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Abstract

Recently, Arnold's St and J� invariants of generic planar curves have been generalized to the case of
generic planar wave fronts. We generalize these invariants to the case of wave fronts on an arbitrary surface
F. All invariants satisfying the axioms which naturally generalize the axioms used by Arnold are explicitly
described. We also give an explicit formula for the "nest order one J�-type invariant of fronts on an
orientable surface FOS�. We obtain necessary and su$cient conditions for an invariant of nongeneric fronts
with one nongeneric singular point to be the Vassiliev-type derivative of an invariant of generic fronts. As
a byproduct, we calculate all homotopy groups of the space of Legendrian immersions of S� into the
spherical cotangent bundle of a surface. � 2001 Published by Elsevier Science Ltd.

By a surface we mean a smooth two-dimensional Riemannian manifold possibly with a bound-
ary. The codimensions of all strata are calculated with respect to the space of all fronts.

1. Introduction

Consider an initially smooth closed generic wave front ¸ propagating on a surface F. If the
matter forming the surface is uniform and isotropic, then at each moment of time the propagating
front forms an equidistant of ¸, i.e. the family of points of geodesics normal to ¸ located at the same
distance from ¸. The propagating wave front is in general not smooth and has semicubical cusp
points as its singularities, see Fig. 1. During the propagation there are instances when the front has
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Fig. 1.

Fig. 2.

nongeneric singularities. The singularities arising during the propagation of a generic wave front
are a triple point, a cusp crossing a branch, a point of degree 4/3 (this is a moment of birth of two
cusp points), and a self-tangency point at which the two tangent branches propagate in opposite
directions, see Fig. 2. The self-tangency point at which the branches are propagating in the same
direction does not occur for the simple physical reason that if it appears on the front, then the two
branches stay tangent during the whole propagation process and hence were tangent on the initial
front.

A line tangent to a front has a natural coorientation (transversal orientation) given by the
direction of propagation of the front. A front ¸ can be naturally lifted to a curve l in the spherical
cotangent bundle S¹HF of F. (A point of the front is mapped to the point in S¹HF corresponding to
a functional which is zero on the line tangent to the front at the point and positive in the
coorienting half-plane of the tangent plane.)

The space S¹HF has a natural contact structure given by the distribution of hyperplanes. The
Huygens principle implies that at each moment of time the lifting of an initially smooth wave front
is a smooth knot which is everywhere tangent to the distribution of contact hyperplanes, i.e. it is
a Legendrian knot in S¹HF. Since it never happens that two points of the wave front coincide and
have the same direction of propagation, we see that the propagation of the front induces an isotopy
of the Legendrian knot. In particular, wave fronts corresponding to nonisotopic Legendrian knots
cannot be obtained from each other under the propagation. These observations make the study of
Legendrian curves in S¹HF started by V. Arnold a very attractive subject.
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We consider the space of Legendrian immersed curves in S¹HF. A front of a Legendrian
immersed curve in S¹HF is its projection to F equipped with the natural coorientation and
orientation. (The Legendrian immersed curve is uniquely determined by its front.) A front ¸ is
called generic if its only singularities are transversal double points and semicubical cusp points.
Nongeneric fronts form a discriminant in the space L of all fronts. We consider four codimension
one strata of the discriminant. They are formed by fronts with a triple point (triple point stratum);
fronts with a cusp point crossing a branch of the front (cusp crossing stratum); fronts with
a self-tangency point at which the coorienting normals of the two branches are pointing to the same
direction (dangerous self-tangency stratum); and fronts with a self-tangency point at which the
coorienting normals of the two branches are pointing to the opposite directions (safe self-tangency
stratum).

A sign is associated to a generic crossing of each of these strata. In [3] Arnold constructed
J� and J� invariants of generic fronts on ��. They increase by a constant under a positive crossing
of, respectively, dangerous and safe self-tangency strata and do not change under crossings of all
other codimension one strata of the discriminant. Aicardi [1] and Polyak [15] independently
constructed an invariant that increases, respectively, by a constant and by one-half of the constant
under a positive crossing of triple point and cusp crossing strata and does not change under
crossings of all other codimension one strata of the discriminant. Aicardi denoted this invariant by
Sp and Polyak by St�. The normalizations they used for this invariant are di!erent, namely
Sp"4St�. (In this paper I use Polyak's de"nition for the invariant.) These invariants are natural
generalizations of Arnold's [4] J�, J�, and St invariants of generic immersions of S� to ��. They
give a lower bound for the number of crossings of the corresponding parts of the discriminant that
are necessary to transform one generic front on �� to another. J� seems to be the most interesting
of the three invariants because, as it was explained above, it corresponds to an isotopy invariant of
Legendrian knots.

In this paper we construct generalizations of these invariants to the case where F is any surface
(not necessarily ��). We follow an approach similar to the one that we used in [17,19,21] to
generalize Arnold's invariants of generic immersions of S� to �� to the case of generic immersions
of S� to an arbitrary surface F. (Results similar to those of [17,19,21] were independently obtained
by Inshakov [10}12]).

The fact that for most surfaces the fundamental group is nontrivial allows us to decompose in
a natural way each of the four strata of the discriminant into pieces. To generalize the J� invariant
we take an integer-valued function � on the set of pieces obtained from the dangerous self-tangency
stratum and try to construct an invariant that increases by �(P) under a positive crossing of a piece
P of this stratum and does not change under crossings of the other codimension one strata. In an
obvious sense, � is a derivative of such an invariant and the invariant is an integral of �. Any
integrable (in the sense above) function � de"nes this kind of an invariant up to an additive
constant. Similar constructions generalize J� and St�.

We introduce a condition on � which is necessary and su$cient for the existence of such
invariants. If the surface is orientable, then the conditions that correspond to the generalizations of
J� and J� are automatically satis"ed, and such an invariant exists for any function �. For the
generalization of St� the condition is not trivial. We reduce it to a simple condition on � which is
su$cient for the existence of such an invariant. All these conditions are automatically satis"ed in
the case of orientation-reversing fronts. We also get a very general statement giving necessary and
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su$cient conditions for an invariant of nongeneric fronts with one singular point (of codimension
one) to be a derivative of an invariant of generic fronts.

The pieces into which the dangerous self-tangency stratum is decomposed are in a natural
one-to-one correspondence with the connected components arising under the normalization of the
part of the discriminant containing dangerous self-tangency points. This means that any order one
invariant of the J�-type can be obtained as an integral of some �. Analogous facts are true for our
decompositions of triple point and safe self-tangency strata, provided that the surface F is
orientable. We introduce a "ner way to subdivide the strata into pieces to obtain a similar result for
nonorientable surfaces.

We give an explicit formula for an order one J�-type invariant of fronts on orientable surfaces.
For FOS� this invariant is the "nest order one J�-type invariant and it distinguishes every two
fronts that one can distinguish using order one J�-type invariants with values in an Abelian group.

The proofs of the main theorems are based on certain properties of �
�
(L). As a byproduct result

we explicitly calculate all the homotopy groups of L or, which is the same, of the space of
Legendrian immersions of S� into S¹HF.

2. Invariants of planar fronts

2.1. Basic facts and dexnitions

A coorientation of a smooth hypersurface in a functional space is a local choice of one of the two
parts separated by this hypersurface in a neighborhood of any of its points. This part is called positive.

A contact element on the manifold is a hyperplane in the tangent space to the manifold at a point.
For a surface F we denote by S¹HF the space of all cooriented (transversally oriented) contact
elements of F. This space is a spherical cotangent bundle of F. Its natural contact structure is
a distribution of tangent hyperplanes given by a condition that a velocity vector of an incidence
point of a contact element belongs to the element. The Riemannian structure on F allows us to
identify S¹HF with the spherical tangent bundle S¹F of F. We denote by CS¹F the space of
directions in the planes of the contact structure of the manifold S¹F. (One can show that if F is
orientable, then CS¹F"S¹F�S�. For nonorientable F the "berwise projectivization PCS¹F of
CS¹F is isomorphic to S¹F�S�.)

A Legendrian curve l in S¹F is a smooth immersion of an oriented circle to S¹F such that the
velocity vector of l at every point lies in the plane of the contact structure. We denote by M the
space of all Legendrian curves in S¹F.

The h-principle proved for the Legendrian curves by Gromov [8] says that M is weak homotopy
equivalent to the space �CS¹F of all free loops in CS¹F. The equivalence is given by
h :MP�CS¹F that sends a point on S� (parameterizing a Legendrian curve) to the direction of
the velocity vector of the curve at the point. The connected components of M admit a rather simple
description. They are naturally identi"ed with the connected components of �CS¹F or, which is
the same, with the conjugacy classes of �

�
(CS¹F).

We denote by f
�
3�

�
(CS¹F) and by f

�
3�

�
(S¹F) the classes of oriented "bers of the natural

S�-"brations pr� : CS¹FPS¹F and pr� : S¹FPF. We denote by pr�
H

and pr�
H

the homomor-
phisms of the fundamental groups induced by the "brations.
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Fig. 3.

For a Legendrian curve l we denote by ¸ the corresponding wave front, which is the naturally
cooriented and oriented projection of l to F. A wave front on F can be naturally lifted to the
Legendrian curve in S¹F by mapping a point of it to the direction of the coorienting normal at the
point. We denote by L the space of all fronts on F. (Note that the spaces L and M are naturally
homeomorphic.)

A front ¸ on a surface F is said to be orientation-preserving if it represents an orientation-
preserving loop in F, and it is said to be orientation-reversing otherwise.

A generic wave front has only transversal double points and semicubical cusp points as its
singularities. The nongeneric fronts form a discriminant in L.

2.1.1. Theorem (Arnold [5]). The codimension one strata of the discriminant of L are formed by
fronts with one nongeneric singular point which is of one of the following types (see Fig. 2):

(1) A singular point of degree �
�
. (This is a moment of birth of two cusps.) This stratum is denoted by

� and is called the cusp birth stratum.
(2) A self-tangency point of order one of a front. This stratum is denoted by K and is called the

self-tangency stratum.
(3) A cusp point of a front passing through a branch. (Here it is assumed that the line tangent to the

front at the cusp point is transverse to the branch.) This stratum is denoted by � and is called the cusp
crossing stratum.

(4) A triple point of a front with pairwise transverse tangent lines at it. This stratum is denoted by
¹ and is called the triple point stratum.

2.1.2. Whitney and Maslov indices. The Whitney index of a planar wave front is the total rotation
number of the coorienting normal vector of the front. The Maslov index of a generic planar wave
front is the di!erence between the number of positive and negative cusps. A cusp is said to be
positive if the branch of the front going away from the cusp belongs to the coorienting half-plane,
see Fig. 3. A cusp is said to be negative otherwise.

Whitney and Maslov indices of a front ¸ are denoted by �(¸) and �(¸), respectively. Both these
indices do not change under a regular homotopy of a front, which is the projection of a homotopy in
the class of Legendrian immersed curves in S¹��. (Note that the Maslov index of a front on an
arbitrary surface F is well de"ned.)

The following theorem can be found in [3].
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Fig. 4.

2.1.3. Theorem. Two planar wave fronts ¸
�
and ¸

�
can be transformed to each other by a regular

homotopy if and only if �(¸
�
)"�(¸

�
) and �(¸

�
)"�(¸

�
).

2.2. Invariants J�, J�, and St

2.2.1. De5nition (The sign of a crossing of the K-stratum, Arnold [5]). A self-tangency of a front is
called direct if the velocity vectors of the two tangent branches have the same direction. A self-
tangency is called inverse otherwise. The K-stratum is decomposed into direct self-tangency and
inverse self-tangency parts.

A transversal crossing of the direct self-tangency part of the K-stratum is said to be positive if it
increases (by two) the number of the double points of the front. It is called negative otherwise.
A transversal crossing of the inverse self-tangency part of the K-stratum is said to be positive if it
decreases (by two) the number of the double points of the front. It is called negative otherwise.

2.2.2. De5nition (K�- and K�-strata, Arnold [5]). A self-tangency of a wave front is said to be
dangerous if the coorientations of the tangent branches coincide, and it is said to be safe otherwise.
(A front with a point of dangerous self-tangency lifts to a Legendrian knot with a double point.)
This relation induces a decomposition of the K-stratum into the strata K� and K� of, respectively,
dangerous and safe self-tangencies.

2.2.3. De5nition (The sign of the T-stratum crossing, Arnold [4]). A vanishing triangle is the triangle
formed by the three branches of the front corresponding to a subcritical or to a supercritical value
of the parameter near the triple point of the critical front. The orientation of the front de"nes the
cyclic order on the sides of the vanishing triangle. (It is the order of the visits of the triple point by
the three branches.) Hence the sides of the triangle acquire orientations induced by the ordering.
But each side has also its own orientation which may coincide or not with the orientation de"ned
by the ordering. For a vanishing triangle we put q3�0,1,2,3� to be the number of sides of it that are
equally oriented by the ordering and their direction. The sign of the vanishing triangle is (!1)�. The
sign of a transversal crossing of the ¹-stratum is put to be the sign of the new born vanishing
triangle.

2.2.4. De5nition (The sign of a crossing of the �-stratum). To de"ne a sign of a transversal crossing
of the �-stratum shown in Fig. 4a, we substitute a cusp by a "gure eight shape with a cusp on it.
The sign of the crossing of the �-stratum is put to be the sign of the new-born vanishing triangle
shown in Fig. 4b., cf. [1,15]. (A similar way of de"ning the sign was suggested by Polyak [16].)
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Fig. 5.

2.2.5. Theorem (Aicardi [1], Arnold [3] and Polyak [15]). There exist three numbers St�(¸), J�(¸),
and J�(¸) assigned to a generic planar front ¸ which are uniquely dexned by the following properties:

1. St�(¸), J�(¸), and J�(¸) are invariant under a regular homotopy in the class of generic fronts.
2. St�(¸) does not change under crossings of K�- and �-strata. It increases by one and by �

�
under

positive crossings of, respectively, ¹- and �-strata.
3. J�(¸) does not change under crossings of ¹- , �- , �- , and K�-strata, and it increases by two

under a positive crossing of the K�-stratum.
4. J�(¸) does not change under crossings of ¹- , �- , �- , and K�-strata, and it increases by two

under a positive crossing of the K�-stratum.
5. On the standard fronts K���

(see Fig. 5) St�(¸), J�(¸), and J�(¸) take the following values
(independent of the choice of orientation and coorientation of the standard fronts):

St�(K
���

)"
k
2

, St'(K�����
)"�#

k
2

(�"0,1,2,2), (1)

J�(K
���

)"!k, J�(K�����
)"!2�!k (�"0,1,2,2), (2)

J�(K
���

)"!1, J�(K�����
)"!3� (�"0,1,2,2), (3)

where k"0,1,2,2 .

