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Degree bounds for syzygies of invariants
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Abstract

Suppose that G is a linearly reductive group. Good degree bounds for generators of

invariant rings were given in (Proc. Amer. Math. Soc. 129 (4) (2001) 955). Here we study

minimal free resolutions of invariant rings. For finite linearly reductive groups G it was

recently shown in (Adv. Math. 156 (1) (2000) 23, Electron Res. Announc. Amer. Math. Soc. 7

(2001) 5, Adv. Math. 172 (2002) 151) that rings of invariants are generated in degree at most

the group order jGj: In characteristic 0 this degree bound is a classical result by Emmy Noether

(see Math. Ann. 77 (1916) 89). Given an invariant ring of a finite linearly reductive group G;
we prove that the ideal of relations of a minimal set of generators is generated in degree at

most p2jGj:
r 2003 Published by Elsevier Science (USA).
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1. Introduction

Let us fix a linearly reductive group G over a field K : If V is a representation of G;
then G acts on the coordinate ring K ½V �: The ring of invariant functions is denoted

by K ½V �G: Let bGðVÞ be the smallest positive integer d such that all invariants of
degree at most d generate the invariant ring.
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Noether proved that bGðVÞpjGj for a finite group G in characteristic 0: A group
G over a field K is linearly reductive if and only if the characteristic of the base field
does not divide jGj: This situation is often referred to as the non-modular case.
Noether’s bound was recently extended by Fleischmann (see [6]) to the general non-
modular case. Fogarty found another proof of this independently in [7]. A third
proof follows from the subspaces conjecture in [2], which was solved by Sidman and
the author in [4]. For connected linearly reductive groups, upper bounds for bGðVÞ
which depend polynomially on the weights appearing in the representation were
given in [3].

In this paper, we discuss good degree bounds for syzygies of invariant rings.
Suppose that G is a linearly reductive group and that V is an n-dimensional
representation. Let f1; f2;y; fr be minimal homogeneous generators of the invariant

ring R ¼ K ½V �G whose degrees are d1Xd2X?Xdr: Define the graded polynomial
ring S ¼ K ½x1; x2;y;xr� by degðxiÞ ¼ di for all i: Now R is an S-module via the
surjective ring homomorphism j : S7R defined by jðxiÞ ¼ fi for all i: Let

0-Fk-Fk�1-?-F1-F0-R-0

be the minimal free graded resolution of R as an S-module. We define bi
GðVÞ as the

smallest integer such that Fi is generated as an S-module in degree at most d: Note
that F0 ¼ S and the image of F1 in F0 is the syzygy ideal J of S defined by

J ¼ fhAk½x1;y; xr�jhðf1; f2;y; frÞ ¼ 0g:

The invariant ring K ½V �G is Cohen–Macaulay (see [8]). By standard methods, one

can estimate the degrees in the minimal resolution of K ½V �G by cutting the invariant
ring down by hypersurfaces. Using an estimate of Knop for the a-invariant (see [1,
Definition 4.3.6, p. 169] for a discussion of the a-invariant) of the invariant ring, we
will prove the following bound:

Theorem 1. We have

bi
GðVÞpd1 þ d2 þ?þ dsþi � spðs þ iÞbGðVÞ � s

where s is the Krull dimension of K ½V �G:

If G is connected and linearly reductive, then Theorem 1 and the polynomial

bounds of bGðVÞ in [3] give polynomial bounds for bi
GðVÞ: From the case

i ¼ 1 follows that the syzygy ideal J is generated in degree at most b1
GðVÞp

ðs þ 1ÞbGðVÞ � s:
Let G be a finite group in the non-modular case. Theorem 1 and the inequality

bGðVÞpjGj imply that

bi
GðVÞpðn þ iÞjGj � n

ARTICLE IN PRESS
H. Derksen / Advances in Mathematics 185 (2004) 207–214208



and that J is generated in degree at most b1
GðVÞpðn þ 1ÞjGj � n: This last inequality

will be improved in Theorem 2.
Suppose that M is a graded module over the ring T ¼ K ½V � with minimal free

resolution

0-Hl-Hl�1-?-H0-M-0:

