomorphism is in one-to-one correspondence with the set of equivalence classes of Maurer–
Cartan elements of the DGLA Ω•

DRS(M,C•+1(OM,OM))⊗m with the differential dDR +δ+ iR.

Here C•+1(OM,OM) is the sheaf of complexes of multi-differential Hochschild cochains of
the jet algebra; R ∈ Ω2

DRS(M,OM/C) is a form representing the class from Definition 7.1.1;
iR is the Gerstenhaber bracket with the Hochschild zero-cochain R. Explicitly, if R is an element
of an algebra A,

iRD(a1, . . . , an) =
n∑

i=0

(−1)iD(a1, . . . , ai,R, . . . , an).

In Theorem 7.1.2 this operation is combined with the wedge multiplication on forms.
If the manifold M is complex, we can formulate the theorem in terms of Dolbeault complexes,

without resorting to De Rham–Sullivan forms.

Theorem 7.1.3. Given a holomorphic gerbe A on a complex manifold M , the set of deforma-
tions of A over a up to isomorphism is in one-to-one correspondence with the set of equivalence
classes of Maurer–Cartan elements of the DGLA A0,•(M,C•+1(OM,OM)) ⊗ m with the differ-
ential ∂ + δ + iR.

Here R ∈ A0,2(M,OM/C) is a form representing the class from Definition 7.1.1; iR is the
Gerstenhaber bracket with the Hochschild zero-cochain R.

We start with a coordinate change that replaces twisted matrices by usual matrices, at a price
of making the differential and the transition isomorphisms more complicated (Lemma 7.1.6).
The second coordinate change ((7.13) and up) allows to get rid of matrices altogether.

The rest of this section is devoted to the proof of the theorems above.
The plan of the proof is the following. Having reduced the problem of classifying defor-

mations of a gerbe to the problem of classifying Maurer–Cartan elements of a DGLA (Theo-
rem 6.2.2), we will now simplify this DGLA.

7.1.1. First coordinate change: untwisting the matrices
Recall that we are working on a manifold M with an open cover {Ui}i∈I and a Čech two-

cocycle cijk with coefficients in O∗ .
M
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In what follows, we will denote by Ωk(Δσ ,O(Uσ )), etc., the space of forms on the simplex
Δσ with values in O(Uσ ), etc.

We start by observing that in the definition of De Rham–Sullivan forms one can replace alge-
braic L-valued forms Ω•(Δσ )⊗L by smooth L-valued forms Ω•(Δσ ,L) where L is the DGLA
of local Hochschild cochains. Indeed, one DGLA embeds into the other quasi-isomorphically,
and one can apply Proposition 3.3.1.

Locally, c can be trivialized. Indeed, as in the proof of Proposition 6.2.6, c is a cocycle on Uσ

with respect to the cover of Uσ by several copies of itself. We write

cijk = hij (σ )hik(σ )−1hjk(σ ) (7.1)

on Uσ for a simplex σ , where hij are elements of Ω0(Δσ ,O(Uσ )). As a consequence,

dDR loghij (σ ) − dDR loghik(σ ) + dDR loghjk(σ ) = 0. (7.2)

Remark 7.1.4. At this stage the cochains hij (σ ), ai(σ, τ ) can be chosen to be constant as func-
tions on simplices. But later they will be required to satisfy Lemma 7.1.8, and for that they have
to be dependent on the variables ti .

Note that two local trivializations of the two-cocycle c differ by a one-cocycle which is itself
locally trivial (by the same argument as the one before (7.1)). Therefore

hij (σ ) = ai(σ, τ )hij (τ )aj (σ, τ )−1 (7.3)

on Uτ , where ai are some invertible elements of Ω0(Δσ ,O(Uτ )). We have another local trivial-
ization:

dDR loghij (σ ) = βi(σ ) − βj (σ ) (7.4)

on Uσ , where βi(σ ) are elements of Ω1(Δσ ,O(Uσ )). Now introduce the coordinate change

aijEij �→ aijhij (σ )Eij . (7.5)

Definition 7.1.5. By Matrσ (A) we denote the sheaf on Uσ whose elements are finite sums∑
aijEij where aij ∈ Ai . The multiplication is the usual matrix multiplication.