These values of the invariants on the standard fronts are chosen to make the invariants additive
under a certain connected summation of fronts and independent of the choice of orientation and
coorientation of the fronts.

3. Invariants of fronts on orientable surfaces

3.1. Natural decomposition of the K�-stratum

3.1.1. Let B
�

be a bouquet of two oriented circles and b its base point. Let ¸3K� be a front with
a dangerous self-tangency point q. It can be lifted to the mapping M̧ : S�PS¹F that sends p3S� to
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the point in S¹F corresponding to the direction of the coorienting normal of ¸ at ¸(p). (Note that
q lifts to a double point q� of M̧ .)

Let 	 : S�PB
�

be a continuous mapping such that

(a) 	( M̧ ��(q� ))"b;
(b) 	 is injective on the complement of M̧ ��(q� );
(c) The orientation of B

�

b induced by 	 coincides with the orientation of the circles of B

�
.

The mapping � : B
�
PS¹F such that M̧ "��	 is called an associated with ¸ mapping of B

�
.

(Note that the free homotopy class of a mapping of B
�

to S¹F realized by � is well de"ned modulo
the orientation-preserving automorphism of B

�
interchanging the circles.)

3.1.2. De5nition (K�-Equivalence). We say that ¸
�
3K� and ¸

�
3K� are K�-equivalent if there

exist mappings of B
�

associated with the two of them that are free homotopic. This equivalence
relation induces a decomposition of the K�-stratum into parts corresponding to di!erent K�-
equivalence classes. We denote by [¸�] the K�-equivalence class corresponding to ¸3K� and by
K� the set of all K�-equivalence classes.

3.2. Axiomatic description of J�

A natural way to introduce J�-type invariant of generic wave fronts on a surface F is to take
a function � :K�P� and to try to construct an invariant of generic fronts from a "xed connected
component C of the space L (of all fronts on F) such that:

1. It increases by �([¸�]) under the positive crossing of the part of the K�-stratum that
corresponds to a K�-equivalence class [¸�].

2. It does not change under crossings of K�- , ¹- , �- , and �-strata of the discriminant.

If for a given function �:K�P� there exists such an invariant of wave fronts from C, then we
say that there exists a J� invariant of fronts from C that integrates �. Such � is said to be
J�-integrable in C.

3.2.1. Theorem. Let F be an orientable surface, C a connected component of L, and �:K�P�

a function. Then there exists a unique (up to an additive constant) invariant J� of generic fronts from
C which integrates �.

The proof of this theorem (see Section 9) is based on Theorem 4.2.1.
Thus for orientable F every � :K�P� is integrable in all connected components of L.

However if F is nonorientable, then such an invariant exists not for all functions �. In Theorem
4.2.1 we present a condition on � which is necessary and su$cient for it to be J�-integrable in
a "xed connected component of L.
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3.2.2. Remark. Most likely the proof of Theorem 3.2.1 in the case of lO13�
�
(S¹F) can be

obtained as a consequence of a version of Kalfagianni's [13, Theorem 3.7] for framed knots (if one
formulates and proves this version). Similar remark holds for the J� invariant of fronts on
orientable surfaces, see Theorem 3.4.1, and for the part of statement I of Theorem 4.2.1 which is
related to J� invariants. Other statements of Theorem 4.2.1 about J� invariants can not be
obtained in this way. Statements of Theorems 3.6.1 and 4.2.1 about the existence of St� invariants
also can not be obtained in this way.

3.2.3. Connection with the standard J�- invariant. Since �
�
(S¹��)"�, there are countably many

K�-equivalence classes of nongeneric planar fronts of "xed Whitney and Maslov indices. (The
Whitney and Maslov indices of a planar front ¸ de"ne the connected component of the space of
planar fronts containing ¸.) Thus the construction of J� gives rise to a splitting of the standard
J� invariant of V. Arnold. This is the splitting introduced by Arnold [5] in the case of planar fronts
of the zero Whitney index and generalized to the case of arbitrary planar fronts by Aicardi [2].

3.3. Natural decomposition of the K�-stratum

3.3.1. Let B
�

be a bouquet of two oriented circles and b its base point. Let ¸3K� be a front with
a safe self-tangency point q. It can be lifted to the mapping M̧ from the oriented circle to P¹F (the
projectivized tangent bundle of F) which sends p3S� to the point in P¹F corresponding to the line
normal to ¸ at ¸(p). (Note that q lifts to a double point q� of M̧ .)

Let 	 : S�PB
�

be a continuous mapping such that

(a) 	( M̧ ��(q� ))"b;
(b) 	 is injective on the complement of M̧ ��(q� );
(c) The orientation of B

�

b induced by 	 coincides with the orientation of the circles of B

�
.

The mapping � : B
�
PP¹F such that M̧ "��	 is called an associated with ¸ mapping of B

�
.

(Note that the free homotopy class of a mapping of B
�

to P¹F realized by � is well-de"ned modulo
the orientation-preserving automorphism of B

�
interchanging the circles.)

3.3.2. De5nition (K�-Equivalence). We say that ¸
�
3K� and ¸

�
3K� are K�-equivalent if there

exist associated with the two of them mappings of B
�

that are free homotopic. The K�-stratum is
naturally decomposed into parts corresponding to di!erent K�-equivalence classes. We denote by
[¸�] the K�-equivalence class corresponding to ¸3K� and by K� the set of all K�-equivalence
classes.

3.4. Axiomatic description of J�

A natural way to introduce J�-type invariant of generic fronts on a surface F is to take a function
� :K�P� and to try to construct an invariant of generic wave fronts from a "xed connected
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component C of L such that

1. it increases by �([¸�]) under a positive crossing of the part of the K�- stratum corresponding
to a K�-equivalence class [¸�],

2. it does not change under crossings of K�- , ¹- , �- , and �-strata of the discriminant.

If for a given function � :K�P� there exists such an invariant of wave fronts from C, then we
say that there exists a J� invariant of fronts in C which integrates �. Such � is said to be
J�-integrable in C.

3.4.1. Theorem. Let F be an orientable surface, C a connected component of L, and � :K�P�

a function. Then there exists a unique (up to an additive constant) invariant J� of generic fronts from
C which integrates �.

The Proof of this Theorem is analogous to the Proof of Theorem 3.2.1 (see Section 9) and is based
on Theorem 4.2.1 (see also 3.2.2).

Thus for orientable F every � :K�P� is integrable in all connected components of
L. However, if F is nonorientable, then such an invariant exists not for all functions �. In
Theorem 4.2.1 we present a condition on � which is necessary and su$cient for it to be
J�-integrable in a "xed connected component of L.

3.4.2. Connection with the standard J! -invariant. Since �
�
(P¹��)"�, there are countably many

K�-equivalence classes of nongeneric wave fronts on �� of the "xed Whitney and Maslov indices.
(Whitney and Maslov indices of a planar front ¸ defne the connected component of the space of
planar fronts containing ¸.) Thus the construction of J� gives rise to a splitting of the standard
J� invariant of Arnold. This splitting is analogous to the splitting of J� introduced by Arnold [5]
in the case of planar fronts of the zero Whitney index and generalized to the case of arbitrary planar
wave fronts by Aicardi [2].

3.5. Natural decomposition of ¹- and �-strata

3.5.1. Let B
�

be a bouquet of three oriented circles with a "xed cyclic order on the set of them, and
let b be the base point of B

�
. Let ¸3¹ be a front on F with a triple point q.

Let 	 : S�PB
�

be a continuous mapping such that:

(a) 	(¸��(q))"b;
(b) 	 is injective on the complement of ¸��(q);
(c) The orientation induced by 	 on B

�

b coincides with the orientation of the circles of B

�
;

(d) The cyclic order induced on the set of circles of B
�

by traversing 	(S�) according to the
orientation of S� coincides with the "xed one.

The mapping � :B
�
PF such that ¸"��	 is called an associated with ¸ mapping of B

�
. (Note

that the free homotopy class of the mapping of B
�

to F realized by � is well-defned modulo an
automorphism of B

�
that preserves the orientation and the cyclic order of the circles.)
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3.5.2. De5nition (¹-Equivalence). We say that ¸
�
3¹ and ¸

�
3¹ are ¹-equivalent if there exist

associated with them mappings of B
�

which are free homotopic. The ¹-stratum is naturally
decomposed into parts corresponding to di!erent ¹-equivalence classes. Amazingly enough, the
¹-equivalence relation induces also a subdivision of the �-stratum of the discriminant. To see it,
one substitutes the cusp on ¸3� by a small "gure eight shape with a cusp on it (see Fig. 4). As
a result of this operation ¸3� changes to a front ¸�3¹. (Note that ¸ and ¸� belong to the same
component of L.) We take the ¹-equivalence class of the front ¸ to be the ¹-equivalence class of
the front ¸�. We denote by [¸] the ¹-equivalence class corresponding to ¸3¹ or to ¸3� and by
T the set of all ¹-equivalence classes.

3.6. Axiomatic description of St�

A natural way to introduce St�-type invariants of generic wave fronts on F is to take � :TP�

and to try to construct an invariant of generic wave fronts from a "xed connected component C of
the space L (of all fronts on F) such that

1. it does not change under crossings of K�- and �-strata,
2. it increases by �([¸]) under a positive crossing of the part of the ¹-stratum that corresponds

to a ¹-equivalence class [¸],
3. it increases by �

�
�([¸]) under a positive crossing of the part of the �-stratum that corresponds

to a ¹-equivalence class [¸]. (As it is explained in Remark 8.1.3, one cannot substitute �
�

by another
constant and construct an invariant of this sort, unless � is put to be identically zero on all
¹-equivalence classes appearing on the �-stratum.)

If for a given function � :TP� there exists such an invariant of wave fronts from C, then we say
that there exists a St� invariant of fronts from C which integrates �. Such � is said to be
St�-integrable in C.

Not all functions � are integrable. In Theorem 4.2.1 we present a condition on � which is
necessary and su$cient for it to be integrable. In the case of orientable F there is a simple condition
which is su$cient for the integrability of �.

3.6.1. Theorem. Let F be an orientable surface, C a connected component of L, and �:TP�

a function taking equal values on any two ¹-equivalence classes such that

(a) the free homotopy classes of the mappings of B
�

representing them are diwerent by an
orientation-preserving automorphism of B

�
which changes the cyclic order of the circles;

(b) the restrictions of the mappings representing these classes to one of the circles of B
�
are

homotopic to a trivial loop.
Then there exists a unique (up to an additive constant) invariant St� of generic wave fronts from

C which integrates �.

The proof of this theorem is analogous to the proof of Theorem 3.2.1 (see Section 9) and is based
on Theorem 4.2.1 (cf. Remark 3.2.2).

Note, that if F is orientable, then a function � :TP� described in Theorem 3.6.1 is integrable in
all connected components of L.
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In Section 4.2.1 we present a condition on � which is necessary and su$cient for it to be
St�-integrable in a "xed connected component of L.

3.6.2. Connection with the standard St�-invariant. Since �� is simply connected, there is just one
¹-equivalence class of nongeneric wave fronts on ��. Thus the construction of St� does not give
anything new in the classical case of planar wave fronts.

4. Necessary and su7cient conditions for the integrability of functions

4.1. Obstructions for the integrability

Let � :TP� be a function, and let � be a generic loop in a connected component C of L. Let
I
�

and I
�

be the sets of moments when � crosses, respectively, ¹- and �-strata. Let ��
�
�
����

and
��

�
�
����

be the signs of the corresponding crossings of the strata, and let �s
�
�
����

and �s
�
�
����

be the
¹-equivalence classes corresponding to the parts of the strata where the crossings occurred. We call

�
	�


(�)" �
����

�
�
�(s

�
)# �

����

�
�

1
2

�(s
�
), (4)

the change of St� along �. If �
	�


(�)"0, then � is said to be integrable along �. In a similar way we
introduce the notion of integrability along � for integer-valued functions on K� and on K�. (For
this purpose we use the intersections of � with K�- and K�-strata, respectively.) The changes of J�

and of J� along � are also defned in a similar way. (Using Lemma 8.0.2 and the versions of it for the
J� invariants one can verify that the change along � depends only on the homology class realized
by � in H

�
(L, �).)

Clearly if a function � is integrable in C, then it is integrable along any generic loop �LC. In this
section we describe two loops �

�
and �

�
in C such that integrability along them implies integrability

in C. In a sense, the changes along them are the only obstructions for the integrability. The loop
�
�

is going to be well defned (and needed) only in the case of C consisting of orientation-preserving
fronts on F. The loop �

�
is going to be well defned (and needed) only in the case of F being a Klein

bottle and C consisting of orientation-preserving fronts on it.

4.1.1. Loop �1 . Let C be a connected component of L consisting of orientation-preserving fronts,
and let ¸3C be a generic front. Let �

�
be the loop starting at ¸ which is described below.

Deform ¸ along a generic path t in C to get two opposite kinks, as it shown in Fig. 6. Make the
"rst kink small and slide it along the front till it comes back. We require the deformation to be such
that at each moment of time points of ¸ located outside of a small neighborhood of the kink do not
move. (In Figs. 7 and 8 it is shown how the kink passes through a neighborhood of a double and of
a cusp point.) Finally deform ¸ to its original shape along t��.

4.1.2. Loop �2 . Let ¸ be a generic orientation-preserving front on the Klein bottle K. Let �
�
LC be

the loop starting at ¸ that is constructed below.

12 V. Tchernov / Topology 41 (2002) 1}45



Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Consider K as a quotient of a rectangle modulo the identi"cation on its sides shown in Fig. 9. Let
p be the orientation covering ¹�PK. There is a loop 	 in the space of all autodi!eomorphisms of
¹� which is the sliding of ¹� along the unit vector "eld parallel to the lifting of the curve cLK (see
Fig. 9). Since ¸ is an orientation-preserving front it can be lifted to a front ¸� on ¹�. The loop �

�
is

the composition of p and of the sliding of ¸� induced by 	.
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4.2. Main integrability theorem

Now we are ready to formulate the main integrability theorem.

4.2.1. Theorem. Let F be a surface (not necessarily compact or orientable), C a connected component
of L, and ¸3C a generic front. Let �

�
:TP�, �

�
:K�P� and �

�
:K�P� be functions.

(I) If C consists of orientation-reversing fronts on F, then there exists a St� (resp.J�, resp.J� )
invariant which integrates �

�
(resp. �

�
, resp. �

�
) in C.

