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Abstract 

Much of traditional graph theoretic analysis of networks had focused on regular or near-regular network models such as random 
Erdos-Renyi models, where the degree distribution is either the same for every node or highly concentrated about the mean. As 
such, much beautiful theoretical machinery exists to analyze various properties including analysis of network resilience via 
eigenvalues of the adjacency matrix representing the network. However, it has been recently observed that real world networks 
tend to be scale-free, which usually implies a high variance and power-law degree distribution. This poses a problem in applying 
existing theoretical machinery to some problems, particularly that of the resilience of networks to node attacks. In this work we 
examine networks in which the greatest discrepancy arises in attempting to apply previous resilience notions, and we tailor a new 
mathematical notion of resilience that works for scale-free networks in the presence of node attacks. 
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1. Introduction and Motivation 

Whether we speak of cellular networks, the Internet, social networks, or road networks, it is clear that networks 
are a ubiquitous, inescapable aspect of daily life.  In addition to such networks relevant to our daily lives, networks 
arise in several academic domains as models of biological, physical, and social phenomena.  A number of important 
problems are relevant across the varied network domains.  For example, the problem of network congestion clearly 
affects both traffic networks and the Internet.  Another problem that is relevant to many different networks is that of 
tolerance to errors and attacks.  We would like to be able to guarantee that most naturally arising networks are 
resilient against attacks as well as to engineer artificial networks to be so.  Both congestion and error tolerance relate 
to network resilience. 

While it is clear that diverse networks share fundamental problems in common, it may be somewhat surprising 

phenomenon that any two people who are not directly acquainted with each other are nonetheless connected by a 
short chain of acquaintances applies not only to the actual social network, but also to online social networks (e.g. 
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Facebook, Twitter), co-
World Wide Web, and even completely non-social networks such as the physical Internet [18].  Such observations 
of common properties and problems have led to the emergence of a new area called network science, which presents 
a unified approach to networks across diverse dom
particularly to distinguish the new area from its far older mathematical counterpart, namely graph theory.   While 
graph theory presents a rich language to speak of networks rigorously, network science probes what actual 
properties and dynamics tends to arise, given a domain, or across domains.  It is clear that a network scientist must 
be well-versed in the language of graph theory to make rigorous statements.  However, network science also 
provides the graph theorist with a plethora of more relevant questions and problems to answer.  Therefore, that there 
should be a healthy feedback between these two areas is clear.  And, yet, as we shall soon express, not only have 
major discrepancies arisen already, but other gaps continue to exist.  The aforementioned major discrepancy 
concerns the seeming ubiquity of scale-free degree distributions in many networks, a particular preferential 
attachment (PA) model known to generate such degree distributions, and the resilience or lack-thereof in such PA 
scale-free networks.  Before proceeding, we must explain some terms. 

When we speak of the structure of any type of network, we are speaking of the graph G = (V, E) that represents 
the network.  The degree of a node v in a network is the number of nodes that v is connected to, that is the number 
of edges involving the node v.  The distribution of node degrees in a network is clearly an important structural 
property of the network.  A network in which all nodes have similar degrees has a homogeneous degree distribution 
whereas a network with clearly variant node degrees has a heterogeneous degree distribution.  An extreme example 
of a high variance, heterogeneous degree distribution is that of a power-law degree distribution, where the frequency 
of nodes with degree d is inversely proportional to dc for a constant c > 1.  A power-law degree distribution is a 
particularly important class of the more general heavy-tailed or scale-free degree distributions, all of which share the 
property of very high variance.  It turns out that, excepting a few notable exceptions (e.g. wireless sensor networks), 
a scale-free degree distribution is another unified property that apparently arises from across these various network 
domains [1, 10, 11, 16]. 

The most popularized model generating scale-free degree distributions is the preferential attachment model: 
Given a small constant integer parameter k, a small initial graph G0, and an ordering of the vertices v0, v1, v2 n, 
consider vertex vt to enter the graph at time t.  Node vt chooses k neighbors to connect to randomly with 
probabilities proportional to the existing in-degrees of the nodes v0, v1, v2 t-1 (normalized by the total 
indegrees).  Thus, a node with more incoming neighbors (i.e. higher degree) after time t-1 will have a higher 

-free 
distributions.  However, it should be noted that preferential attachment is not the only type of dynamic that yields 
scale-free degree distributions.  Indeed, one may obtain a random scale-free graph by first generating the degree 
distribution d0, d1, d2 n according to a power-law generator, and then allowing a node vi to choose its di 
neighbors randomly. 