One gets immediately

Lemma 7.1.6. Put

a(σ, τ ) = diagai(σ, τ )

and

β(σ) = diagβi(σ ).

Consider the spaces of all collections

Dσ ∈ Ωk
(
Δσ ,LH,local(Matrσ (O)

))
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such that for σ ⊂ τ the restriction of the cochain Dτ |σ to Matrσ (A) is equal to Ad(a(σ, τ ))(Dσ )

on Uτ . These spaces form a DGLA with the bracket [(Dσ ), (Eσ )] = ([Dσ ,Eσ ]) and the differen-
tial (Dσ ) �→ ((dDR + δ + ad(β(σ )))Dσ ). The coordinate change (7.5) provides an isomorphism
of this DGLA and the DGLA Ω•

DRS(M,L(Matrtw(A))) from Definition 6.2.1 (modified as in the
beginning of 7.1.1).

7.1.2. Second coordinate change
We have succeeded in replacing the sheaf of DGLAs of Hochschild complexes of twisted

matrices by the sheaf of DGLAs of Hochschild complexes of usual matrices, at a price of having
more complicated differential and transition functions. Both involve conjugation (or commutator)
with a diagonal matrix. Our next aim is to make these diagonal matrices have all the entries to be
the same. This will allow us eventually to get rid of matrices altogether.

We already have one such diagonal matrix. Indeed, from (7.4) one concludes that

dDRβi(σ ) = dDRβj (σ ) (7.6)

and therefore

dDRβ(σ) ∈ Ω2(Δσ ,O(Uσ )
)

is well defined. The other one is

γ (σ, τ ) = dDR logai(σ, τ ) − βi(σ ) + βi(τ ). (7.7)

To see that this expression does not depend on i, apply dDR log to (7.3) and compare the result
with (7.4). Thus, we have a well-defined element

γ (σ, τ ) ∈ Ω1(Δσ ,O(Uτ )
)
.

Also, from (7.3) we observe that

s(σ, τ, θ) = ai(σ, τ )ai(σ, θ)−1ai(τ, θ) (7.8)

does not depend on i and therefore defines an invertible element

s(σ, τ, θ) ∈ Ω0(Δσ ,O(Uθ )
)
.

The above cochains form a cocycle in the following sense:

dDR(dDRβ) = 0; (7.9)

dDRβ(σ) − dDRβ(τ) = −dDRγ (σ, τ ); (7.10)

γ (σ, τ ) − γ (σ, θ) + γ (τ, θ) = dDR log s(σ, τ, θ); (7.11)

s(σ, τ, θ)s(ρ, τ, θ)−1s(ρ,σ, θ)s(ρ,σ, τ )−1 = 1. (7.12)
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Lemma 7.1.7. The cohomology of the Čech bicomplex of the complex of simplicial sheaves

σ �→ Ω0(Δσ ,O(Uσ )
)∗ dDR log−−−−→ Ω1(Δσ ,O(Uσ )

) dDR−−→ Ω2(Δσ ,O(Uσ )
) dDR−−→ · · ·

is isomorphic to the Čech cohomology H •(M,U;O∗
M) with respect to the cover U. Under this

isomorphism, the cohomology class of the cocycle (dDRβ,γ, s) of this complex becomes the
cohomology class of the cocycle cijk .

The proof is straightforward, using the fact that sequences σ0 ⊂ · · · ⊂ σp are numbered by
simplices of the barycentric subdivision of σp (cf. [39]; compare with the proof of Proposi-
tion 6.2.6) where a nonlinear version of the same argument is used).

From now on, we assume that the cover U = {Ui} is good. We need another lemma to proceed.

Lemma 7.1.8. The cochains ai(σ, τ ) can be chosen as follows:

ai(σ, τ ) = a0(σ, τ )ãi(σ, τ )

where a0(σ, τ ) does not depend on i and ãi (σ, τ ) take values in the subgroup Ω0(Δσ ,C · 1)∗.