(II) If C consists of orientation-preserving fronts and FOK, then the condition that �
�

(resp. �
�
,

resp. �
�
) is integrable along the loop �

�
starting at ¸ is necessary and suzcient for the existence

of a St� (resp. J�, resp.J�) invariant which integrates �
�

(resp. �
�
, resp. �

�
) in C.

(III) If C consists of orientation-preserving fronts and F"K, then the condition that �
�

(resp. �
�
,

resp. �
�
) is integrable along loops �

�
and �

�
starting at ¸ is necessary and suzcient for the

existence of a St� (resp.J�, resp.J�) invariant which integrates �
�

(resp. �
�
, resp. �

�
) in C.

For the proof of Theorem 4.2.1 see Section 8 (cf. also Remark 3.2.2).

4.2.2. Remarks to Theorem 4.2.1. If an invariant from the statement of the theorem exists, then it is
unique up to an additive constant.

The choice of ¸3C does not matter and to check integrability of a given function it is easier to
take ¸3C that already has a small kink. Clearly, all the crossings of the discriminant under the
deformation �

�
of ¸ occur when the kink passes through a neighborhood of a double point or of

a cusp of ¸. It easy to verify that inputs into �(�
�
) of the crossings of the discriminant correspond-

ing to the kink passing through a neighborhood of a cusp occur in pairs and cancel out. A kink
passes through a neighborhood of a double point x twice (once along each of the two intersecting
branches). One can verify that if x separates the front into two orientation-preserving loops, then
the inputs into �

�
�
(�

�
) corresponding to x also cancel out.

A straightforward modi"cation of the proof of Theorem 4.2.1 shows that it holds for �
�
, �

�
, and

�
�

taking values in any torsion free Abelian group.

4.3. A very general integrability theorem

From the proof of Theorem 4.2.1 one can see that for any 	3H
�
(C, �) a certain (nonzero)

multiple of 	 is equal to a sum of a homology class realizable by a loop not crossing the
discriminant and of a linear combination of homology classes realized by �

�
, i3�1,2,3� (see 8.2.12

for the defnition of �
�
). (If �

�
for some i3�1,2,3� is not defned in C, then it does not participate in the

linear combination.) A very important consequence of this is the following very general statement.
Let � be the discriminant in C, G an Abelian group, and  a G-valued invariant of generic fronts

in C, that is a mapping from the set of the connected components of C
� to G. (The condition that
 takes values in an Abelian group is not very restrictive, since  with values in an abstract set S can
be viewed as an invariant taking values in �[S] an Abelian group of abstract "nite integer linear
combinations of the elements of S.)
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The invariant  gives rise to the invariant � of nongeneric fronts with one singular point (which
is singular of codimension one), that is a mapping to G from the set of connected components of
�- , K�- , �- , and ¹-strata. The value of � on a component of a stratum is set to be the di!erence
between the values of  on the positive and negative sides of it. (The positive side of the �-stratum is
the one with more cusps.) In an obvious sense � is a derivative of .

A very natural question is the following (cf. [13]): does a given G-valued function � on the set of
connected components of �- , K�- , �- , and ¹-strata correspond to some  under the construc-
tion above? (Is the integral of � well defned?)

For a generic loop � in C put ��(�)"�
����� sign(x)�(x). Clearly the necessary condition for the

existence of  is that ��(�)"0 for any small generic loop � going around a codimension two
stratum of C (see Theorem 8.1.1 for the list of the strata). We call this condition a local integrability
condition. If the local integrability condition is satis"ed, then the change of ��(�) depends only on
the homology class of the generic loop �. Using the observation above one can easily modify the
proof of Theorem 4.2.1 to get the following very general Theorem.

4.3.1. Theorem. Let G be a torsion free Abelian group, C a connected component of L, and �
aG-valued invariant of nongeneric fronts fromC whose only nongeneric singularity is one codimension
one singular point. Then � is a derivative of an invariant  of generic fronts from C if and only if �
satisxes the local integrability condition and �� (�

�
)"0 for those i3�1,2,3� for which �

�
is well defned

in C.

Potential interesting application of this theorem lie in the theory of Legendrian knots in S¹HF.
The invariants of Legendrian knots correspond to � being identically zero on all the components
of �- , K�- , �- , and ¹-strata. In this case the local integrability condition appears to be very
simple. Using this theorem one can easily obtain the generalizations of other local invariants of
planar fronts studied by Aicardi [1].

5. Singularity theory interpretation of the invariants

The invariants St�, J�, and J� admit a rather simple singularity theory interpretation. Namely,
the set of all K�-equivalence classes appearing on the discriminant in C enumerates the compo-
nents of the normalized dangerous self-tangency part of the discriminant in C. If F is orientable
then similar facts are true for the sets of K�- and ¹-equivalence classes. (See Proposition 5.2.6.)

In this section we introduce "ner versions of equivalence relations to obtain the complete
classi"cation of the components of the four parts of the discriminant arising under the normaliz-
ations described below. (This is done for all F, not necessarily orientable, see Theorem 5.2.5.) We
also formulate the corresponding versions of Theorem 4.2.1.

5.1. Normalizations

Let S�(2) be the con"guration space of unordered pairs of distinct points on S�. Let N� be the
subspace of S�(2)�L consisting of t�¸3S�(2)�L such that ¸ maps the two points from t to one
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point in F and the coorienting normals of ¸ at these two points have the same direction. (This is
a normalization of the part of the discriminant containing points of dangerous self-tangency.)

We say that n�
�

, n�
�

3N� are K�-equivalent if they belong to the same path connected
component of N�. Clearly for ¸3K� there is a unique K�-equivalence class associated with it.
Thus the K�-equivalence relation induces a decomposition of the K�-stratum.

Similarly, we normalize the part of the discriminant containing safe self-tangency (resp. triple)
points and introduce the notion of K�-(resp. ¹M -) equivalence relation of fronts in K� (resp. in ¹).

We consider the following normalization of the closure of the �-stratum. Let N be the closure of
the subspace of S��S��L consisting of t

�
�t

�
�¸ such that t

�
Ot

�
, ¸ has a cusp point at t

�
, and

¸(t
�
)"¸(t

�
). We say that n

�
, n

�
3N are �M -equivalent if they belong to the same path connected

component of N. Clearly, for ¸3� there is a unique �M -equivalence class associated with it. Thus
the �M -equivalence relation induces a decomposition of the �-stratum. We denote by PM the set of all
�M -equivalence classes.

5.1.1. Remark. The reason why we treat cusp crossings di!erently from other codimension one
singularities is that in the neighborhood of two of the codimension two strata of the discriminant
the part of the discriminant containing cusp crossings is not connected. (These strata are �� and
�� in the notation of Theorem 8.1.1, see Fig. 13.) One can verify that the two branches on the
bifurcation diagrams of these singularities corresponding to the �-stratum belong to the same
irreducible real algebraic curve, and hence it is natural to glue together the components of the
�-stratum around these codimension two strata.

5.2. Description of the sets of K�- K�-, ¹M -, and �M -equivalent fronts

In this subsection we state Theorem 5.2.5 which gives an explicit description of the sets of
components of the four parts of the discriminant arising under the normalizations described above.
These components are enumerated by the sets of K�

�
- , K�

�
- , ¹

�
- , and �

�
-equivalence classes

introduced below.
We "x d3S¹F and denote by �

�
(S¹F) and �

�
(P¹F) the groups �

�
(S¹F, d) and �

�
(P¹F, p(d)).

(Here p :S¹FPP¹F is the natural double covering.) The defnitions introduced below are similar
to the ones introduced by Inshakov [10] in the case of immersed curves on a surface. For this
reason we use a subscript i in the notation of the arising equivalence classes.

5.2.1. De5nition (K�
�

-Equivalence). Let R
�

� be the set consisting of all triples (�
�
, �

�
, i)3�

�
(S¹F)�

�
�
(S¹F)�� such that i is even provided that pr�(�

�
�
�
) is an orientation-preserving loop in F and

odd otherwise.

The Legendrian curve l corresponding to ¸3K� has a double point separating it into two
oriented loops. Deform l preserving the double point so that the double point is located at d.
Choosing one of the two loops of l we obtain an ordered set of two elements �

�
, �

�
3�

�
(S¹F). We

also correspond to the front its Maslov index �(¸)3� that is even if and only if l"�
�
�
�

projects to
an orientation-preserving loop in F. Thus we obtain an element of R

�
� corresponding to the

deformed l. There is a unique K�
�

-equivalence class of elements of R
�

� corresponding to the
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undeformed l, where two elements of R
�

� are K�
�

-equivalent if one can be transformed to the other
by the consequent actions of the following groups (which all act trivially on the last summand in
R

�
� ):

1. �
�
(S¹F) whose elements act via conjugation of the "rst two summands in R

�
� . (This

corresponds to the ambiguity in deforming l, so that the double point is located at d.)
2. �

�
which acts via the cyclic permutation of the "rst two summands. (This corresponds to the

ambiguity in the choice of one of the two loops of l.)

The set of all K�
�

-equivalence classes of elements of R
�

� is denoted by K�
�

.

5.2.2. De5nition (K�
�

-Equivalence). Let p :S¹FPP¹F be the natural covering, ��
�

(P¹F)"
p
H

(�
�
(S¹F)), and let ��

�
(P¹F) be a set �

�
(P¹F)
��

�
(P¹F). Let R

�
� be the set of all

(�
�
, �

�
, i)3��

�
(P¹F)���

�
(P¹F)�� such that i is even provided that pr�(�

�
�
�
) is an orientation-

preserving loop in F and odd otherwise.

Let ¸3K� be a front and a3S� one of the two points projecting to the self-tangency point.
Deform l keeping the two preimages of the tangency point opposite to each other in the "ber of
S¹F, so that l(a) is located at d3S¹F. The point p(d) separates p(l) into two closed loops. Thus, we
obtain an ordered set of two elements �

�
, �

�
3�

�
(P¹F) corresponding to the deformed l. (The "rst

element is the projection of the arc of l that has a as its starting point.) Clearly both elements
belong to ��

�
(P¹F). We also correspond to the front its Maslov index �(¸), which is even if and only

if l"�
�
�
�

projects to an orientation-preserving loop in F. Thus we obtain an element of
R

�
�corresponding to the deformed l.
There is a unique K�

�
-equivalence class of elements of R

�
�corresponding to the undeformed l,

where two elements of R
�

� are K�
�

-equivalent if one can be transformed to the other by an action of
the following group (which acts trivially on the last summand in R

�
� ):

The group is the index two subgroup of �
�
(P¹F)��

�
which is (��

�
(P¹F)�0)�(��

�
(P¹F)�1).

The action of the "rst summand of the group is via conjugation of the "rst two summands in
R

�
� and the action of the second summand of the group is via permutation of the "rst two

summands in R
�

� . (The factorization by the action of this group corresponds to the ambiguity in
the choices of one of the two points of S� that project to the selftangency point and in the
deformation of l so that the chosen point is located at d3S¹F.)

The set of all K�
�

-equivalence classes of elements of R
�

� is denoted by K�
�

.

5.2.3. De5nition (¹
�
-Equivalence). Let R

	
be the set consisting of all quadruples (�

�
, �

�
, �

�
, i)3

�
�
(S¹F)��

�
(S¹F)��

�
(S¹F)�� such that i is even provided that pr�(�

�
�
�
�
�
) is an orientation-

preserving loop in F and odd otherwise.

Let ¸3¹ be a front. Deform the lifting l of ¸ in the neighborhood of the "ber of pr� over the
triple point, so that it maps the three preimages of the triple point to one point in S¹F. (This triple
point in S¹F separates l into three cyclicly ordered oriented loops based at this point.) Then
deform the singular knot l (preserving the triple point), so that the triple point is located at d3S¹F.
Choosing which one of the three closed arcs of l is "rst we obtain an ordered set of three elements of
�
�
(S¹F). We also correspond to the front its Maslov index �(¸)3�, which is even if and only if
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l"�
�
�
�
�
�

projects to an orientation preserving loop in F. Thus we obtain an element of
R

	
corresponding to the deformed l. There is a unique ¹

�
-equivalence class of elements of

R
	

corresponding to the undeformed l, where two elements of R
	

are ¹
�
-equivalent if one of them

can be transformed to the other by the consequent action of the following groups (which all act
trivially on the last summand in R

	
):

1. �� whose element (i
�
, i
�
, i
�
) acts on (�

�
, �

�
, �

�
, i)3R

	
by mapping it to ( f ��

�
�
�
f���
�

, f ��
�

�
�
f���
�

,
f ��
�

�
�
f���
�

, i). (This corresponds to the ambiguity in deforming l to a singular knot with a triple
point.)

2. �
�
(S¹F) whose elements act via conjugation of the "rst three summands. (This corresponds to

the ambiguity in deforming a singular knot with a triple point, so that the triple point is at d.)
3. �

�
which acts via the cyclic permutation of the "rst three summands. (This corresponds to the

ambiguity in the choice of the "rst closed arc of l.)

The set of all ¹
�
-equivalence classes of elements of R

	
is denoted by T

�
.

5.2.4. De5nition (�
�
-Equivalence). Let R� be the set consisting of all quadruples

(�
�
, �

�
, j, i)3�

�
(S¹F)��

�
(S¹F)��

�
�� such that i is even provided that pr�(�

�
�
�
) is an orienta-

tion-preserving loop in F and odd otherwise.

Fix a local orientation at pr�(d)3F. Let ¸3� be a front. The direction of rotation of the
coorienting normal at the cusp point x under traversing of a small neighborhood (in ¸) of it along
the orientation of ¸ de"nes a local orientation at x3F. Deform the lifting l of ¸, so that l maps the
two preimages of the cusp crossing point to one point in S¹F. The double point of l separates it
into two oriented loops �

�
, �

�
based at this point. The set of these two loops is ordered by taking

the loop corresponding to the branch of the cusp going away from it as the "rst one. Deform l in
STF (preserving the double point), so that the double point is located at d3S¹F. Transfer the local
orientation at the original location of the cusp along the projection of the path of the double point
of l under the deformation to get the local orientation at pr�(d ). It is an element of �

�
. We also

correspond to ¸ its Maslov index �(¸)3�. Clearly �(¸) is even if and only if pr�(l )"pr�(�
�
�
�
) is an

orientation-preserving loop in F.
Hence we obtain an element of R� corresponding to the deformed l. One veri"es that there is

a unique �
�
-equivalence class of elements of R� associated with the undeformed l, where two

elements of R� are said to be �
�
-equivalent if one of them can be transformed to the other by

a consequent action of the following groups (which all act trivially on the last summand in R�):

1. �� whose element (i
�
, i
�
) acts on (�

�
, �

�
, j, i)3R� by mapping it to ( f ��

�
�
�
f���
�

, f ��
�
�
�
f���
�

, j, i).
(Factorization by this action corresponds to the ambiguity in deforming l to a singular knot with
a double point.)