Recall that the Castelnuovo–Mumford regularity regðMÞ is the smallest integer d

such that Hi is generated in degree at most d þ i for all i: Let I be the ideal generated
by all homogeneous invariants of positive degree. Define tGðVÞ as the smallest
integer d such that every homogeneous polynomial of degree d lies in I : It is well-
known that the Castelnuovo–Mumford regularity of a finite length graded T-module
M is exactly the maximum degree appearing in M (see [5, Exercise 20.15] or
Theorem 6). Application to the module T=I gives us regðT=IÞ ¼ tGðVÞ � 1: From
[5, Corollary 20.19] and the exact sequence 0-I-T-T=I-0 follows that

regðIÞ ¼ regðT=IÞ þ 1 ¼ tGðVÞ:

Fogarty’s proof of the Noether bound in the non-modular case (see [7]), shows that
tGðVÞpjGj: The following theorem gives a similar bound for the degrees of the
generators of the syzygy ideal.

Theorem 2. Suppose that G is a finite group in the non-modular case. Suppose

that ff1; f2;y; frg is a minimal set of homogeneous generators of the invariant

ring K ½V �G and let JDK ½x1; x2;y; xr� be the syzygy ideal. Then J is generated in

degree at most

2tGðVÞp2jGj:

The proof of this theorem does not seem to extend to higher syzygies. We conjecture
though that similar bounds will hold for higher syzygies:

Conjecture 3. If G is a finite group in the non-modular case, then

bi
GðVÞpði þ 1ÞtGðVÞpði þ 1ÞjGj:

2. Examples

Example 4. Let Sn be the symmetric group acting on V ¼ Kn by permutation
of the coordinates and let AnCSn be the alternating group. The coordinate
ring K ½V � can be identified with the polynomial ring K ½y1;y; yn�: The invariant ring
of Sn is

K ½y1; y2;y; yn�Sn ¼ K ½e1; e2;y; en�;
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where ej is the elementary symmetric polynomial of degree j defined by

ej ¼
X

1pi1oi2o?oijpn

yi1yi2?yij

for all j:
It is also well known that the ring of An-invariants is

K½y1;y; yn�An ¼ K ½e1; e2;y; en;D�;

where D is the An-invariant of degree nðn � 1Þ=2 defined by

D ¼
Y

1piojpn

ðyi � yjÞ:

Let us again define a surjective ring homomorphism

K ½x1; x2;y; xnþ1�7K ½y1;y; yn�An ;

where xi maps to ei for ipn and xnþ1 maps to D: The kernel of the homomorphism is
the syzygy ideal J:

Theorem 1 says that J is generated in degree at most

nðn � 1Þ=2þ n þ ðn � 1Þ þ?þ 1� n ¼ nðn � 1Þ:

The polynomials e1; e2;y; en form a regular sequence in K ½y1;y; yn� and the
Hilbert series of K ½y1;y; yn�=ðe1; e2;y; enÞ is

ð1þ tÞð1þ t þ t2Þ?ð1þ t þ?þ tn�1Þ ¼ 1þ ðn � 1Þt þ?þ tnðn�1Þ=2:

From this we see that the highest degree for which K ½y1;y; yn�=ðe1; e2;y; enÞ is non-
zero is nðn � 1Þ=2: The degree nðn � 1Þ=2 part of K½y1;y; yn�=ðe1;y; enÞ is one
dimensional and it is spanned by the invariant D: This shows that every polynomial
of degree at least nðn � 1Þ=2 lies in the ideal ðe1; e2;y; en;DÞ; so tAn

ðVÞ ¼
nðn � 1Þ=2: By Theorem 2 we get that J is generated in degree at most

2 � nðn � 1Þ=2 ¼ nðn � 1Þ:

Both theorems are sharp in this example. We have that D2 is Sn-invariant and

therefore D2 is a polynomial in e1; e2;y; en: This gives a relation of degree nðn � 1Þ
and it is known that this relation generates the ideal J:

Example 5. Let G be the cyclic group of order m; generated by s: Let s act on
V ¼ Kn by scalar multiplication with a primitive mth root of unity z: This defines a
group action of G on V : We identify again K ½V � ¼ K½y1;y; yn� where yi is the ith

coordinate function. The invariant ring K ½V �G is generated by the set M of all
monomials in y1; y2;y; yn of degree m: To every monomial MAM we attach a
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formal variable xM : We consider the surjective ring homomorphism

K ½fxMgMAM�7K ½V �G

which maps xM to M for every monomial MAM: The kernel of this homomorphism
is again the syzygy ideal J:

By Theorem 1, J is generated in degree at most ðn þ 1Þm � n: Since every
monomial of degree m lies the ideal J generated by all homogeneous invariants of
positive degree, we have tGðVÞ ¼ m: By Theorem 2, J is generated in degree at most
2m (which means that J is generated by polynomials which are quadratic in the
variables fxMgMAM). Indeed, J is generated by relations of the form

xyiMxyjN � xyjMxyiN ;

where M and N are monomials of degree m � 1: Now Theorem 2 is sharp, but
Theorem 1 is not.

3. A general degree bound for Syzygies

Suppose that S ¼ K ½x1; x2;y; xr� is the graded polynomial ring where degðxiÞ ¼
di is a positive integer for all i: We will assume that d1Xd2X?Xdr: Let M

be a finitely generated graded Cohen–Macaulay S-module. The minimal resolution
of M is

0-Fk-Fk�1-?-F1-F0-M-0

where

FiDTorS
i ðM;KÞ#K S:

Here TorS
i ðM;KÞ is a finite-dimensional graded vector space, and this makes

TorS
i ðM;KÞ#K S into a graded module.

If M is a finite-dimensional graded vector space, then degðMÞ is the maximal
degree appearing in M if M is non-zero, and degðMÞ ¼ �N if M is zero. For a
finitely generated module M; aðMÞ is the degree of the Hilbert series HðM; tÞ; seen
as a rational function (the so-called a-invariant of M).

Theorem 6. We have the inequality

degðTorS
i ðM;KÞÞpd1 þ d2 þ?þ dsþi þ aðMÞ;

where s is the dimension of M:

Proof. We prove the theorem by induction on s ¼ dimM: Suppose that M has
dimension 0. In this case we prove the inequality by induction of the length dimK M
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of M: If M has length 0, then M is the trivial module and the inequality is obvious.
Suppose that M is non-zero. Note that a :¼ aðMÞ is the maximum degree appearing
in M: Let Ma be the part of M of degree a: Then Ma is a submodule of M: We have
an exact sequence of S-modules

0-Ma-M-M=Ma-0:

Since dimK M=MaodimK M and aðM=MaÞoa we get by induction that

degðTorS
i ðM=Ma;KÞÞpd1 þ?þ di þ a � 1:

The submodule Ma is isomorphic to the module Km½�a� which is the module Km

whose degree is shifted by a: Since

degðTorS
i ðK ;KÞÞpd1 þ d2 þ?þ di

by the Koszul resolution, we have that

degðTorS
i ðMa;KÞÞpd1 þ d2 þ?þ di þ a:

From the long exact sequence

?-TorS
i ðMa;KÞ-TorS

i ðM;KÞ-TorS
i ðM=Ma;KÞ-?

follows that

degðTorS
i ðM;KÞÞpd1 þ d2 þ?þ di þ a:

Now suppose that s40: Since M is Cohen–Macaulay we can find a homogeneous
non-zero divisor p of degree e40 and M=pM is again Cohen–Macaulay. First, note
that HðM=pM; tÞ ¼ ð1� teÞHðM; tÞ; so aðM=pMÞ ¼ aðMÞ þ e: From the short
exact sequence