Proof. Choose local branches of the logarithm. We have from (7.8)

logai(α,σ ) − logai(α, τ ) + logai(σ, τ ) − log s(α,σ, τ ) = 2π
√−1Ni(α,σ, τ )

where Ni(α,σ, τ ) are constant integers. The Čech complex of the simplicial sheaf σ �→
Ω0(Δσ ,OUσ ) is zero in positive degrees. Let S be a contracting homotopy from this complex to
its zero cohomology. Put

bi(σ ) = exp
(
S
(
logai(α,σ )

));
then

bi(σ )bi(τ )−1 = ai(σ, τ )−1ãi (σ, τ )a(σ, τ )

where

ãi (σ, τ ) = exp
(
2π

√−1S
(
Ni(α,σ, τ )

))
and

a(σ, τ ) = exp
(
S
(
s(α,σ, τ )

))
.

Therefore we can, from the start, replace hij (σ ) by bi(σ )hij (σ )bj (σ )−1 in (7.1), and ai(σ, τ ) by
ãi (σ, τ )a(σ, τ ) in (7.3). This proves the lemma. �

Now consider the operator

iβ(σ ) :Ω•(Δσ ,C•+1(Matr(O)
)) → Ω•+1(Δσ ,C•(Matr(O)

))
.
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This operator acts by the Gerstenhaber bracket (at the level of C•), combined with the wedge
product at the level of Ω•, with the cochain β(σ) ∈ Ω1(Δσ ,C0(Matr(O))). One has

[δ, iβ(σ )] = adβ(σ ) :Ω•(Δσ ,C•(Matr(O)
)) → Ω•+1(Δσ ,C•(Matr(O)

))
and

[dDR, iβ(σ )] = idDRβ(σ )

which is an operator

Ω•(Δσ ,C•+1(Matr(O)
)) → Ω•+2(Δσ ,C•(Matr(O)

))
.

Now define the second coordinate change as

exp(iβ(σ )) (7.13)

on Ω•(Δσ ,C•(Matr(O))). This coordinate change turns the DGLA from Lemma 7.1.6 into the
following DGLA. Its elements are collections of elements

ωσ ∈ Ω•(Δσ ,C•(Matrσ
(
O(Uσ )

)))
(7.14)

such that the restriction of Dτ |Δσ to the subalgebra Matrσ (O(Uσ )) is equal to

exp(iβ(σ ) − iβ(τ))Ad
(
a(σ, τ )

)
Dσ ; (7.15)

the differential is

dDR + δ + idDRβ(σ ). (7.16)

We can replace (7.15) by

exp(iγ (σ,τ) − idDR loga0(σ,τ ) − idDR log ã(σ,τ ))Ad
(
a0(σ, τ )

)
Dσ (7.17)

where ã(σ, τ ) = diag ãi (σ, τ ) (cf. Lemma 7.1.8).

7.2. Getting rid of matrices

Consider the morphism

C•(OUσ ) → C•(Matrσ (OUσ )
)

defined as follows. Put O = O/C. Then for D ∈ Cp(O,O), D :O⊗p →O, define

D̃(m1a1, . . . ,mpap) = m1 . . .mpD(a1, . . . , ap)

where ai ∈ O and mi ∈ M(C). The following is true:

(a) the cochains D̃ are invariant under isomorphisms Ad(m) for m ∈ GL(C);
(b) the cochains D̃ become zero after substituting and argument from M(C).
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It is well known that the map D �→ D̃ is a quasi-isomorphism with respect to the Hochschild
differential δ. Therefore this map establishes a quasi-isomorphism of the DGLA from (7.14)–
(7.17) with the following DGLA: its elements are collections Dσ ∈ Ω•(Δσ ,C•+1(O(Uσ ))) such
that

Dτ |Δσ = exp(iγ (σ,τ) − id loga0(σ,τ ))Dσ (7.18)

on Uτ , with the differential

dDR + δ + idDRβ(σ ). (7.19)

Now consider any cocycle r(σ ) ∈ Ω2(Uσ ,O/C), t (σ, τ ) ∈ Ω1(Uτ ,O/C);

r(σ ) − r(τ ) + t (σ, τ ) = 0;
t (σ, τ ) − t (σ, θ) + t (τ, θ) = 0.