2. �
�
(S¹F) whose element 	 acts on the "rst two summands by conjugation and acts trivially on

the �
�
-summand if and only if pr�(	) is an orientation-preserving loop in F. (Factorization by this

action corresponds to the ambiguity in deforming a singular knot with a double point, so that the
double point is located at d.)

3. �
�

whose elements act nontrivially only if pr�(�
�
) or pr�(�

�
) is 13�

�
(F), in which case the

action is by permutation of the "rst two summands. (The reason for this factorization is that we
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want to be able to identify the sets of �
�
- and �M -equivalence classes, and one can verify that under

the passage through a point of degree 5/4 along the �-stratum the order of the two loops is
changed, see Fig. 13.)

The set of all �
�
-equivalence classes of elements of R� is denoted by P

�
.

One veri"es that:

1. if ¸
�
, ¸

�
3K� are K�-equivalent, then they are K�

�
-equivalent;

2. if ¸
�
, ¸

�
3K� are K�-equivalent, then they are K�

�
-equivalent;

3. if ¸
�
, ¸

�
3¹ are ¹M -equivalent, then they are ¹

�
-equivalent;

4. if ¸
�
, ¸

�
3� are �M -equivalent, then they are �

�
-equivalent,

and we get mappings �� :K�PK�
�

, �� :K�PK�
�

, � :TM PT
�
, �� :PM PP

�
.

5.2.5. Theorem. The mappings ��, ��, �, and �� are bijective.

For the proof of Theorem 5.2.5 see Section 10.
The connected components of the normalization of the dangerous self-tangency part of the

discriminant in C are in a natural one-to-one correspondence with the set of K�-equivalence
classes of fronts from C. Analogous statement is true for the safe self-tangency and triple point parts
of the discriminant, provided that F is orientable.

Let C be a connected component of L. Let TC , K�C , K�C , TC , K�C , and K�C be the sets of
equivalence classes corresponding to fronts from C. Similarly to the case above we get the
mappings �C :TCPTC , ��C :K�C PK�C , and ��C :K�C PK�C .

5.2.6. Proposition. The mapping ��C is bijective. The mappings ��C and �C are bijective provided that
F is orientable.

For the proof of Proposition 5.2.6 see Section 10.1.
One can construct examples showing that for nonorientable surfaces the mappings ��C and

�C fail to be injective.

5.3. An important generalization of Theorem 4.2.1

We say that an invariant of generic fronts is of J�-type if it changes under crossings of the
K�-stratum and does not change under crossings of the other codimension one strata of the
discriminant. Similarly to 4.3 for such an invariant with values in an Abelian group G we de"ne its
nth derivative, which assigns an element of G to a front whose only nongeneric singularities are
n points of dangerous order one self-tangency. The invariant is said to be of order k if k is the
minimal number such that the (k#1)th derivative of the invariant is identically zero.

The invariants whose change under the crossing of a part of the K�-stratum depends only on
the K�-equivalence class corresponding to the part are exactly the J�-type invariants of order one.
Proposition 5.2.6 implies that every such invariant of fronts from C can be obtained as a J�

invariant for some � :K�P�.
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Such interpretation does not hold if we do not restrict ourselves to one component C of L and
consider invariants de"ned in all components. The reason is that nongeneric fronts belonging to
di!erent components of L, and hence realizing di!erent K�-equivalence classes, can realize the
same K�-equivalence class. (This happens only if the Maslov indices of the two fronts are di!erent.)
Theorem 5.2.5 says that there is a natural bijection between the sets K�

�
and K�. Hence every

order one J�-type invariant of fronts on F can be obtained by integration in all components of
L of some � :K�

�
P�. One can easily verify that statements of Theorem 4.2.1 hold if one

substitutes K�- by K�
�

-equivalence classes in the formulation of the Theorem and in the axiomatic
description of the J� invariant. (The proof of this version of the theorem is the same as the original
one.)

The interpretation of the J� invariant is similar to the one of J�, with the di!erence that in the
case of nonorientable F not every order one J�-type invariant of fronts in C is an integral of some
� :K�P�. (For nonorientable F two fronts from C realizing the same K�-equivalence class can
realize di!erent K�-classes.) Similarly to the case of J�, we see that every order one J�-type
invariant of fronts in L can be obtained by integration in all components of L of some
� :K�

�
P�. One veri"es that statements of Theorem 4.2.1 hold if one substitutes K� * by

K�
�

-equivalence classes in the formulation of the Theorem and in the axiomatic description of the
J� invariant.

The operation of changing ¸3� to ¸�3¹ shown in Fig. 4 induces a decomposition of the
�-stratum into parts corresponding to di!erent ¹

�
-equivalence classes, and one obtains the

corresponding version of Theorem 4.2.1.
One veri"es that this operation induces a mapping g :P

�
PT

�
that sends a �

�
-equivalence class

of (�
�
, �

�
, i, j)3R� to a ¹

�
-equivalence class of (�

�
, �

�
, 1, j)3R

	
. (Here 13�

�
(S¹F) is a class of

a trivial loop.) One veri"es that the part of the �-stratum corresponding to �
�
3P

�
is adjacent

(along the ��-stratum, see Theorem 8.1.1) to the part of the ¹-stratum corresponding to g(�
�
)3T

�
.

This means (see Remark 8.1.3) that if the magnitudes of the change of a St�-type invariant under the
crossings of ¹- and �-strata depend only on the component of the normalization corresponding to
the crossings, then the change under the positive crossing of the �

�
-part of the �-stratum should be

half of the change under the positive crossing of the g(�
�
)-part of the ¹-stratum. Every St�-type

invariant of this sort is a St� invariant for some � :T
�
P�.

An important observation is that Remarks 4.2.2 hold for the versions of the three invariants
described above.

5.3.1. Remark. A front with a dangerous self-tangency point lifts to a singular Legendrian knot in
S¹HF. (It has a double point.) One can verify that order one J�-type invariants of fronts are exactly
order one invariants of Legendrian knots in S¹HF.

Similarly a front with a safe self-tangency point lifts to a singular Legendrian knot in P¹HF.
However for nonorientable F it is not true that order one J�-type invariants are order one
invariants of Legendrian knots in P¹HF. To see this consider a nonorientable surface shown in
Fig. 10. One can verify that any order one invariant of Legendrian knots in P¹HF takes equal
values on the Legendrian lifting of fronts shown in Fig. 10c and f, but there exists an order one
J�-type invariant which takes di!erent values on the two fronts. To construct such J�-type order
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Fig. 10.

one invariant we observe that any function on K�
�

is integrable along the loop �
�

and hence gives
rise to an order one J�-type invariant, see Section 5.3. Both fronts are obtained from the front in
Fig. 10 by an isotopy and a (positive) crossing of the K�-stratum. Finally, we observe that the
fronts ¸

�
and ¸

�
in Fig. 10b and e realize di!erent K�

�
-equivalence classes. If one of them is

(	, �, 0)3R
�

� , then the second one is (	f �, �f �, 0)3R
�

� . (Here f3��
�

(P¹F) is the class of the "ber of
P¹HFPF). The fact that the two classes are di!erent can be easily obtained from Proposition
8.2.17 and the identities similar to 2 and 3 of Proposition 8.2.6. (Recall that ( f, 0) does not belong to
the group by the action of which we quotient R

�
� to de"ne the K�

�
-equivalence relation.) Hence

any function on K�
�

that takes di!erent values on the K�
�

-equivalence classes of ¸
�

and ¸
�

gives
rise to the desired invariant.

One can show that the Legendrian liftings of ¸
�

and ¸
�

can be transformed to each other in the
class of Legendrian knots with a double point (so that the points on the parameterizing circle
corresponding to the double point change continuously under the transformation). Hence the
values of the derivative of any order one invariant of Legendrian knots in P¹HF on ¸

�
and on

¸
�

are equal, and thus the values of the invariant on the Legendrian liftings to P¹HF of fronts in
Fig. 10c and f are equal.

6. An explicit formula for the 5nest order one J�-type invariant on orientable FOS2

Below we give an explicit formula for I� an order one J�-type invariant of generic wave fronts
on an orientable surface F. If FOS� then the invariant distinguishes every two generic wave fronts
that one can distinguish using order one J�-type invariants with values in any Abelian group (not
necessarily torsion free), see Theorem 6.0.3.
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Fig. 11.

We assign a positive (resp. negative) sign to a cusp point if the coorienting vector turns in the
positive (resp. negative) direction while traversing a small neighborhood of the cusp point along the
orientation of the front. We denote half of the number of positive and negative cusp of the front
¸ by C� and C�, respectively.

Using the orientation of F one gets that there are four types of double points of a wave front.
Two of them are shown in Fig. 11, two more are obtained by a change of coorientation on both
participating branches. To a double point d of ¸ we correspond two nongeneric fronts ¸


�
, ¸�

�
3K�,

as it is shown in Fig. 11. (The ¸

�
, ¸�

�
fronts for the double points of the types not shown in the

"gure are obtained by a change of coorientation.) We denote by [¸

�
], [¸�

�
] the K�-equivalence

classes of these fronts. The set K� is naturally identi"ed with the set R� which is the factor of
�
�
(S¹F)��

�
(S¹F) modulo the action of �

�
(S¹F) by conjugation of the "rst two summands and

by the action of �
�

permuting the summands.
We denote by �[K�] the free �-module of all formal "nite integer combinations of elements of

K�. For a wave front ¸ we denote by [l f��
�

, f
�
], [l, 1], [ l f

�
, f��

�
] the K�-equivalence classes

described by the corresponding elements of R�.

6.0.2. Theorem. Put I�(¸)3�[K�] to be

��
�

([¸

�
]![¸�

�
])�!C�([l, 1]![l f

�
, f��

�
])!C�([l, 1]![l f��

�
, f

�
]). (5)

Then I�(¸) is an order one J�-type invariant. Under the positive crossing of the K�-stratum
corresponding to [s

�
, s

�
]3R� it increases by (2[s

�
, s

�
]![s

�
f
�
, s

�
f��
�

]![s
�
f��
�

, s
�
f
�
]).

The proof of the theorem is straightforward. One veri"es that I�(¸) does not change under
crossings of �- , K�- , �- , and ¹-strata. To see that I�(¸) has the described behavior under the
crossings of the K�-stratum, one uses the fact that f

�
is in the center of �

�
(S¹F), see Proposition

8.2.6.
(To construct a similar invariant of wave fronts on nonorientable surfaces one symmetrizes the

construction of ¸

�

and ¸�
�

and gets four elements of K�corresponding to the double point d.)
The following theorem says that for orientable FOS� the invariant I� is the "nest order one

J�-type invariant.
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6.0.3. Theorem. Let C be a connected component of the space of fronts on an orientable FOS�. Let
¸
�
, ¸

�
3C be generic fronts, and I� an order one J�-type invariant of fronts with values in some

Abelian group G (not necessarily torsion free). Then I�(¸
�
)"I�(¸

�
), provided that I�(¸

�
)"

I�(¸
�
).

For the proof of Theorem 6.0.3 see Section 11.
It is well known that in the case of F"�� the partial linking polynomial of Aicardi [2] appears

to be the "nest order one invariant in the above sense. Other order one J�-type invariants of wave
fronts on surfaces were constructed by Polyak [14] and by the author in [20]. They are
signi"cantly easier for calculation but are not the "nest in the above sense.

7. Homotopy groups of the space of fronts

Fix a3S�, then ¸3L represent an element of �
�
(F, ¸(a)), the lifting l of ¸ to S¹F represents an

element of �
�
(S¹F, l(a)), and the lifting lo of ¸ to CS¹F represents an element of �

�
(CS¹F, lo (a)).

7.1. Fundamental group of the space of fronts on an orientable surface

For orientable surfaces the group �
�
(L, ¸) appears to be much simpler than for nonorientable

surfaces.

7.1.1. Theorem. Let F"S� and ¸ a front on S�. Then �
�
(L, ¸)"���

�
.

7.1.2. Theorem. Let F"¹� (torus) and ¸ a front on ¹�. Then �
�
(L, ¸)"��.

For the proofs of Theorems 7.1.1 and 7.1.2 see Section 12.1.

7.1.3. Theorem. Let FOS�, ¹� be an orientable surface (not necessarily compact), and let ¸ be a front
on F.

(I) If ¸O13�
�
(F), then �

�
(L, ¸)"��.

(II) If ¸"13�
�
(F), then �

�
(L, ¸)"���

�
(S¹F).

For the proof of Theorem 7.1.3 see Section 12.2.

7.2. Fundamental group of the space of fronts on a nonorientable surface

We denote by �����
�

(F) the subgroup of �
�
(F) consisting of all orientation-preserving loops and by

����
�

(F) the subset of �
�
(F) which is �

�
(F)
�����

�
(F). We denote by �����

�
(S¹F) the subgroup of

�
�
(S¹F) which is a preimage of �����

�
(F) under pr�

H
: �

�
(S¹F)P�

�
(F) and by ����

�
(S¹F) the subset of

�
�
(S¹F) which is a preimage of ����

�
(F) under pr�

H
. We denote by ��� the subgroup of even numbers

in � and by ��		 the subset of odd numbers in �.
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7.2.1. Theorem. Let F"�P� and ¸ a front on �P�. Then �
�
(L, ¸) is isomorphic to ���

�
.

7.2.2. Theorem. Let F"K (Klein bottle), and let ¸ be a front on K.

(I) If ¸3�����
�

(K), then
(a) �

�
(L, ¸) is isomorphic to ���

�
(S¹K), provided that l"b��3�

�
(S¹K, l(a)) for some b3����

�
(S¹K, l(a)).

(b) �
�
(L, ¸)"�� otherwise.

(II) If ¸3����
�

(K), then �
�
(L, ¸) is isomorphic to ��.

For the proof of Theorems 7.2.1 and 7.2.2 see Section 12.1.
Let FO�P�,K be a nonorientable surface (not necessarily compact), and let ¸ be a front on

F such that ¸O13�
�
(F, ¸(a)). One can show that there exists a unique maximal Abelian

subgroup G

(�

�
(F, ¸(a)) containing ¸3�

�
(F, ¸(a)), and that this G


is isomorphic to � (see also

Proposition 8.2.17). Let g be a generator of G


and ¸
�

a front such that lo
�
(a)"lo (a) and

¸
�
"g3�

�
(F, ¸(a)). One can show that l3�

�
(S¹F, l(a)) can be presented in the unique way as

l�
�
f �
�

3�
�
(S¹F, l(a)) (see also the Proof of Theorem 7.2.3).

