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1. INTRODUCTION 

Let E be a complex Banach space, S(t), t > 0 a strongly continuous 
semigroup in E, A its infinitesimal generator. It is well-known that if 
A is bounded, then 

S(t) = exp(tA), U-1) 

where the right side can be computed by means of the power series 
of the exponential function or by contour integrals ([6], p. 287). If A 
is unbounded this kind of interpretation fails but we can still attach 
a meaning to (1.1). For instance, we have 

S(t)u = Fi? exp(thAR(h; A))u, (1.2) 

where R(h; A) = (hl - A)-l and the limit is uniform on compacts of 
t 3 0 ([6], Chapter XII). Since 

Am(X; A)u + Au (1.3) 

as h -+ co for all u E D(A) we can think of the right side of (1.3) as 
defining exp(tA), and thus of (1.2) as a generalization of (1.1). (See 
also [6], p. 365 for a similar formula for a different class of semigroups.) 
Formula (1.2) is one of the “exponential formulas” in Hille-Phillips, 
p. 354 and is called by Yosida a “representation theorem” for the 
semigroup S ([ll], p. 248, formula (7)). 

We show in this paper that the formula (1.2) is valid in the more 
general context of distribution semigroups (Lions, [7]) provided the 
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limit is taken in the sense of distributions. The result is a simple 
consequence of the characterization of the infinitesimal generators of 
distribution semigroups due to Chazarain ([1,2]). We also establish a 
sort of converse to this result, which can be used as a “generation 
theorem” for an operator A. Finally, results of the same sort are 
obtained for operator-valued distributions related to the second-order 
equation uN = Au in the same way distribution semigroups are related 
to the equation u’ = Au. An application to the approximation of 
distribution solutions of differential equations is indicated. 

2, We use the definitions and notations of [S-lo] for scalar 
and vector-valued distributions and those of [7] for distribution 
semigroups. In particular, .5? (resp. g-) is the space of all 
infinitely differentiable complex-valued functions q, #,. . . defined in 
--oo < t < cc and with compact support (resp. with support 
bounded above), Y is the space of all infinitely differentiable functions 
decreasing at infinity (together with its derivatives) faster than any 
power of / t /. The spaces GZ”, 5ZJ- , Y will be endowed with their 
usual L. Schwartz topologies ([7], pp. 64, 172, 234). If X is any 
complex Banach space we denote by g’(X) the space of X-valued 
distributions; by definition Y(X) =dp(&@, X), the space of all linear 
continuous maps of B into X endowed with the topology of uniform 
convergence on bounded subsets of 9 ([S], 92, p. 49). We shall also 
use the spaces G@+‘(X) =Z(g- , X), Y(X) =Z(Y, X) endowed 
with similar topologies. As is well-known both g+‘(X), P”(X) can be 
identified with subspaces of Z(X), B+‘(X) with the subspace 
consisting of distributions with support bounded below. Finally, we 
shall say that an element of g’(X) belongs to %‘;,,,,(X) if its support is 
contained in [0, co) and we shall assign to g3;0,,,(X) the topology that 
it inherits from g’(X). 

If A is a closed operator with domain D(A) in X and range in X we 
will usually think of D(A) as normed with j u jDcR) = 1 u jr + ] Au Jr 
(the “graph” norm); D(A) is a Banach space relative to this norm. 

Recall ([7], Th Coreme 4.1, p. 147), that if SE P(Z(E, E)) is a 
distribution semigroup, A its infinitesimal generator then A is a closed 
operator with domain D(A) dense in E, 5’ E P(Z(E, D(A)), has 
support in t > 0 and satisfies 

S-AS=6@I (2-l) 

(S’ = (d/r&) S, I the identity operator in E). Moreover, A commutes 
with S, that is S(q) A = AS(F) f or any y E g. Conversely, if A is a 
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closed operator with domain D(A) dense in E, 5’ E g~~,,,)(y(E, D(A)), 
commutes with A and satisfies (2.1) then S is a distribution semigroup, 
A its infinitesimal generator (see [2], p. 2 and [7], Theo&me 5.1, 
p. 149). We shall make use in the sequel of the following result of 
Chazarain ([l], [2]). 