Although both PA scale-free graphs and random scale-free graphs may share the same degree distributions, they 
differ according to other structural properties.  And, it should be noted that there are many other mechanisms by 
which scale-free networks may arise.  Nonetheless, the preferential attachment dynamics of generating a scale-free 
distribution was popularized and put forward by a series of papers as the mechanism under which complex networks 
emerge [1, 2, 7, 14, 16].  And, such assumption led to a very popular work [1] which claimed that the Internet is 
robust against random attacks but highly fragile to targeted attacks; in other words, that the Internet exhibits an 

 a highly oppositional response [7] which challenged a 
number of assumptions of [1], from the inherent bias of degree data obtained via traceroute methods, to the PA 
model that is assumed to have generated the network.  That, and subsequent works noted that different scale-free 
graphs can have different resilience properties, and that there is a lack of evidence in claiming that the Internet is 
PA.  Although the problem of trace-route bias was also noted to open the question of whether the internet is scale-
free at all, other evidence and subsequent work even by original critics of the PA scale-free hypothesis indicate that 
the scale-free model remains highly relevant in explaining and modeling network structure [2].  This leads us to our 
main question, which is how to characterize the robustness of scale-free networks, under various forms of attack, 
and for various generative models of such networks.  We stress that the node-based resilience notion that we 
formulate will not only be applicable to scale-free networks, but to any network susceptible to node attacks.  
However, our formulation is particularly relevant for heterogeneous degree networks such as scale-free networks. 
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2. Existing Mathematical Characterizations of Network Robustness 

There are existent, well-

ratio |Cut(S, V-S)|/|S|, taken over all (non-majority) subsets S of the vertex set V, where |Cut(S, V-S)| is the size of 
the cut-edges separating S from the remainder of the graph V-S.  In other words, it is a worst-case measure of the 

large region of the graph: If more edges 
are required to be cut in order to cause a significant disconnection to the graphs, then the graph is more resilient and 
has a correspondingly higher conductance.  Formally, due to the beautiful relationship between the mixing time of 
random walks on graphs and the edge-based resilience of graphs, the notion of conductance  can be expressed 
more generally for any graph G =(V, E) as follows [6, 17]: 

 
Conductance of a Markov Chain: S, V-  
 

v in S  of a random walk 
(more generally, for a Markov chain) on G, and Q(S, V-S) =  e in Cut(S, V-S) Q(e)  is the sum of the edge-crossing 

-S).  These random walk based notions correspond 
more directly to resilience based notions when considering the natural random walk for undirected graphs, and in 
that situation note th v/(2|E|) and P(v, u) = 1/dv where is the degree of v.  We call the 
matrix P in such case the normalized adjacency matrix of G.  Therefore, we may obtain the following simplification: 

 
Conductance of a graph: G G (S) o G (S) = |Cut(S, V-S)|/( v in S dv) 
 
Note that the further simplification that results in the case of d-regular graphs, wherein d = dv for all v, yields the 

earlier combinatorial characterization of conductance |Cut(S, V-S)|/|S| with an additional normalization factor d.  If 
we wish to use conductance to compare two different regular graphs of the same degree, then we may omit the 
normalization by d.  Whichever way that the measure is used, it is important to note that all such numeric measures 
should be taken comparatively and in context.  In the subject of numeric measures, we must stress the combinatorial 
intractability of directly measuring conductance: An exact method that does not necessitate trying all subsets S of V 
is yet unknown.  However, fortunately, conductance is closely approximable via eigenvalue computation, a fact 
which has been well-known and well-used in the graph theory community [6, 17]: 

 
Theorem on conductance and spectral gap [6, 17]:  
For any undirected graph, G the following inequality holds where largest eigenvalue of P(G): 

2 -    
 

As the first (largest) eigenvalue of P is always 1 when P represents a natural random walk on an undirected 
graph, the quantity 1 - spectral gap.  Spectral gap may also refer to the second smallest 
eigenvalue L of the graph Laplacian [6], which is a transformation on the adjacency matrix of a graph yielding zero 

2 L L 
need not be equal to 1 - 
large graphs and infinite graph families.  For small graphs, it is useful to calculate conductance directly. 

To illustrate conductance of graphs, we first compare identical degree regular graphs with the same number of 
nodes: Figure 1 gives an example of a graph with a good conductance on the left, and an example of a graph with a 
bad conductance on the right, controlling for size and degree as both graphs have 10 nodes and homogeneous degree 

graph at all.  However, in the second graph there is a single edge whose cut disconnects the graph severely, yielding 

edge set.  In homogeneous degree graphs, the critical edge set has a direct mapping to the critical node set as well, 
namely the nodes adjacent to the critical edges whose removal disconnects the graph severely.  Therefore, in 
homogeneous degree graphs, the property of having high conductance does map directly to being resilient against 
attacks. 
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Fi e in the middle 
whose removal disconnects the graph.  Both are 3-regular graphs on 10 nodes. 