7.2.3. Theorem. Let FO�P�,K be a nonorientable surface (not necessarily compact), and let ¸ be
a front on F.

(I) If ¸3����
�

(F), then �
�
(L, ¸) is isomorphic to ��.

(II) If ¸3�����
�

(F) and ¸O13�
�
(F), then:

(a) �
�
(L, ¸) is isomorphic to ���

�
(K), provided that ¸

�
3����

�
(F) and that l"l��

�
3�

�
(S¹F, l(a)),

for some k3�.
(b) �

�
(L, ¸)"�� otherwise.

(III) If ¸"13�
�
(F), then:

(a) �
�
(L, ¸) is isomorphic to �������

�
(S¹F), provided that lO13�

�
(S¹F).

(b) �
�
(L, ¸) is isomorphic to the subgroup of ���

�
(S¹F) which is (����
�

�����
�

(S¹F))�(��		�����
�

(S¹F)), provided that l"13�
�
(S¹F).

For the proof of Theorem 7.2.3 see Section 12.2.
Statement (III)(a) (resp. (III)(b) corresponds to ¸ that is regular homotopic to one of the fronts of

type K
���

, i'0, (resp. of type K
���

) see Fig. 5.

7.3. Higher homotopy groups of the space of fronts

7.3.1. Theorem. Let F be a surface (not necessarily compact or orientable) and let ¸ be a front on F.

(I) If F is S� or �P�, then �
�
(L, ¸)"�, and �

�
(L, ¸)"�

�
(S�)��

���
(S�), n*3.

(II) If FOS�,�P�, then �
�
(L, ¸)"0, n*2.

For the proof of Theorem 7.3.1 see Section 12.3.
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8. Proof of Theorem 4.2.1

We prove only the statements of Theorem 4.2.1 related to the existence of the St� invariant
integrating �

�
in C. The proofs of statements related to the existence of J� and J� invariants are

obtained in a similar way.
In order for St� to be well de"ned, the change of it along any generic loop has to be zero. This

proves the necessity of the conditions described in Theorem 4.2.1. Let us prove that these
conditions are su$cient for the existence of St� invariant integrating �

�
in C.

Put St�(¸) to be any number. Let ¸�3C be a generic front and p a generic path connecting ¸ to ¸�.
Similarly to the case of a closed loop we de"ne �

	�

(p). Put St�(¸�)"St�(¸)#�

	�

(p). To prove the

theorem it su$ces to show that St�(¸�) is independent of the generic path p which was used to
de"ne it. The last statement follows from Lemmas 8.0.2 and 8.0.3. Thus we proved Theorem 4.2.1
modulo these two lemmas.

8.0.2. Lemma (Cf. Arnold [5]). Let p be a generic path in C connecting ¸ to itself. Then �
	�


(p)
depends only on the element of �

�
(C, ¸) realized by p.

8.0.3. Lemma. Let F be a surface, C a connected component of L, and �
�

:TP� a function
integrable along those of the loops �

�
and �

�
that participate in the statement of Theorem 4.2.1

corresponding to F and C. Then every 	3�
�
(C, ¸) can be realized by a generic loop q� in C such that

�
	�


(q� )"0.

8.1. Proof of Lemma 8.0.2

To prove the Lemma, it su$ces to show that if we go around any codimension two stratum of
the discriminant along a small generic loop r (not necessarily starting at ¸), then �

	�

(r)"0. All the

codimension two strata are described in the following Theorem.

8.1.1. Theorem (Arnold [5]). The strata of codimension two of the discriminant of L are formed by
fronts with two nongeneric singular points that are singular of codimension one, and by fronts with one
nongeneric singular point that is one of the following (see Figs. 12 and 13):

(1) A quadruple point with pairwise transverse tangent lines. This stratum is denoted by ¹¹.
(2) A cusp passing through a branch in such a way that they have the same tangent line. This stratum

is denoted by K�.
(3) A degenerate triple point at which two branches are tangent of order one and the third branch is

transverse to them. This stratum is denoted by K¹.
(4) A point of a cubical self-tangency. This stratum is denoted by KK.
(5) A cusp point passing simultaneously through two branches. (Here it is assumed that the lines

tangent to the three participating branches are diwerent.) This stratum is denoted by ¹�.
(6) A point of degree �

�
passing through a branch of the front. (Here it is assumed that the two

branches have transverse tangent lines.) This stratum is denoted by ��.
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Fig. 12.

Fig. 13.

(7) Two coinciding cusp points. (Here it is assumed that the lines tangent to the two branches are
diwerent.) This stratum is denoted by ��.

(8) A point of degree �
�
. This stratum is denoted by ��.
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Fig. 14.

8.1.2. The only strata of the discriminant of codimension two in whose bifurcation diagram triple
points or cusp crossings are present are: two distinct codimension one singular points one of which
is a triple point; two distinct codimension one singular points one of which is a cusp crossing point;
and strata ¹¹, K¹, K�, ¹�, ��, �� and �� (in the notation of Lemma 8.1.1).

If r is a small loop going around a stratum of two distinct codimension one singular points one of
which is a cusp or a triple point, then in �

	�

(r) we have each of the participating ¹-equivalence

classes twice, once with the plus sign of the newborn vanishing triangle, once with the minus. Hence
�
	�


(r)"0.

To prove the statement for the other strata we use the bifurcation diagrams shown in Figs. 12
and 13.

Let r be a small loop going around the ¹¹-stratum. We can assume that it corresponds to a loop
in Fig. 14 directed counterclockwise. There are eight terms in �

	�

(r). We split them into pairs I}IV,

as it is shown in Fig. 14. One can see that the wave fronts from the same pair are ¹-equivalent. For
each branch the sign of the colored triangle is equal to the sign of the triangle that died under the
¹-stratum crossing shown on the next (in the counterclockwise direction) branch. The sign of the
dying vanishing triangle is minus the sign of the newborn vanishing triangle. Finally, one can see
that the signs of the colored triangles inside each pair are opposite. Thus all these eight terms cancel
out, and �

	�

(r)"0.

There are six terms in �
	�


(r) for r a loop going around the ¹�-stratum. Two of them correspond
to r crossing the ¹-stratum, and four to r crossing the �-stratum. One veri"es that the two terms
corresponding to r crossing the ¹-stratum cancel out. We split the other four terms into pairs such
that the terms in a pair correspond to the cusp crossing the same branch of the front. One veri"es
that the ¹-equivalence classes inside a pair coincide and the signs of the terms are opposite. Thus
the terms inside each pair cancel out.
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In a similar way one shows that �
	�


(r)"0 for a small loop r going around K�- , K¹- , ��- ,
and ��-strata.

Finally, let r be a loop going around the ��-stratum. There are three terms in �
	�


(r). One of
them corresponds to r crossing the ¹-stratum and two to r crossing the �-stratum. One veri"es
that the sign of the crossing of the ¹-stratum is opposite from the signs of the crossings of the
�-stratum, and that all three ¹-equivalence classes are the same. We denote the class by t. Thus,
�
	�


(r)"�
�
�(t)#�

�
�(t)!�(t)"0.

8.1.3. Remark. Recall that the magnitude of the change of St� under the crossing of the part of the
�-stratum corresponding to the ¹-equivalence class t was put to be �

�
�(t). One can see that if we

substitute �
�

by another constant, then there is no hope for constructing an invariant of this sort,
unless � is zero on all the ¹-equivalence classes appearing on the �-stratum.

This "nishes the proof of Lemma 8.0.2. �

8.2. Constructions and facts needed for the proof of Lemma 8.0.3

8.2.1. Parametric h-principle. The parametric h-principle proved for the Legendrian curves by
Gromov [8] says that the space of wave fronts L is weak homotopy equivalent to the space
�CS¹F of all free loops in CS¹F, see 2.1. The mapping h :LP�CS¹F that gives the equivalence
sends a wave front ¸ (corresponding to the Legendrian curve l) to the loop lo3�CS¹F.

Fix a3S�. Let q be a loop in L starting at ¸. At any moment of time q(t) is a wave front that can
be lifted to a loop in CS¹F. Thus q gives rise to the mapping q

�
: S��S�PCS¹F. (In the product

S��S� the "rst copy of S� corresponds to the parameterization of a front and the second to the
parameterization of the loop q.) The mapping q

�
restricted to a�S� is a loop t

�
(q) in CS¹F. One

can verify that the mapping t
�

: �
�
(L, ¸)P�

�
(CS¹F, lo (a)) is a homomorphism.

8.2.2. Proposition. t
�

: �
�
(L, ¸)P�

�
(CS¹F, lo (a)) is an isomorphism of �

�
(L, ¸) onto the centralizer

Z(lo ) of lo3�
�
(CS¹F, lo (a)).

8.2.3. Proof of Proposition 8.2.2. Let p : �CS¹FPCS¹F be the mapping that sends �3�CS¹F to
�(a)3CS¹F. (One can verify that this p is a Serre "bration, with the "ber of it over a point
isomorphic to the space of loops based at the point.) The h-principle (see 8.2.1) implies that to prove
the proposition it su$ces to show that p

H
: �

�
(�CS¹F, lo )P�

�
(CS¹F, lo (a)) is an isomorphism of

�
�
(�CS¹F, lo ) onto Z(lo ).
A Proposition proved by Hansen [9] says that if X is a topological space with �

�
(X)"0, then

�
�
(�X,�)"Z(�)(�

�
(X, �(a)). (Here �X is the space of free loops in X and � is an element of

�X.) One can verify that �
�
(CS¹F)"0 for any surface F. Thus, �

�
(�CS¹F, lo ) is isomorphic to

Z(lo )(�
�
(CS¹F, lo (a)). From the proof of the Hansen's Proposition it follows that the isomorphism

is given by p
H

. �

8.2.4. Proposition. The xberwise projectivization PCSTF of CSTF is isomorphic to S��S¹F.
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8.2.5. Proof of Proposition 8.2.4. A local orientation at x3F induces an orientation of the S�-"ber
of S¹F over x, which changes if we change the local orientation at x. Hence S¹F is canonically
oriented. The planes of the contact structure of S¹F are canonically cooriented. Thus they are also
canonically oriented. The orientations of them induce a coherent orientation of the �P�-"bers of
PCS¹FPS¹F. Hence to prove the proposition it su$ces to construct a section of PCS¹F over
S¹F.

A point x3S¹F is described by pr
�
(x)3F and a cooriented contact element at pr

�
(x). Consider

an arc ¸
�

of the geodesic passing through pr
�
(x) that is tangent to the contact element. Equip the

arc with the coorientation coherent with the one of the contact element. Choose an orientation of
¸
�

and lift it to an immersed arc in S¹F. The direction of l
�

at the lifting of the preimage of pr
�
(x)

de"nes a point in the S�-"ber of CS¹F over x and, consequently, a point x� in the �P�-"ber of
PCS¹F over x. Clearly the point x� in the �P�-"ber is independent of the choice of the orientation
of ¸

�
. The desired section is given by mapping x3S¹F to the point x� 3PCS¹F. �

8.2.6. Proposition. Let f
�
3�

�
(CS¹F, lo (a)) and f

�
3�

�
(S¹F, l(a)) be the classes of oriented (in some

way) xbers of the S�-xbrations pr� :CS¹FPS¹F and pr� :S¹FPF respectively. Then:
1. f

�
	"	 f

�
3�

�
(CS¹F, lo (a) for any 	3�

�
(CS¹F, lo (a)).

2. f
�
	"	 f

�
3�

�
(S¹F, l(a)) for any 	3�

�
(S¹F, l(a)) projecting to an orientation-preserving

loop in F.
3. f

�
	"	 f��

�
3�

�
(S¹F, l(a)) for any 	3�

�
(S¹F, l(a)) projecting to an orientation-reversing

loop in F.

8.2.7. Proof of Proposition 8.2.6. Consider the double covering p : CS¹FPPCS¹F. The
homomorphism p

H
: �

�
(CS¹F)P�

�
(PCS¹F) is injective, and it maps f

�
to f �3�

�
(PCS¹F). (Here

f is the class of an oriented S�-"ber of PCS¹FPS¹F.) Proposition 8.2.4 implies that f is in the
center of �

�
(PCS¹F), and we have proved the "rst statement of the proposition.

If we move an oriented "ber along the loop 	LS¹F, then in the end it comes to itself either with
the same or with the opposite orientation. Thus for any 	3�

�
(S¹F, l(a)) either f

�
	"	 f

�
or

f
�
	"	 f��

�
. A local orientation of the neighborhood of a point in F induces an orientation of the

"ber of pr� over the point. Combining these facts we get the proof of the other two statements of the
proposition. �

8.2.8. Proposition. For any 	3�
�
(CS¹F, d) there exists a Legendrian curve l such that lo (a)"d and

lo"	3�
�
(CS¹F, d).

8.2.9. Proof of Proposition 8.2.8. Let ¸ be a front such that lo (a)"d and ¸"

pr�
H

pr�
H

(	)3�
�
(F, pr�pr�(d )). A small extra kink on ¸ corresponds to the multiplication of

l3�
�
(S¹F) by f��

�
depending on the side of front the kink points to. Thus, adding extra kinks we

can modify ¸, so that l"pr�
H

(	)3�
�
(S¹F). In [5] it is shown that an extra pair of adjacent cusps

pointing to opposite sides of a planar front ¸
�

corresponds to the multiplication of lo
�

by
f��
�

depending on the sign of the cusps. Since the addition of the pair of cusps is done locally and
f
�

is in the center of �
�
(CS¹F) for any F (see Proposition 8.2.6), this fact is true for any surface F.

Thus we can modify ¸ so that lo"	3�
�
(CS¹F, d ), and we have proved the proposition. �
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Fig. 15.

8.2.10. Proposition. The group �
�
(CS¹F) is isomorphic to the index two subgroup of

�
�
(PCS¹F)"�

�
(S�)��

�
(S¹F)"���

�
(S¹F) consisting of elements of the form (odd number,

element projecting to an orientation-reversing loop in F ) and (even number, element projecting to an
orientation-preserving loop in F ).