2.1. THEOREM. Let A be a closed operator in E with dense domain 
D(A). Then A generates a distribution semigroup S if, and only if, 
R(p; A) exists in a logarithmic region A and satisjies there the estimate 

I % 4 G POl(I /J I> (2.2) 

pol( *) a (nonnegative) polynomial. 

Recall that a logarithmic region (1 in the complex plane is defined 
by means of an inequality 

Re P 3 m&a log I Im P I + 8, w), (2.3) 

where 0 < 01, /I, o < co. Application of the distribution S to an 
element 9, E SS can be written 

V-4) 

where F is, say, the boundary of A oriented clockwise with respect to 
A and 

@(CL) = s eutp(t) dt. P-5) 

The convergence of (2.4) is assured by the fact (immediately verifiable 
from (2.5)) that, for each n 3 0 there exists a constant C, such that 

b = sup(supp 97) < co. (Observe incidentally that (2.4) itself can be 
thought of as an “exponential formula” analogous to formulas 
E5, E8 , and E, of [6], p. 354). 

In all that follows we will use the notation A, = hAR()I; A), 
S*(t) = h(t) exp(tAJ, h w ere h is the Heaviside function (h(t) = 1 if 
t > 0, h(t) = 0 if t < 0). 
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2.2. THEOREM. Assume A generates a distribution semigroup S. Then 

the limit understood in the topology of 9(9(E, E)). 

Proof, A simple computation shows that if h, p are two complex 
numbers, X + p # 0, hp(h + p)-l E p(A), the resolvent set of A, then 
P E ~(4 and 

On the other hand, it is not difficult to verify that if w’ > w, 
hw(h - w)-l < w’ then the map p -+ +(h + p)-l maps the logarithmic 
region /I’, 

Reh>,max(arlog(ImX/+j,w’) (2.8) 

into the region /l defined by (2.3); this shows in particular that u(AA) 
is contained in the complement of (1’ for these values of A. 

Let now I” be the boundary of II’ and write formula (2.4) for S, 
and any y E 9. We obtain, making use of (2.7) 

Using now formula (2.7) we see that the integrand in (2.9) tends to 

R(tL; 4 @(CL) 

in 5?(E, E) as h -+ co. On the other hand, if p E A’, Xw(X - w)-l < w’ 
we get, again from (2.7) and from the estimate (2.2) that 

1 
I a; AdI G /A + ~ / [ 1 + j h : p ( po1 (I &Y III 

<KPOl(/++-/) +L 

(2. IO) 

for convenient constants K, L. Observing now that 

combining (2.10) with (2.2) an d making use of the estimate (2.6) for 
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@-for rz, say, equal to deg(po1) + 2-we see that the integrand in the 
right side of (2.9) is bounded-uniformly in h-by a constant times 
(1 + I P I)-“. Th is and the bounded convergence theorem of Lebesgue 
show that (2.9) converges to (2.4) as X -+ co-the change of r by r’ 
in (2.4) is easily justifiable. Finally we note that by definition of 
bounded sets in ZB ([8], Chapter III, p. 68) the estimates (2.6) are 
uniform for y in a bounded set of Z@, which shows that (2.9) converges 
to S(v) uniformly on such sets. This ends the proof of Theorem 2.2. 

2.3. Remark. Following Lions ([7], p. 154) we say that S has, 
exponentialgrowth if, and only if, there exists a w < co such that 

exp( --wt)S E Y(A?(E, E)). (2.11) 

Infinitesimal generators of these semigroups can be characterized by 
the fact that the logarithmic region of Theorem 2.1 reduces to a half- 
plane 

Reh >w (2.12) 

(see [7], Theo&me 6.1, p. 157). If w’ > w it is easy to see by means of a 
modification of the formula (2.4) that, for g, E Y we have 

1 O” 
%c?J) = 2a I J+’ + 6; 4 @(T) 4, --m (2.13) 

where we have set S,* = exp(--o’t)S and 

is the Fourier transform of y, convergence of (2.13) being assured by 
the fact that Q itself belongs to Y ([8], p. 248) and thus satisfies the 
sequence of inequalities, 

(2.14) 

n = 1, 2,... for convenient constants C, , C, ,... . Let us observe, 
moreover, that by virtue of the characterization of bounded sets given 
in [8], p. 234 the estimates (2.14) are uniform for y in a bounded set 
in Y. Proceeding now exactly as in the proof of Theorem 2.2 and 
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using the fact that the map p + &(X + p)-i takes the half-plane 
Re X > w’ into Re h >, w if hw(h - w)-r < o’ we easily obtain that 

as h + co in the topology of 9’(.9(E, E)). 
We end this section by showing that A,, approximates A-although 

not as well as in the semigroup case (see (1.3)). 

