
Discrete Mathematics 74 (1989) 241-243 
North-Holland 

241 

In 1967, Welsh and Powell introduced in [3] an upper bound to the chromatic 
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We cornmerit in this note on the relations between sequential coloring and the Welsh-Powell 
upper bound for the chromatic number of a graph. 

number x(G) of a graph G that is usuully formulated in the following form (in 
what follows, n denotes the number of vertices of a graph): 

1’ the vertices of a graph G are arranged in non-increasing order of their 
degrees, i.e. 

d(q) 3 d(v2) 2 l l l 2 d(v,) (1) 

then 

x(G)Gu~(G;v~, ~2, . . . . v,J~~~III,wc~ min{d(vJ +l, i}. 
\_ (2) 

We have checked all available standard texts on the theory and applications of 
graphs and papers on graph coloring published after appearing [3] (including [3]), 
and in all of these publications the bound (2) is preceded by the assumption (1). 

On the other hand, the bound (2) is quite often presented in the context of the 
sequential coloring algorithm (algorithm S, for short) which can be described as 
follows: 

Given an ordering ul, u2, . . . , u, of the vertices of a graph G. Assign color 1 
tovertexu,, andfori=2,3 ,..., n, assign to ui the smallest color not used for 
any neighbor ui of Ui such that i C i. 

Let xs(G; ~1, ~2, . . . p u,) denote the number of colors used by algorithm S. It 
is clear that each vertex Ui can be colored by the smaller of two colors, i and 
d(vi) + 1. Therefore, 

for any vertex ordering ul, u2, . . . , u, of a graph G we have 

X(G) qs(G; ~1, ~2, . . . p u,,) -,(G; ~1, ~2, l - . p u,)- (3) 

We encourage the reader to prove, for instance by applying an exchange 
argument, that 

us(G; ~1, ~2, . . . p u,) is minimized by u 1, u2, . . . , u, 

arranged in non-increasing order of their degrees. (4) 
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becdgfah 3 3 

abcdefgh 2 4 

Fig. 1. A bad example for the Welsh-Powell sequential coloring. 

The fact (4) is probably an implicit motivation behind appearing (1) as the 
assumption for (2). There are however two issues that should be emphasized here 
and which support our claim that (l)-(2) should be rather presented in the form 
of two separate statements, as (3) and (4). 

First, it is well-known that the number of colors used by the algorithm S, 

xs(G;u,, ~2, . . - 9 u,) is almost always much smaller than z+(G; ul, u2, . . . , u,) 

the upper bound to xs (and also to x) resulting from the algorithm, and there is 
no relation between these two numbers. 

Second, the smaller bound us(G ; u 1, u2, . . . , u,) does not necessarily guar- 
antee the better sequential coloring. In particular, for certain graphs no ordering 
of vertices satisfying (1) may produce a chromatic coloring. Fig. 1 shows a 
bipalTtite (i.e. 2-chromatic) graph for which both vertices of degree 3 cannot be 
colored with the same color in any optimal coloring. However they will get the 
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Johnson’s graph Gm (see Figure 1 in Cl11 
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Fig. 2. Another bad example. 
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same color when vertices are ordered according to (1). Note that in this case we 
have Xs(a . . . h) c xs(b. . . h) although u,(a . . . h) > us(b . . . h). 

In general, if two vertices of a bipartite graph located at odd distance from each 
other are forced by the algorithm S to receive the same color, then the coloring 
produced is not optimal. Fig. 2 shows a member of an infinite family of bipartite 
graphs, for which the number of colors used by the algorithm S applied to any 
vertex ordering satisfying (1) is of order fi. 

To summarize, the upper bound (2) to the chromatic number of a graph is vaiid 
for any vertex ordering and is minimized for ordering (1). However, it may 
happen for some graphs, that for no vertex ordering satisfying (l), the algorithm 
S produces an optimal coloring. Hence some other vertex orderings may be of 
interest while searching sequentially for a chromatic coloring. This motivates our 
claim that (l)-(2) should be rather presented as two separate statements, (3) 
and (4). 

We refer the reader to Section 4.1 in [2] devoted entirely to coloring 
algorithms, where the results of some computational experiments 
coloring algorithms are also presented. An extensive annotated 
also included there. 

with sequential 
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