However, the story changes drastically for non-homogeneous degree graphs.  Consider now Figure 2, a 10 vertex 
graph with highly variant degree distribution in which the center node has degree 9 whereas every other node has 
degree 1.  As this graph also happens to be a tree, let us refer to the center node as the root and all the other degree 1 
nodes as leaves.  Cutting any edge results in only disconnecting its adjacent leaf from the remaining graph.  
Therefore, to disconnect x nodes from the remaining graph, x edges must be cut, yielding a quite high measure of 
resilience, numerically 1, if we were to apply the conductance measure stated above.  However, an attack against a 
single node, namely the root, disconnects the entire graph.  Thus, it is clear that the discrepancy arises in the 
consideration of edge failures versus node failures.  Conductance captures resilience under a model of edge failures, 
and this also happens to coincide with a measure of resilience under node failures when the graph has a 
homogeneous degree distribution.  But, as our example shows, conductance no longer captures resilience under a 
model of node failures when the graph is highly heterogeneous, and in particular scale free.  In fact, theoretical work 
on the conductance of scale-free networks has shown that PA scale free networks exhibit maximal conductance [14] 
whereas random scale-free networks exhibit excellent though non-maximal conductance [13].  As the vulnerability 
of PA scale-free networks to targeted attacks is known [1], these are further indications that conductance does not 
fully capture resilience for scale-free networks under models of both edge and node attacks.  In fact, perhaps, the 
scale-free graph family is extremal in its gap between edge-based resilience as measured via conductance and node-
based resilience.  As edge-based resilience is a well-studied theoretical problem, we wish to bridge this gap by 
establishing a theoretically sound framework for node-based resilience. 

 

 
 

Fig. 2. A highly non-homogeneous degree graph: Any type of edge attack does proportionally little damage to the network, but a node attack 
targeting the root disconnects the network completely.. 
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3. Our Proposed Mathematical characterization 

What we really wish to measure is the following function: 
 
s(G) = min {over all subsets S of V} |S|/|V-S-Cmax| 
 

where Cmax is the largest connected component that remains in the graph G(V  S) (which is the remaining graph 
after the removal of S).  Our measure s(G) is new to our knowledge, and yet also consistent with the combinatorial 
notion of conductance applied to node cuts rather than edge cuts.  As an illustration, similarly to conductance for 
homogeneous degree graphs, s(G) would be 1/4 in the bad-conductance example at the right of Figure 1 and greater 
than 1/3 in the good-conductance example at the left of the same figure.  However, unlike conductance, s(g) would 
be only 1/8 for the scale-free graph of Figure 2,  better capturing the criticality of the central node.  We are the first 
to propose the function s(G) as the appropriate measure of capturing node-based resilience of general networks. 
 
Resilience and s(G): Suppose that an attack against a subset S of nodes occurred.  What is the level of 

mergence of 
connectivity from an initially disconnected network, one considers the growth of the size of the largest connected 
component.  Therefore, naturally, larger Cmax should correspond to better node-conductance given the same size of 
attacked set |S|.  But if a small number of nodes |S| is sufficient to result in a small Cmax, then that is a network that is 
not resilient against node attacks.  Both extremal situations are captured by s(G).  Moreover, we wanted a measure 
that is consistent with -regular graphs.  Note that the numerator Cut(S, V-S) in the 

 can naturally represent attacked link whose removal has disconnected some subset S from 
the remaining graph, and the level of disconnectedness (as measured via the denominator and controlling for same 
number of edge- -case 
disconnectedness.  Note that a big difference between edge-attacks and node-attacks is that attacking a single edge 
can create (detach) at most one new component whereas attacking one node can create several new components. 
 
Attempts and future work: Unfortunately, it is unclear how to exactly compute s(G) without considering all 
possible subsets of vertices, yielding an intractable (NP-Hard) problem.  Simulations on up to 10 nodes already 
require hours just to compute s(G).  However, the meager results thus far confirm similarity of s and 
regular graphs.  Recall that while conductance suffers the same intractability problem, conductance is well-
approximable with eigenvalues [6, 17].  Attempts at constructing a transformation of the normalized adjacency 
matrix in such a way that the linear algebraic machinery similar to that used towards conductance has proven 
unsuccessful in getting away from edge-based notions, and certainly is not yield information on the value Cmax.   We 
have also considered the notion of vertex expansion and vertex separators [12] which are more related to our work 
than conductance but also more inapproximable than conductance.  Moreover, vertex expansion does not tightly 
bound s(G) despite the relationship.  In any case, because meaningful scale-free network require large number of 
nodes, approximations of s(G) must be formulated.  We consider the most important directions in this regard to be 
consideration of betweenness centrality properties [15], as it is clear that for the case of a single node attack an 
attacker would benefit most by attacking a high-betweenness node.  A problem in generalizing this case to multi-
node attacks arises because the sum total betweenness of a set of nodes no longer corresponds to their group 
betweenness, and we do not wish to calculate group betweenness for all possible groups as that returns us to an 
intractable approach.   Therefore, what is most crucial is measuring and using the statistical properties of scale-free 
generative models, and using such statistical properties both as parameters to guide an approximation heuristic for 
s(G) and as ways of stochastically bounding s(G) for the model in question so that we may compare different 
generative models of scale-free networks using the appropriate node-based resilience measures.  In our ongoing and 
future work, we attempt to discover methods of approximating s(G) and, particularly, providing statistical bounds 
for the measure for scale-free models.   
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