2.4. PROPOSITION. Let m be the degree of the polynomial in (2.2). 
Then 

AAu --f Au (2.15) 
as X --f co for u E D(Am+2). 

Proof. The family of operators 

{A-%(A; A); h > W> 

is uniformly bounded. If u E D(A), 

PR(h; A)u = km-% + h-m-lR(h; A)Au --f 0 

as X ---t co; since D(A) is dense in E, this means that h+R(h; A)u -+ 0 
as X -+ co for all u E E. This and the formula 

AR@; A) = $ X-“A”u + kmR(h; A) Am+lu 
k=O 

([6], p. 348) that can be obtained by induction from the first resolvent 
equation show that hR(X; A) u -+ u as h -+ co for u E D(Am+l) which 
implies the desired conclusion. Note, finally that X in (2.15) can be 
allowed to assume complex values, the condition “h -+ 00” replaced 
by “h E A, / h ( + 00.” 

3. Throughout this section A, , S, are defined as in Section 2. 

3.1. THEOREM. Let A be a closed operator with dense domain in E. 
Assume that (R(h; A) exists for h > w > 0 and that the set 

{S,(*); h > 4 (3.1) 

is bounded in 9(9’(E, E)). Then A generates a distribution semigroup S 
and we have 

s = $2 s, 

in the sense of distributions. 
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Proof, We assume first that A-l E 5!‘(E, E) (this restriction will 
be removed later). Then Ayl = A-l - h-11 exists and it is bounded 
for all h > w. Using the fact that s,‘(t) = AAS, for t > 0 and that 
S,(O) = I, we get 

(34 

for all A, p > w. Combining this equality with 

A,2S,(t) - A;2Su(t) = A;lA;‘(sn(t) - &(t)) 

+ (Ah1 - A;l)(A,l&(t) + A,%s (t)) 
and 

(Ah - A,) AilA;’ = Ai1 - AhI, 

we finally obtain 

A;%,(t) - ~l;~S,(t) = (Ai1 - A,‘) f S,(s) Su(t - s) ds 
0 

+ (AT1 - A,‘)(A,?&(t) + A,%,(t)) (3.3) 

for A, p > W. By virtue of [lo]. Proposition 39, p. 167 the convolution 
product is a bilinear continuous mapping from 

into ~~o,ml(~(E, E)), th us it maps (Cartesian products of) hounded 
sets into bounded sets. But then the family of functions 

t s 
t S,(s) w - s) ds, X, p > w 
0 I 

is bounded in W(S(E, E)) and so is 

(A;‘SA is the convolution of S, with hl, h the Heaviside function). 
Since A;’ + A-‘, &I--+ A-’ in Z(E, E), A$ - A;‘+ 0; this, the 
preceding considerations and formula (3.3) show that the generaked 
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sequence (AT~S, ; X > w) is Cauchy in 9i,,,,(P(E, E)), hence 
convergent in that space. But 

thus, the same is true of S, itself. Multiplying now the equality 
SA’ - AAS,, = 6 @ I by A;l we get 

Letting h -+ co, 
A,?‘$’ - S, = 8 @ A;‘. 

A-lS’ - S = 6 @ A-l, 

which implies that S E 9(5?(E, D(A)) and that (2.1) is satisfied. This 
shows that S is a distribution semigroup, A its infinitesimal generator. 
We now remove the restriction A-l E: Y(E, E). Firstly, observe that 
Theorem 3.1-in the particular case proved-remains true if the 
family {A,} is replaced by any family {A,} of invertible, mutually 
commuting operators such that A;l-+ A-l as h -+ CO. Let now A 
satisfy the conditions of Theorem 3.1, and let w’ > w, B = A - 0’1, 
8, = A, - 0’1. We use now formula (2.8); according to it we have 

(A, - &I)-1 = -R(w’; A,) = - & [I + &J R (&i ; A)] ; 

thus, &-l+ -R(w’; A) = B-l as h -+ CQ. If we now define FA(t) = 
h(t) exp(&‘,) we have TA(t) = exp(--o’t) S,(t), thus all the conditions 
of Theorem 3.1 are satisfied for B, 8, , 9, . Applying the particular 
case just proved and the comments following it we see that FA 
converges in 9+‘(9(E, E)) t o a distribution semigroup T generated 
by B. But then S, converges to (exp w't)T, which is a semigroup 
distribution generated by B + 0’1 = A. This ends the proof of 
Theorem 3.1. 