8.2.11. Proof of Proposition 8.2.10. By Proposition 8.2.8 an element of �
�
(CS¹F) can be realized as

a lifting lo of some front ¸. Orientation-preserving fronts have even number of cusps, and
orientation-reversing fronts have odd number of cusps. There are only two (opposite) points in
the S�-"ber of pr� : CS¹FPS¹F over x corresponding to a cusp point of a front at x. (These
points are identi"ed under p :CS¹FPPCS¹F.) Thus for 	3�

�
(CS¹F) the projection of

p
H

(	)3�
�
(PCS¹F)"���

�
(S¹F) to the �-summand is even provided that pr�pr�(	) is an orienta-

tion-preserving loop in F and odd otherwise. The di!erence between the projections of p
H

(	) and
p
H

(	 f
�
) to the �-summand in �

�
(PCS¹F) is two. Since �

�
(CS¹F) is isomorphic to

p
H

(�
�
(CS¹F))(�

�
(PCS¹F) we get the statement of the proposition. �

8.2.12. Loop �3 . Let C be a connected component of L and ¸3C a generic front. Let �
�
3�

�
(L, ¸)

be the loop constructed below.
Deform ¸ along a generic path t in C, so that all cusps are concentrated on a small piece P of

¸ and the side of ¸ they point to alternates. (The notion of side is locally well de"ned.) This is
possible because we can cancel a pair of adjacent cusps pointing to the same side of ¸, see Fig. 15.

If after this deformation the number of cusps is nonzero, then we take the last pair of cusps in
P and slide them along ¸ till they come to the beginning of P. Then we shift all the cusps by two
positions, so that ¸ gets the shape it had before the sliding. (If ¸ is an orientation-reversing front,
then it can happen that there is only one cusp on P. Then to obtain �

�
we slide the cusp twice

around ¸ till it comes to the original position.) We require the deformation to be such that at
each moment of time points of ¸ located outside of a small neighborhood of participating cusps
do not move.

If after the deformation the number of cusps is zero (this happens if �(¸)"0), then we perform
a regular homotopy shown in Fig. 16.

Finally we deform ¸ to its original shape along t��.

8.2.13. Proposition. (1) Let L be an orientation preserving front on F, then pr�
H

(t
�
(�

�
))"

f��
�

3�
�
(S¹F, l(a)). (Here the sign of the power of f

�
depends on the orientation of the xber we choose

to dexne f
�
.)

(2) Let L be a front on F, then t
�
(�

�
)"f��

�
3�

�
(CS¹F, lo (a)). (Here the sign of the power of f

�
depends

on the orientation of the xber we choose to dexne f
�
.)
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Fig. 16.

8.2.14. Proof of Proposition 8.2.13. Under the deformation of ¸ described by �
�

the point ¸(a) never
leaves a small neighborhood of its original position, and the coorienting normal to ¸ at ¸(a) is
rotated by 2�. (The rotation happens when the kink passes through ¸(a).) Thus the trajectory of
a under the lifting of �

�
to a loop in the space of Legendrian curves represents a class of the "ber of

the "bration pr�. Clearly, this trajectory coincides with pr�
H

(t
�
(�

�
)) and we have proved the "rst

statement of the proposition.
From Proposition 8.2.6 we know that f

�
is in the center of �

�
(C¹SF). Hence to prove the second

statement it su$ces to prove the corresponding fact for a loop that is free homotopic to �
�
. Thus we

can assume that under the deformation �
�

the point ¸(a) never leaves a small neighborhood of its
original position, and that ¸ has the property that all cusps of it are close to each other (in ¸), and
the side of ¸ they point to alternates. (The notion of side is locally well de"ned.)

One veri"es that under �
�

the total rotation angle of the coorienting normal at ¸(a) is zero. Thus
the trajectory of a under the lifting of �

�
to a loop in the space of Legendrian curves in S¹F

represents 13�
�
(S¹F, l(a)). Hence t

�
(�

�
)"f �

�
3�

�
(CS¹F, lo (a)), for some k3�. We have to show that

k"$1.
One veri"es that there are only two points in the S�-"ber of CS¹F over l(a) which correspond to

the front having a cusp at ¸(a). A lemma proved by Arnold [5] says that under the deformations of
the wave front shown in Fig. 17 the velocity vector at the point l(a) is turning in the direction
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Fig. 17.

Fig. 18.

dependent only on, whether it is true or not, that after the deformation the coorienting normal is
pointing to the same direction as the curvature vector. (In Fig. 17 the marked point is frozen into
the surface together with the coorienting normal at it.)

It is clear that the loop �
�

is free homotopic to ��
�
, in which the point ¸(a) is frozen into F together

with the coorienting normal at it. Under the deformation described by ��
�

the pair of cusps passes
through ¸(a) in the way shown in Fig. 18. Using Arnold's lemma one veri"es that under ��

�
the

direction of the velocity vector of l at l(a) is rotated by the "ber of pr�.
This "nishes the proof of the proposition. �

8.2.15. Proposition. �
	�


(�
�
)"0.

8.2.16. Proof of Proposition 8.2.15. Clearly, the input into �
	�


of the deformation r of ¸ to a front
with cusps pointing to alternating (locally well de"ned) sides of ¸ cancels out with the input into
�
	�


of the deformation along r��.

Consider the case when �(¸)��0,$1�. No ¹-stratum crossings occur under the sliding of two
cusps and the only inputs into �

	�

(�

�
) come from the crossings of the �-stratum. They occur only

when a cusp passes through a neighborhood of a double point x of ¸, see Fig. 19. One veri"es that
for each double point x the input corresponding to the "rst cusp passing through the neighborhood
of x cancels with the input corresponding to the second cusp passing through it.

If �(¸)"0, then there are extra crossings of the �-stratum, which occur when we create (and
later cancel) two pairs of cusps, one of which slides along ¸. One veri"es that the inputs of these
extra crossings cancel out.

32 V. Tchernov / Topology 41 (2002) 1}45



Fig. 19.

If �(¸)"$1, then ¸ is orientation reversing, and the only cusp present on ¸ slides twice along
¸ under �

�
. The input corresponding to the crossings of the �-stratum that occur in the

neighborhood of a double point x under the "rst round of sliding cancels with the input under the
second round of sliding. This "nishes the proof of Proposition 8.2.15. �

8.2.17. Proposition. Let FOS�, ¹� (torus), �P�,K (Klein bottle) be a surface (not necessarily compact
or orientable), and let G be a nontrivial commutative subgroup of �

�
(F). Then G is inxnite cyclic and

there exists a unique maximal inxnite cyclic G�(�
�
(F) containing G.

8.2.18. Proof of Proposition 8.2.17. It is well known that any closed F, other than S�, ¹�, �P�,K,
admits a hyperbolic metric of a constant negative curvature. (It is induced from the universal
covering of F by the hyperbolic plane H.) The Theorem by A. Preissman (see [6, pp. 258}265]) says
that if M is a compact Riemannian manifold with a negative curvature, then any nontrivial Abelian
subgroup G(�

�
(M) is isomorphic to �. Thus if FOS�, ¹�, �P�,K is closed, then any nontrivial

commutative G(�
�
(F) is in"nite cyclic.

The proof of the Preissman's Theorem given in [6] is based on the fact, that if 	, �3�
�
(M) are

nontrivial commuting elements, then there exists a geodesic in MM (the universal covering of M)
which is mapped to itself under the action of these elements considered as deck transformations on
MM . Moreover, these transformations restricted to the geodesic act as translations. This implies that
if FOS�, ¹�, �P�,K is a closed surface, then there exists a unique maximal in"nite cyclic
G�(�

�
(F) containing G. This gives the proof of Proposition 8.2.17 for closed F.

If F is not closed, then the statement of the proposition is also true because in this case F is
homotopy equivalent to a bouquet of circles. �

8.3. Proof of Lemma 8.0.3

The proof is based on the constructions and the propositions of Section 8.2. We start by making
the following observation.

8.3.1. In � there are no elements of "nite order. Thus if mO0, then �
	�


(q)O
0 �m�

	�

(q)"�

	�

(q�)O0. Hence, to prove Lemma 8.0.3 it su$ces to show that �

	�

(q�)"0, for

some mO0.
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8.3.2. Proposition. Let q
�
, q

�
3�

�
(L, ¸) be loops such that

pr�
H

(t
�
(q

�
))"pr�

H
(t
�
(q

�
))3�

�
(S¹F, l(a)). (6)

Then �
	�


(q
�
)"�

	�

(q

�
).

8.3.3. Proof of Proposition 8.3.2. We know (see Proposition 8.2.13) that t
�
(�

�
)"f

�
(for a proper

choice of an orientation of the "ber used to de"ne f
�
). The kernel of the homomorphism pr�

H
is

generated by f
�
, which is in the center of �

�
(CS¹F, lo (a)), see Proposition 8.2.6. Thus

t
�
(q

�
)"t

�
(q

�
) f �

�
for some j3�. Proposition 8.2.2 implies that q

�
"q

�
��
�
. Proposition 8.2.15 says

that �
	�


(�
�
)"0. Hence �

	�

(q

�
)"�

	�

(q

�
). �

We xrst prove Lemma 8.0.3 for FOS�, �P�, ¹�,K, and then separately for the cases of F"S�,
�P�, ¹�,K.

8.3.4. Case FOS�, T�, �P�, K: Proposition 8.2.2 says that �
�
(L, ¸)"Z(lo )(�

�
(CS¹F, lo (a)). The

corresponding isomorphism (see Section 8.2.1) maps q3�
�
(L, ¸) to t

�
(q)3�

�
(CS¹F, lo (a)). Thus for

any q3�
�
(L, ¸) the elements t

�
(q) and lo commute in �

�
(CS¹F, lo (a)). Hence ¸"pr�

H
pr�

H
(lo ) com-

mutes with pr�
H

pr�
H

(t
�
(q)) in �

�
(F, ¸(a)). Proposition 8.2.17 implies that there exists an isomorphic

to � subgroup of �
�
(F, ¸(a)) generated by some g3�

�
(F, ¸(a)) that contains both of these loops.

Then ¸"g� and pr�
H

pr�
H

(t
�
(q))"g�, for some m, n3�.

Consider a wave front ¸
�

such that lo
�
(a)"lo (a), and g"¸

�
3�

�
(F, ¸(a)). The kernel of pr�

H
is

generated by f
�

which has in"nite order in �
�
(S¹F) for our surfaces F. Proposition 8.2.6 allows us

to interchange f
�

with the other elements of �
�
(S¹F, l(a)). Thus l"l�

�
f �
�
, and pr�

H
(t
�
(q))"l�

�
f �
�

(in
�
�
(S¹F)) for some i, j3�.
We prove Lemma 8.0.3 separately in the cases of mO0 and 0 in, respectively, Sections 8.3.5 and

8.3.6. (Geometrically, these two cases correspond to ¸"13�
�
(F) and ¸O13�

�
(F), respectively.)

8.3.5. CasemO0: To prove Lemma 8.0.3 it su$ces to show that �
	�


(q�)"0 (see 8.3.1). We do it by
constructing 	3�

�
(L, ¸) such that pr�

H
(t
�
(	))"pr�

H
(t
�
(q�)) and �

	�

(	)"0. After this, Proposition

8.3.2 implies the statement of the lemma.
One can show that

pr�
H

(t
�
(q�))"l� f �

�
for some k3�. (7)

For an orientation-preserving g this follows from the following calculation (which uses Proposi-
tion 8.2.6):

pr�
H

(t
�
(q�))"(pr�

H
(t
�
(q)))�"(l�

�
f �
�
)�"(l�

�
f �
�
)� f �����

�
"l� f �����

�
. (8)

(Recall that pr�
H

(t
�
(q))"l�

�
f �
�

for some j3�, see 8.3.4.)
For an orientation-reversing g this follows from the similar calculation (also based on

Proposition 8.2.6).
The fact that pr�

H
(t
�
(q�)) commutes with l (since t

�
(q�)"(t

�
(q))�3Z(lo )) and Proposition 8.2.6

imply that k"0 in (7), provided that ¸ is an orientation-reversing front.
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Consider the case of ¸ being an orientation-preserving front. Proposition 8.2.13 says that
pr�

H
(t
�
(�

�
))"f

�
(for a proper choice of the orientation of the "ber used to de"ne f

�
). Hence

pr�
H

(t
�
(	))"pr�

H
(t
�
(q�)) for 	3�

�
(L, ¸) which is: n times sliding of ¸ along itself (induced by

a rotation of the parameterizing circle) composed with ��
�
.

If ¸ is an orientation-reversing front, then as we have shown above pr�
H

(t
�
(q�))"l�. Hence

pr�
H

(t
�
(	))"pr�

H
(t
�
(q�)) for 	3�

�
(L, ¸) which is: n times sliding of ¸ along itself (induced by

a rotation of the parameterizing circle).
No discriminant crossings occur under the sliding of ¸ along itself, and �

	�

(�

�
)"0 by the

assumption of the lemma. Hence �
	�


(	)"0. Proposition 8.3.2 implies that �
	�


(q�)"0. Thus, we
have proved (see 8.3.1) Lemma 8.0.3 for FOS�,�P�, ¹�,K and mO0.

8.3.6. Case m"0: If m"0, then ¸"13�
�
(F, ¸(a)). We want to construct 	3�

�
(L, ¸) such

that pr�
H

(t
�
(	))"pr�

H
(t
�
(q�)) and �

	�

(	)"0. (After this the statement follows from 8.3.1 and

Proposition 8.3.2.)
For any q3�

�
(L, ¸) the projection pr�

H
pr�

H
(t
�
(q�)) is an orientation-preserving loop in F.

A straightforward veri"cation shows that 	 can be obtained by a composition of ���
�

(see 4.1.1) and
loops constructed as follows:

Push ¸ into a small disc by a generic regular homotopy r. Slide this small disc along a smooth
orientation-preserving curve in F and return ¸ to its original shape along r��.

Clearly, the inputs of r and r�� into �
	�


cancel out, and no discriminant crossings happen when
we slide the small disc (containing ¸) along a loop in F. By the assumption of the lemma
�
	�


(�
�
)"0. Thus �

	�

(	)"0. Proposition 8.3.2 implies that �

	�

(q�)"0, and we have proved (see

8.3.1) Lemma 8.0.3 for FOS�, �P�, ¹�, K.

8.3.7. Case F"S�: One veri"es that �
�
(S¹S�)"�

�
(�P�)"�

�
. Thus pr�

H
(t
�
(q�))"pr�

H
(t
�
(1))"

13�
�
(S¹F, l(a)), for any q3�

�
(L, ¸). Proposition 8.3.2 implies that �St�(q�)"0. This "nishes (see

8.3.1) the proof of Lemma 8.0.3 for F"S�. �

8.3.8. Case F"T�: One veri"es that �
�
(S¹¹�)"�����. As before we "x q3�

�
(L, ¸) and

construct 	3�
�
(L, ¸) such that pr�

H
(t
�
(	))"pr�

H
(t
�
(q)).

One veri"es that 	 can be expressed through �
�

and loops �
�

and �
�

that are slidings of ¸ along
the unit vector "elds parallel to the meridian and longitude of ¹�, respectively.