0-M½�e�-M-M=pM-0

we obtain a long exact sequence

?-TorS
iþ1ðM=pM;KÞÞ-TorS

i ðM;KÞ½�e�-TorS
i ðM;KÞ-? �

Any element of TorS
i ðM;KÞ½�e� of maximal degree must map to 0 in TorS

i ðM;KÞ;
and therefore it must come from TorS

iþ1ðM=pM;KÞ: This shows that

e þ degðTorS
i ðM;KÞÞ ¼ degðTorS

i ðM;KÞ½�e�ÞpdegðTorS
iþ1ðM=pM;KÞÞ

pd1 þ d2 þ?þ dðs�1Þþðiþ1Þ þ aðM=pMÞ ¼ d1 þ d2 þ?þ dsþi þ aðMÞ þ e;

so finally

degðTorS
i ðM;KÞÞpd1 þ d2 þ?þ dsþi þ aðMÞ: &
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Proof of Theorem 1. Let us choose M ¼ R in the previous theorem. Then

bi
GðVÞ ¼ degðTorS

i ðM;KÞÞpd1 þ d2 þ?þ dsþi þ aðRÞ:

Knop proved that aðRÞp� s (see [9,10, Satz 4]) and Theorem 1 follows.

4. Bounds for the syzygy ideal for finite groups

Proposition 7. Suppose that R ¼ "dX0Rd is a graded ring with R0 ¼ K and that

ff1; f2;y; frg is a minimal set of homogeneous generators of R: Let S ¼ K ½x1;y; xr�
be the graded polynomial ring and let j : S7R be the surjective ring homomorphism

defined by xi/fi for all i: We have an exact sequence of graded vector spaces

TorS
2 ðK ;KÞ-TorR

2 ðK ;KÞ-TorS
1 ðR;KÞ-0:

Proof. From Exercise A3.47 (with the role of R and S interchanged) in [5], we get a
five-term exact sequence

TorS
2 ðK ;KÞ-TorR

2 ðK ;KÞ-TorS
1 ðR;KÞ-TorS

1 ðK ;KÞ-TorR
1 ðK ;KÞ-0:

Let n ¼ ðx1;y; xrÞ be the maximal homogeneous ideal of S and let m ¼ ðf1;y; frÞ
be the maximal homogeneous ideal of R: Now TorS

1 ðK ;KÞ and TorR
1 ðK ;KÞ can be

identified with n=n2 and m=m2 respectively. In particular, both TorS
1 ðK ;KÞ and

TorR
1 ðK ;KÞ are r-dimensional. The proposition follows.

Proof of Theorem 2. Let us write T ¼ K ½V �: We consider the T-module U ;
defined by

U ¼ fðw1;w2;y;wrÞAT ½�d1�"?"T ½�dr�j
Xr

i¼1

wifi ¼ 0g:

Since I ¼ ðf1; f2;y; frÞ is tGðVÞ-regular (in the sense of Mumford and Castelnuovo),
we get that U is generated in degree ptGðVÞ þ 1: The module

M ¼ fðw1;w2;y;wrÞAR½�d1�"?"R½�dr�j
Xr

i¼1

wifi ¼ 0g;

gives an exact sequence

0-M-R½�d1�"?"R½�dr�-R-K-0:

We can identify M=mM with TorR
2 ðK ;KÞ: The module M is equal to UG: We have

that ððf1; f2;y; frÞUÞG ¼ ðf1; f2;y; frÞUG ¼ mM since f1;y; fr are invariant and G

is linearly reductive. We can view M=mM as a submodule of U=ðf1;y; frÞU : It is
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easy to see that every element of U of degree X2tGðVÞ þ 1; must lie in ðf1;y; frÞU
since U is generated in degree ptGðVÞ þ 1 and every polynomial of degree XtGðVÞ
lies in ðf1;y; frÞ: This shows that

degðTorR
2 ðK ;KÞÞ ¼ degðM=mMÞpdegðU=ðf1;y; frÞUÞp2tGðVÞ:

By the previous proposition, we also get degðTorS
1 ðR;KÞÞp2tGðVÞ: &
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