3.2. Remark. Theorem 3.1 remains valid if the following modi- 
fications are made in the hypotheses: 

(a) R(p; A) is assumed to exist for some pO E C. 
(b) {A,) is an arbitrary family of bounded, mutually commuting 

operators such that R&,; A,) exists for all X and R(/.L,,; A,) -+ R@,,; A) 
in Y(E, E). 

(c) The family {S,> is bounded in 9’(9(E, E)), where S,(t) = 
h(t) exp(tA,). The proof follows exactly the same lines and will thus 
be omitted. 
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3.3. Remark. Suppose the boundedness assumption in Theorem 
3.1 is strenghtened as follows: there exists w’ < CO such that 

{exp(-w’t)SA ; h > OJ} 

is bounded in 9’(Z?(E, E)). Then it is possible to show that 
exp( -w’t) S, -+ exp( --o’t)S in Y(Y(E, E)); thus, S has exponential 
growth. To adapt the proof of Theorem 3.1 to this case we only need 
to observe that if we set X = 9;0,m,(Z(E, E)) n Y(Z(E, E)), the 
convolution operator from X x X into X is continuous. This result 
also admits of a generalization along the lines of Remark 3.2. 

4. As in the previous sections A is here a closed operator with 
dense domain in E. We study here distributions in 9$,,,(2(E, D(A)) 
commuting with A and satisfying 

S”-AS=601 (4.1) 

(S” = (d/dt)2S). Such distributions could be defined in the way 
distribution semigroups are, that is by means of a functional equation 
(similar to the one satisfied by the function (l/u) sin ax) and by 
regularity conditions at the origin; however we shall not attempt here 
to do so, since the study of distributions satisfying (4.1) may be 
carried out by means of semigroup distribution theory. In this way, 
Chazarain has obtained the following: 

4.1. THEOREM ([2], Theo&me 5). There exists 

satisfying (4.1) d an commuting with A if and only if R(p2; A) exists for 
p in a logarithmic region A and satisfies there 

I R(P’; 4 d ~41 /J I) (4.2) 

for some nonegative polynomial pol( m). 

Recall ([2]) that if v E 9, 

%‘) = & s, R(11.‘; A) @(CL) dp, (4.3) 

where r is the boundary of A, @ defined by (2.5). 



92 FATTORINI 

As in past sections, A,, = hAR(X; A), but we now define 

S,(t) -= h(t) -f ~=. (2:*:-ll)! AA” 
(We can write symbolically S,(t) = h,4$‘2 sin h(tAi’“).) S,, satisfies 

S;-AJ,=S@I (4.3) 

as can be verified by direct computation. 

4.2. THEOREM. Let SE B1,,,,)(9(E, D(A)) satisfy (4.1) and 
commute with A. Then 

in .9’(Z(E, E)). 

The proof follows closely that of Theorem 2.2 and will thus only 
be sketched. Applying formula (2.7) we obtain 

if X + p2 f 0, Xp2(h + p2)-l E p(A). Let the region fl be given by 
(2.3) and let /1’ be the logarithmic region 

Re TV 3 max(ol log / Im p 1 + /I’, w’) 

with /Y > /3, w’ > o. A (somewhat lengthy) computation shows that 
there exists a X, < 00 such that if X > X, then the map 

(4.5) 

transforms the region (1’ into d. We call now F’ the boundary of fl’ 
and apply formula (4.3) to S, ; we have 