Since �
	�


(�
�
)"0 by the assumption of the lemma, and no discriminant crossings occur under

�
�

and �
�
, we get that �

	�

(	)"0. Proposition 8.3.2 implies that �

	�

(q)"0. This "nishes the proof

of Lemma 8.0.3 for F"¹�. �

8.3.9. Case F"�P�: One veri"es that �
�
(S¹�P�)"�

�
. Thus pr�

H
(t
�
(q�))"pr�

H
(t
�
(1))"

13�
�
(S¹F, l(a)) for any q3�

�
(L, ¸). Proposition 8.3.2 implies that �St�(q�)"0. This "nishes (see

8.3.1) the proof of Lemma 8.0.3 for F"�P�. �

8.3.10. Case F"K: Proposition 8.2.2 says that �
�
(L, ¸) is isomorphic to Z(lo )(�

�
(CS¹K, lo (a)).

The kernel of the homomorphism pr�
H

is generated by f
�

which is in the center of �
�
(CS¹F, lo (a)), see
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Proposition 8.2.6. Thus pr�
H

(Z(lo )) is isomorphic to Z(l ), the centralizer of l3�
�
(S¹F, l(a)). We show

that a certain power of any element of Z(l ) can be represented as pr�
H

(t
�
(	)), for some 	3�

�
(L, ¸)

such that �St�(	)"0. This implies the statement of the lemma for F"K.

Consider K as a quotient of a rectangle modulo the identi"cation on its sides shown in Fig. 9. We
can assume that ¸(a) coincides with the image of a corner of the rectangle. Let ¸

�
and ¸

�
be fronts

such that lo (a)"lo
�
(a)"lo

�
(a), ¸

�
"c3�

�
(K, ¸(a)), ¸

�
"d3�

�
(K, ¸(a)). (Here c and d are the

elements of �
�
(K) realized by the images of the sides of the rectangle used to construct K, see Fig. 9.)

One can show that

�
�
(S¹K, l(a))"�l

�
, l
�
, f
�
�l
�
l��
�

"l��
�

l
�
, l

�
f��
�

"f��
�

l
�
, l

�
f
�
"f

�
l
�
�. (9)

The second and the third relations in this presentation follow from Proposition 8.2.6. To get the
"rst relation one notes that the identity dc��"c��d3�

�
(K, ¸(a)) implies l

�
l��
�

"l��
�

l
�
f �
�
, for some

k3�. But l�
�

commutes with l
�
, since they can be lifted to S¹¹� the fundamental group of which is

Abelian. Hence k"0.
Using relations (9) one calculates Z(l ). (Note, that these relations allow one to present (in

a unique way) an element of �
�
(S¹K, l(a)) as l�

�
l�
�
f �
�
, for some i, j, k3�.)

This group appears to be:

(a) The whole group �
�
(S¹K, l(a)) provided that l"l��

�
, for some i3�.

(b) A subgroup of �
�
(S¹K, l(a)) isomorphic to ����� provided that l"l�

�
l��
�

f �
�
, for some

i, j, k3� such that iO0 or kO0. This subgroup is generated by �l
�
, l�
�
, f
�
�.

(c) A subgroup of �
�
(S¹K, l(a)) isomorphic to � provided that l"l�

�
l����
�

f �
�

for some i, j, k3�.
This subgroup is generated by 	

�
"l�

�
l�
�
f �
�
. (Note that 	�

�
"l�

�
, and l"(	

�
)����.)

Using (9) one veri"es that

(a) If ¸ is an orientation-preserving front on K, then a certain power of any element of Z(l ) can be
obtained as pr�

H
(t
�
(	)), for 	 being a product of powers of �

�
, �

�
(see 4.1.2), and �

�
described

below.
(b) If ¸ is an orientation-reversing front on K, then a certain power of any element of Z(l ) can be

obtained as pr�
H

(t
�
(	)), for 	 being a power of �

�
described below.

Consider a loop � in the space of all autodi!eomorphisms of K, which is the sliding of K along
the unit vector "eld parallel to the curve d on K. (Note that K has to slide twice along itself under
this loop before every point of it comes to the original position.) The loop �

�
is the sliding of

¸ induced by �.
The loop �

�
is the sliding of ¸ along itself induced by a rotation of the parameterizing circle.

No discriminant crossings occur under �
�

and �
�
. By the assumption of the lemma �

	�

(�

�
)"0

and �
	�


(�
�
)"0 (when �

�
is well de"ned). Thus �

	�

(	)"0, and because of the reasons explained in

the beginning of Section 8.3.10 we have proved Lemma 8.0.3 for F"K.
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Fig. 20.

8.3.11. Remark. One can verify that for the front on the Klein bottle shown in Fig. 20 the identity
�
	�

(�
�
)"0 does not follows from �

	�
(�

�
)"0. This means that the condition �

	�
(�

�
)"0 is needed

for the integrability of �.
This "nishes the proof of Lemma 8.0.3. �

9. Proof of Theorem 3.2.1

Theorem 4.2.1 implies that to prove Theorem 3.2.1 it su$ces to show that �
�
�
(�

�
)"0.

Clearly the input into �
�
�

of the deformation r of ¸ to a front with two opposite kinks cancels
out with the input of r��. Thus it su$ces to show that �

�
�

under the sliding of the kink along ¸ is
zero. The only crossings of the K�-stratum, which occur under this sliding happen either when the
kink passes through a small neighborhood of a double point or of a cusp of ¸.

The kink passes twice through each double point of ¸. (Once along each intersecting branch.) As
one can verify (see Fig. 21) the two K�-equivalence classes corresponding to these events are equal
and the signs of the corresponding K�-stratum crossings are opposite. Thus the corresponding two
terms in �

�
�

cancel out. (One can verify that this part of the proof would not go through, if F is
nonorientable and the double point separates the front into two orientation-reversing loops.)

One can see (using Fig. 8) that either two or zero crossings of the K�-stratum occur under the
passage of the kink through a neighborhood of a cusp. If the number of crossings is zero, then
clearly there is no input into �

�
�
. In the case of two crossings one veri"es that the signs of them are

opposite and the corresponding K�-equivalence classes are equal. Thus the corresponding two
terms of �

�
�

also cancel out, and we have proved that �
�
�
(�

�
)"0. This "nishes the proof of

Theorem 3.2.1. �

10. Proof of Theorem 5.2.5

We prove the statement of the theorem only for the mapping �. The proof of the statements
about ��, ��, and �� is obtained in the similar way.

To show that � is surjective we take 	"(�
�
, �

�
, �

�
, i)3R

	
and construct ¸3¹ which realizes the

¹
�
-equivalence class of 	. Consider ¸�3¹ for which the element (��

�
, ��

�
, ��

�
, i�)3R

	
corresponding

to it is such that pr�
H

(�
�
)"pr�

H
(��

�
), pr�

H
(�

�
)"pr�

H
(��

�
), and pr�

H
(�

�
)"pr�

H
(��

�
) in �

�
(F, pr�(d)). Then
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Fig. 21.

Fig. 22.

�
�
"��

�
f �
�
, �

�
"��

�
f �
�

�
�
"��

�
f �
�

for some k, m, n3�. One veri"es that a small extra kink located on
one of the three loops of ¸ corresponds to the multiplication of the element of �

�
(S¹F) correspond-

ing to this loop by f��
�

. (Here the sign depends on which (locally well de"ned) side of the loop the
kink points to.) Using this operation we obtain the front ¸ corresponding to (�

�
, �

�
, �

�
, j)3R

	
, for

some j3�. Adding an extra pair of cusps of the same sign we can change �(¸) by $2. The three
elements of �

�
(S¹F) corresponding to ¸ are not changed by this operation. One can easily show

that i!j is even, and hence we can change ¸ so that it represent the ¹
�
-equivalence class of 	.

Hence � is surjective.
Below we show that � is injective. Let ¸

�
, ¸

�
3¹ be ¹

�
-equivalent fronts. To prove the theorem

we construct a path in the normalization of the triple point part of the discriminant that connects
the two fronts. We deform the fronts, so that under the lifting of fronts to Legendrian curves the
preimages of triple points are mapped to the same point c3S¹F. Let s

�
and s

�
be the elements of

�
�
(S¹F)��

�
(S¹F)��

�
(S¹F) corresponding to the deformed fronts. Since ¸

�
and ¸

�
are ¹

�
-

equivalent, one can transfer s
�

to s
�

by a consequent actions of elements j3�
�
, i"(i

�
, i
�
, i
�
)3��,

and �3�
�
(S¹F, c). We can assume that �(i(s

�
))"s

�
.

The local positive rotation by 2� of one of the three branches of ¸
�

passing through the triple
point (see Fig. 22) induces the multiplication on the right by f

�
of one of the three loops of s

�
, and

the multiplication on the left by f��
�

of the next loop of s
�
. Clearly, this rotation does not change the

¹M -equivalence class corresponding to ¸
�
. Applying this rotation su$ciently many times we deform

¸
�

so that �(s
�
)"s

�
.

Let ¸ be a front such that l"�3�
�
(S¹F), cf. Proposition 8.2.8. Consider a di!eotopy �

�
, t3S�,

of the small neighborhood of pr
�
(c) in F such that �

�
(pr

�
(c))"¸(t) and the di!erential of �

�
maps

the coorienting normal to ¸
�

at pr
�
(c) to the coorienting normal to ¸ at ¸(t). This di!eotopy can be

extended to the di!eotopy �
�

of the whole F. The di!eotopy �
�

induces a deformation of ¸
�

that
does not change its ¹M -equivalence class. Clearly s

�
"s

�
for the deformed ¸

�
.

As it shown in Fig. 17, one can slide a cusp through a point of the front in such a way that a point
and the coorienting normal at it do not move under the deformation. For both ¸

�
and ¸

�
slide
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all the cusps through a triple point, so that they are located on the "rst of the three loops of s
�

and s
�
. Cancel all the pairs of cusps of di!erent sign. (Clearly s

�
and s

�
are not changed during the

process.)
Compare the directions of the velocity vectors of the corresponding branches of ¸

�
and ¸

�
at the

triple point. One veri"es that either they are coherent in all the three pairs or they are opposite in all
the three pairs. If they are opposite, then take the last cusp on the saw-like piece of ¸

�
and slide it

around ¸
�

(as it described above) till it comes to the beginning of the saw-like piece. One veri"es
that after this the directions of velocity vectors of the three branches of ¸

�
change sign and become

coherent with the directions of the velocity vectors of the branches of ¸
�
. Deform ¸

�
and ¸

�
so that

they are identical in the neighborhood of the triple point.
One can lift an immersed oriented and cooriented interval 	 to an arc in S¹F by mapping a point

to the direction of the velocity vector at it or by mapping it to the direction of the coorienting
vector at it. The two liftings are denoted by 	� and 	�, respectively. Consider a pair 	

�
, 	

�
of

immersed oriented cooriented intervals that are identical in the neighborhood of the end points.
Clearly 	�

�
(0)"	�

�
(0), 	�

�
(1)"	�

�
(1), 	�

�
(0)"	�

�
(0), and 	�

�
(1)"	�

�
(1). One veri"es that if 	�

�
and

	�
�

are homotopic as arcs with "xed end points, then 	�
�

and 	�
�

are also homotopic as arcs with
"xed end points. A statement proved by Inshakov [10] says that if 	�

�
and 	�

�
are homotopic as arcs

with "xed points, then 	
�

is homotopic to 	
�

in the class of immersed arcs with "xed end points and
velocity vectors at them. Clearly this homotopy H(t,x) : I�IPF can be chosen so that
H(t, y)"	

�
(y)"	

�
(y), for all t3I and y3[0, �)�(1!�, 1], for some �'0. (Recall that 	

�
and

	
�

are assumed to be identical in the neighborhood of the end points.)
The triple point separates a front into three closed arcs. Consider a closed arc 	

�
of

¸
�

containing all the cusps and the corresponding arc 	
�

of ¸
�
. Deform the two arcs so that they

are identical on a small piece in the beginning of them that contains all the cusps. Denote by �
�

and
�
�

the subarcs of them where they are still di!erent. Since 	�
�

and 	�
�

are homotopic as arcs with
"xed end points (they correspond to the same summand in s

�
"s

�
), we get that ��

�
and ��

�
are

homotopic as arcs with "xed end points. As it was said above, this implies that ��
�

and ��
�

are
homotopic as arcs with "xed end points, and that �

�
and �

�
are homotopic in the class of immersed

arcs with "xed end points and velocity vectors at them. Performing the homotopy we make 	
�

and
	
�

identical. Other pairs of corresponding arcs of the two fronts are deformed to each other in the
similar way. For them the proof is even simpler since they do not contain cusps. This "nishes the
proof of Theorem 5.2.5.

(The last two steps of the proof can be done easier if one uses the relative version of the
h-principle proved for the Legendrian immersions by T. Duchamp in his unpublished preprint
[7].)

An important observation is that the constructed path in the normalization of the triple point
part of the discriminant can be slightly perturbed so that its projection to the discriminant crosses
only strata of codimension two and the crossings are transversal. Analogous facts are true in the
case of the other three statements of the theorem. �

10.1. Proof of Proposition 5.2.6.

Since we consider only the equivalence classes appearing in C, it is clear that all three mappings
are surjective. Hence it su$ces to show that these mappings are injective.
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Let ¸
�
, ¸

�
3C be K�-equivalent fronts. Clearly �(¸

�
)"�(¸

�
), which means that ¸

�
and ¸

�
are

K�
�

-equivalent. (The free homotopy class of a mapping of B
�

is the same as the element of
�
�
(S¹F)��

�
(S¹F) modulo the conjugation of both summands in it by the element of �

�
(S¹F).)

Now Theorem 5.2.5 implies that �� is injective.
To prove that �� is injective we note that the free homotopy class of an associated mapping of

� : B
�
PP¹F is the same as the element of �

�
(P¹F)��

�
(P¹F) modulo the conjugation of both

summands in it by an element of �
�
(P¹F), and that the restriction of � to a circle of B

�
represents

an element of ��
�

(P¹F). One veri"es that the class f of an oriented S�-"ber of P¹FPF is in the
center of �

�
(P¹F) (cf. Proposition 8.2.6), and that any 	3�

�
(P¹F) is equal to � f �, for some

�3��
�

(P¹F) and k3�. Hence the results of the factorization of ��
�

(P¹F) by the actions of �
�
(P¹F)

and of ��
�

(P¹F) via conjugation are the same. After this the proof of the fact that �� is injective is
the same as for ��.