Such a cocycle defines a DGLA of collections Dσ as above, where (7.18) gets replaced by

Dτ |Δσ = exp(it (σ,τ ))Dσ (7.20)

and the differential is dDR + δ + ir(σ ). If two cocycles differ by the differential of u(σ ) ∈
Ω1(Δσ ,O(Uσ )/C), then operators exp(iu(σ )) define an isomorphism of DGLAs. Finally, put
r(σ ) = β(σ) and t (σ, τ ) = γ (σ, τ ) − d loga0(σ, τ ). This is a cocycle of Č•(M,AM(O/C)). It
lies in the cohomology class of the cocycle (log s, γ, dDRβ) from Lemma 7.1.7. Now replace this
cocycle by a cohomologous cocycle which has t = 0.

This proves that isomorphism classes of deformations of a gerbe A are in one-to-one corre-
spondence with isomorphism classes of Maurer–Cartan elements of the DGLA of collections of
cochains

Dσ ∈ Ω•(Δσ ,C•+1(OUσ ,OUσ )
)

such that Dσ |Uτ = Dτ ; the differential is dDR + δ + iR where R ∈ Ω2
DRS(M,O/C) represents

the class R as defined in the beginning of this section. To pass to the DGLA of Dolbeault forms
(Theorem 7.1.3), we apply Proposition 3.3.1. �
7.2.1. The jet formulation

Theorem 7.1.2 also admits a formulation in the language of jets. As above, let JM be the
bundle of algebras whose fiber at a point is the algebra of jets of C∞, respectively holomor-
phic, functions on M at this point; this bundle has the canonical flat connection ∇can. Horizontal
sections of JM correspond to smooth, respectively holomorphic, functions.

The two-cocycle cijk defining the gerbe belongs to the cohomology class in H 2(M,OM/

2πiZ). Project this class onto H 2(M,OM/C) and denote the result by R (as in Definition 7.1.1).
The class R can be represented by a two-form R in A2(M,JM/C).

Theorem 7.2.1. Given a gerbe A on a manifold M , the set of deformations of A over a up to
isomorphism is in one-to-one correspondence with the set of equivalence classes of Maurer–
Cartan elements of the DGLA A•(M,C•+1(JM,JM)) ⊗ m with the differential ∇can + δ + iR.



P. Bressler et al. / Advances in Mathematics 214 (2007) 230–266 265
Here C•+1(JM,JM) is the complex of vector bundles of Hochschild cochains of the jet
algebra; R ∈ A2(M,JM/C) is a form representing the class from Definition 7.1.1; iR is the
Gerstenhaber bracket with the Hochschild zero-cochain R. The proof follows from a simple ap-
plication of Proposition 3.3.1. �
8. Deformations of gerbes on symplectic manifolds

8.1. For a gerbe on M defined by a cocycle c, we denote by c the class of this cocycle in
H 2(M,OM/2πiZ) and by ∂c its boundary in H 3(M,2πiZ).

Theorem 8.1.1. Let A be a gerbe on a symplectic manifold (M,ω). The set of isomorphism
classes of deformations of A compatible to ω:

(a) is empty if the image of the class ∂c under the map H 3(M,2πiZ) → H 3(M,C) is non-zero;
(b) is in one-to-one correspondence with the space Def(M,ω) (Theorem 4.2.1) if the image of

the class ∂c under the map H 3(M,2πiZ) → H 3(M,C) is zero.

Let R be the projection of c to H 2(M,OM/C), as in Definition 7.1.1.

Theorem 8.1.2. Let A be a gerbe on a complex symplectic manifold (M,ω). The set of isomor-
phism classes of deformations of A compatible to ω:

(a) is empty if R �= 0;
(b) is in one-to-one correspondence with the space Def(M,ω) if R = 0.

Proof. The arguments from the proof of Theorem 4.2.1 show that deformations of a gerbe are
classified exactly as in (4.1)–(4.4), with one exception: Eq. (4.2) should be replaced by the re-
quirement that the class of c modulo A2(M,C + h̄grJ )�h̄� should coincide with R where R is
a form defined before Theorem 7.1.2. Therefore, if R = 0, the classification goes unchanged; if
R �= 0 in H 2(M,OM/C), then

∇0A
(0) + 1

2

[
A(−1),A(−1)

]
2 = R (8.1)

shows that no connection ∇ exists. �
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