Wd = f= S,(t) p)(t) dt = & j-,, 4~~; 4) @‘(id dp. (4.6) 
0 

Proceeding now as in the proof of Theorem 2.2 we can show that 
R(p2; A,) -+ R(p2; A) in S’(E, E) and that / R(p2; A,)] is bounded- 
uniformly in h-by a polynomial in ( p 1. This and the Lebesgue 
bounded convergence theorem yield the desired result. 
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4.3. Remark. An analogous of Remark 2.3 holds in our case; if, 
for some w < co 

then 

exp( --wt)S E Y(p(OEp(E, E)) 

exp( --w’t)S,+ + exp( --w’t)S 

in Y’(Y(E, E)) ‘f 1 o’ > w. The proof imitates that of Remark (2.3). 
In fact, it can be proved as in the case of first-order equations that if 
exp(--ot) 5’ E 9’(9(E, E)) then the logarithmic region (I of Theorem 
4.1 reduces to a half-plane (Re X 3 d\/w) and then we only have to 
observe that the map (4.5) transforms the half-plane Re h 3 q/w 
into Re h > l/W if w’ > w for h 2 a convenient X, . 

The analogous of Theorem 3.1 for our case is 

4.4. THEOREM. Assume R(;\; A) exists for Re X > w and that 

@A(-1; h > WI (4.7) 

is bounded in g’(Z(E, E)). Then 

S=qiI-$s~ i 

exists in the topology of B(oEP(E, E)) and satisfies (4.1). 

Proof. It will b e carried out by making use of Theorem 3.1-or, 
rather, of the extension of it furnished by Remark 3.2. Let & be the 
Cartesian product E x E endowed with the product topology. We 
define an operator in @ by 

(the matrix notation is self-explanatory). D(U) 
easy to see that 

D(A) x E. It is 

(4.8) 

if p2 E p(A). We now define 
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Applying (4.8) to U,, we get 

and then it follows from (4.4) and (4.7) that for p large enough 
IQ; U,) -+ I?&; U) in L?(C?, (5). On the other hand, a simple computa- 
tion shows that 

thus 

(4.9) 

Since the family (4.7) is bounded in ~‘(LZ’(E, E)) so is 

in P(LY(@, (E)). W e h ave verified at this stage all the hypotheses in 
Remark 3.2, and we can thus conclude that G’h will converge in 
.Y(LF((F, @)) to a distribution 6 E J&,+,,(LZ(C%, CZ)) satisfying 

and commuting with Il. By virtue of the representation (4.9) for GA 
this distribution will be given by 

where S is some distribution in a[,,,,)(P(E, E)). But it is not difficult 
to deduce from this and from the form of U that S will commute with 
A and satisfy (4.1); on the other hand, it is clear that all the entries in 
the matrix of 6, will converge to the corresponding entries of the 
matrix of 6; in particular, S,, + S in Z(Y(E, E)) as claimed. 

The case in which the distribution S in (4.1) coincides with a 
differentiable Y(E, E) valued function with strongly continuous 
derivative has been examined in [3], therein approximations to 
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S’, S are found in the strong topology. Finally, observe that there is 
no point in looking for results of the type considered in this paper for 
solutions of the equation S (n) - AS = 8 01, n > 3; for there can 
only be solutions of this equation if A is bounded and everywhere 
defined and S coincides in t > 0 with the entire function, 

(for a proof of this result see [2] or [5]). 

5, We present here a simple application of the preceding 
results. Recall that the Cauchy problem for the equation 

U’=AU+T (5.1) 

is well set if, and only if, (a) for every T E .9+‘($P(E, E)) there exists 
a unique U E g+‘(-LP(E, D(A)) satisfying (5.1), and (b) the linear 
map T --+ U from 9+‘(9(E, E)) into 9+‘(9(E, D(A))) defined by 
(5.1) is continuous (see [2], [5] for further details). It is known 
(see [2], p. 2) that the Cauchy problem for (5.1) is well set if, and only 
if, there exists S E 9[,,& 9’(&‘, D(A))) satisfying S’ - AS = 6 @ I; 
the map T -+ U given by Eq. 5.1 can be written 

U=S+T. (5.3) 

Applying the results of Section 2 to the first-order Eq. 5.1, we see 
that the solutions of the Cauchy problem for (5.1) can be 
approximated arbitrarily well by the solutions of the Cauchy problem 
for the “smooth” equation, 

U’= A,U+ T, 

whose solutions can in turn be computed by convolution of T by the 
power series SA(t) = h(t) exp(tA,). 
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