To prove that � is injective it su$ces to show that if ¸
�
, ¸

�
3C are ¹-equivalent, then they are

¹
�
-equivalent (see Theorem 5.2.5). The elements (�

�
, �

�
, �

�
, i), (�

�
, �

�
, �

�
, i)3R

	
corresponding to

them can be chosen, so that �
�
"�

�
f ��
�

, �
�
"�

�
f ��
�

, �
�
"�

�
f ��
�

. Using the action of �� we can
change the element corresponding to ¸

�
, so that �

�
"�

�
, �

�
"�

�
, and �

�
"�

�
f �
�

for some k3�.
To prove the proposition it su$ces to show that f �

�
"1.

Since ¸
�

and ¸
�

belong to the same component of L, the h-principle implies that �"�
�
�
�
�
�

and ��"�
�
�
�
�
�
f �
�

are conjugate in �
�
(S¹F). Hence

��"�� f � (10)

for some �3�
�
(S¹F).

If F"S�, then �
�
(S¹F)"�

�
, which implies that f �"1.

If F"¹�, then �
�
(S¹F)"�����, which implies that k"0 and f �"1.

For FOS�, ¹� we note that projections of � and � to F commute in �
�
(F). From Propositions

8.2.17 and 8.2.6 we get that �"	� f �
�

and �"	� f �
�
, for some i, j,m, n3� and 	3�

�
(S¹F). Substitu-

ting these expressions into (10) and using Proposition 8.2.6 we get that f �"1. (Recall that F is
assumed to be orientable.) This "nishes the proof of Proposition 5.2.6. �

11. Proof of Theorem 6.0.3

The I� invariant corresponds to some G-valued function on the set of connected components of
the normalization of the dangerous self-tangency part of the discriminant. (This function deter-
mines I� in C up to the choice of an additive constant.) The connected components of the
normalization of the dangerous self-tangency part of the discriminant in C are in the natural
one-to-one correspondence with the K� equivalence classes of fronts in K��C, see Proposition
5.2.6. Let R� be the factor of the set �

�
(S¹F)��

�
(S¹F) modulo the actions of �

�
acting by

permutation of summands and of �
�
(S¹F) acting by conjugation of both summands. The h-

principle says that the component of L containing l is de"ned by a conjugacy classes realized by
lo in �

�
(CS¹F) or, which is the same, by the conjugacy class of l3�

�
(S¹F) and the Maslov index of

¸. Thus the set of K�-equivalence classes of fronts in C is naturally identi"ed with the subset
R�C LR� whose elements are represented by (	

�
, 	

�
)3�

�
(S¹F)��

�
(S¹F) such that 	

�
	
�

is
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conjugate to l in �
�
(S¹F). (Here ¸ is a front from C.) We denote by R� the set which is a factor of

�
�
(F)��

�
(F) modulo the actions of �

�
permuting the summands and of �

�
(F) acting by conjuga-

tion. Since f
�

is in the center of �
�
(S¹F) (see Proposition 8.2.6) and generates ker pr�

H
we get that

pr�
H

induces the natural mapping p : R�C PR�. (It is the projection on each summand.)
We denote by �[R�C ] the free �-module of formal "nite integer linear combinations of the

elements of R�C . We denote by [s
�
, s

�
] the element of R�C realized by (s

�
, s

�
)3�

�
(S¹F)��

�
(S¹F).

Let � be a generic path in C connecting ¸
�

to ¸
�
. To prove the theorem it su$ces to show that if

I�(¸
�
)"I�(¸

�
), then the algebraic sum of the signs of crossings of � with the part of the

K�-stratum corresponding to k�3K� is zero for every k�.
Consider the homomorphism g : �[R�C ]P�[R�C ] which maps [s

�
, s

�
] to 2[s

�
, s

�
]

![s
�
f
�
, s

�
f��
�

]![s
�
f��
�

, s
�
f
�
]. (This homomorphism is induced by the behavior of I� under

crossings of the K�-stratum.) To prove the theorem it su$ces to show that kerg"0. One
veri"es that �[R�C ] splits into a direct sum over Im p(R�C ) of submodules which are "nite linear
combinations of elements of R�C projecting to the same element of R�. Clearly g maps every
summand to itself. Thus it su$ces to show that the restriction of g to every summand has trivial
kernel.

Fix r�3[R�C ]. Below we construct the ordering on p��(p(r�)), which makes it isomorphic (as an
ordered set) to � or to � (depending on r�). One veri"es that the matrix of the restriction of g to
�[p��(p(r�))] written with respect to the basis which is the ordered p��(p(r�)) is tridiagonal with all
nonzero entries on the diagonal below the main one. This implies the statement of the theorem.

To construct the ordering on p��(p(r�)) we need the following technical proposition.

11.0.1. Proposition. Let FOS� be an orientable surface and 	
�
, 	

�
elements of �

�
(S¹F).

(a) 	
�
, 	

�
commute in �

�
(S¹F) provided that pr�

H
(	

�
) and pr�

H
(	

�
) commute in �

�
(F).

(b) If pr�
H

(	
�
) and pr�

H
(	

�
) are conjugate in �

�
(F), then there exists a unique i3� such that 	

�
and

	
�
f �
�
are conjugate in �

�
(S¹F).

(c) Let �
�
, �

�
3�

�
(S¹F) be such that (�	

�
���,�	

�
���)"(�

�
,�

�
)3�

�
(S¹F)��

�
(S¹F) for some

�3�
�
(S¹F). If there exists �3�

�
(F) such that � pr�

H
(	

�
)���"pr�

H
(	

�
) and � pr�

H
(	

�
)���"pr�

H
(	

�
),

then pr�
H

(	
�
)"pr�

H
(	

�
), pr�

H
(�

�
)"pr�

H
(�

�
); and hence there exist unique i, j3� such that 	

�
"	

�
f �
�
,

�
�
"�

�
f �
�
. Moreover i"j.

The proof of the proposition is straightforward. It is based on Propositions 8.2.17 and 8.2.6 and
the facts that f

�
generates ker pr�

H
and that �

�
(S¹¹�)"��.

For every r�3R�C the set p��(p(r�)) has a natural ordering such that as an ordered set it is
isomorphic to either � or �.

The ordering is constructed as follows:
(a) If r� can be realized as (	

�
, 	

�
) such that � pr�

H
(	

�
)���"pr�

H
(	

�
) and � pr�

H
(	

�
)���"pr�

H
(	

�
),

for some �3�
�
(F), then any realization of an element of p��(p(r�)) has this property. From

Proposition 11.0.1(c) we get that every element of p��(p(r�)) determines a unique i3� such that
k� can be realized as (	

�
, 	

�
) with 	

�
f �
�
"	

�
. One veri"es that these natural numbers are di!erent

for di!erent elements of p��(p(r�)). The ordering on p��(p(r�)) is induced by the magnitude of i3�

and it makes p��(p(k�)) isomorphic to �.
(b) If r� cannot be realized as an element of the type described above, then none of the elements

of p��(p(r�)) can. This allows us to distinguish one loop of p(r�). We use the �
�

action on
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�
�
(S¹F)��

�
(S¹F) (used to introduce R�) to interchange the two loops, so that the "rst loop

projects to the distinguished loop of p(r�). We get that every element of p��(p(r�)) can be realized in
a unique way as an element of the set R which is the factor of �

�
(S¹F)��

�
(S¹F) modulo the action

of �
�
(S¹F) by conjugation of both summands. If (s

�
, s

�
) and (s

�
, s

�
)3R realize two elements of

p��(p(r�)), then there exists a unique i3� such that s
�
f �
�

is conjugate to s
�
, see Proposition

11.0.1(b). As it was said in the beginning of the proof, s
�
s
�

and s
�
s
�

are conjugate in �
�
(S¹F), since

they correspond to nongeneric fronts from the same connected component of L. One uses this to
verify that if i"0, then (s

�
, s

�
) and (s

�
, s

�
) realize the same element of p��(p(r�)). The ordering on

p��(p(r�)) is induced by the magnitude of i and it makes p��(p(r�)) isomorphic to �.
This "nishes the proof of Theorem 6.0.3. �

12. Proof of theorems describing homotopy groups of L

12.1. Proof of Theorems 7.1.1, 7.1.2, 7.2.1, and 7.2.2

Propositions 8.2.2 and 8.2.10 reduce the proof of the theorems to the calculations of the
centralizer of l3�

�
(S¹F, l(a)) and of the subgroup of it consisting of elements projecting to

orientation-preserving loops in F.
One veri"es that �

�
(S¹S�)"��, �

�
(S¹¹�)"�����, �

�
(S¹�P�)"�

�
, and that the gener-

ator of �
�
(S¹�P�) projects to an orientation-reversing loop in �P�.

The centralizers (and the generators of them) in the case where F is the Klein bottle are described
in 8.3.10.

One veri"es that:
(a) The subgroup of ���

�
, which is (�������

�
)�(��		���		

�
), is generated by �(1,1),(0,2)� and is

isomorphic to ���
�
.

(b) The subgroup of ���, which is (�������)�(��		���		), is generated by �(1,1),(0,2)� and is
isomorphic to ���.

(c) The subgroup of ���
�
(S¹K) which is (���������

�
(S¹K))�(��		�����

�
(S¹K)), is generated by

�(2,1), (0, l
�
), (1, l

�
), (0, f

�
)� and is isomorphic to ���

�
(S¹K). (Here l

�
, l
�
, f
�

are the generators of
�
�
(S¹K), see (9).)
Combining these results with Propositions 8.2.2 and 8.2.10 we get the proof of the theorems. �

12.2. Proof of Theorems 7.1.3 and 7.2.3.

We are going to prove, that the statement of Theorem 7.2.3 is true for any orientable surface
FOS�, ¹� and any nonorientable FO�P�,K. (We will see that l3�

�
(S¹F, l(a)) can be presented

in the unique way as l�
�
f �
�

3�
�
(S¹F, l(a)) for any FOS�,�P�, ¹�,K.)

Clearly this gives a proof of Theorem 7.2.3. Theorem 7.1.3 is also an immediate consequence of
this fact.

12.2.1. Proof of Theorems 7.1.3 and 7.2.3 in the case of LO13�1 (F, L(a)). Proposition 8.2.2 says
that �

�
(L, ¸) is isomorphic to Z(lo ), the centralizer of lo 3�

�
(CS¹F, lo (a)). Proposition 8.2.10
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allows us to reduce the calculation of Z(lo ) to the calculation of Z(l)(�
�
(S¹F, l(a)), which is done

below.
Consider a subgroup G� of �

�
(F, ¸(a)) generated by ¸. It is an in"nite cyclic group (see

Proposition 8.2.17). There is a unique (see Proposition 8.2.17) maximal in"nite cyclic group
G(�

�
(F, ¸(a)) containing G�. Let g be the generator of G. Let ¸

�
be a front such that ¸

�
(a)"¸(a),

and l
�
"g3�

�
(S¹F, l(a)).

Take 	3Z(l). Since l and 	 commute in �
�
(S¹F, l(a)) we get that their projections to F commute

in �
�
(F, ¸(a)). Proposition 8.2.17 implies that these projections are in the subgroup G. The kernel of

the homomorphism pr�
H

is generated by f
�
, which has in"nite order in �

�
(S¹F) for our surfaces F.

This fact and Proposition 8.2.6 imply that there exist unique i, j,m, n3� such that g"l�
�
f �
�

and
	"l�

�
f �
�
.

Using Proposition 8.2.6 we "nd all values of k, l, m, n such that the elements 	 and l commute.
This allows us to calculate Z(l ). It turns out to be:

(a) A group isomorphic to ��� generated by �l
�
, f
�
�, provided that g is an orientation-

preserving loop.
(b) A group isomorphic to � generated by l

�
f �
�
, provided that g is an orientation-reversing loop

and that i is odd. (This means that ¸ is an orientation-reversing front.) Note also that in this case
(l
�
f �
�
)�"l�

�
.

(c) A group isomorphic to ��� generated by �l�
�
, f
�
�, provided that g is an orientation-reversing

loop, iO0 is even, and jO0.
(d) A group isomorphic to �

�
(K) generated by �l

�
, f
�
�, provided that g is an orientation-reversing

loop, iO0 is even and j"0.
(Note that if i"0, then ¸"13�

�
(S¹F), which contradicts to our assumption.)

One veri"es that:
(a) The subgroup of ���, which is (�������)�(��		���		), is generated by �(1,1), (2,0)� and is

isomorphic to ���.
(b) The subgroup of ���

�
(K) which is (���������

�
(K))�(��		�����

�
(K)) is generated by

�(2,1), (0, b), (1, c)� and is isomorphic to ���
�
(K). (Here b and c are the generators of �

�
(K)"

�b, c�bc"cb���.)
Combining these results with Propositions 8.2.2 and 8.2.10 we obtain the proof of the two

theorems for this case. �

12.2.2. Proof of Theorems 7.1.3 and 7.2.3 in the case of L�13�1(F, L(a)). The kernel of pr�
H

is
generated by f

�
. Since ¸"13�

�
(F, ¸(a)) we get that l"f �

�
3�

�
(S¹F, l(a)), for some k3�. We

calculate the centralizer Z(l )"Z(f �
�
) of l3�

�
(S¹F, l(a)).

For the case of kO0 Proposition 8.2.6 implies that Z(l )"Z(f�
�
) coincides with �����

�
(S¹F, l(a)). If

k"0, then l"13�
�
(S¹F, l(a)) and Z(l)"�

�
(S¹F, l(a)).

Combining these results and Propositions 8.2.6 and 8.2.10 we obtain the proof of the two
theorems for this case. �

12.3. Proof of Theorem 7.3.1

The space L is weak homotopy equivalent to the space �CS¹F of all free loops in CS¹F, see
8.2.1.
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Consider a "bration of the space �CS¹F over CS¹F. The "ber �
�
CS¹F of the "bration over

x3CS¹F consists of all loops � :S�PCS¹F such that �(a)"x.
We obtain the following exact sequence:

2

/
P �

�
(�

�o ��
CS¹F, lo )

��H

P �
�
(�CS¹F, lo )

�H
P �

�
(CS¹F, lo (a))

/
P 2 . (11)

12.3.1. Lemma. If F is equal to S� or �P� and n*2, then

�
�
(�CS¹F, lo )"�

�
(�

�o ��
CS¹F, lo )��

�
(CS¹F, lo (a)). (12)

12.3.2. Proof of Lemma 12.3.1. Fix n'1. We construct a homomorphism g : �
�
(CS¹F, lo (a)) P

�
�
(�CS¹F, lo ) such that t

H
�g"id�� ���	�� �o ��

. Since the sequence (11) is exact and the groups are
Abelian, the existence of such g implies the statement of the lemma.

We describe this construction for F"�P�. The construction of g for F"S� can be easily
deduced from this one. From the exact homotopy sequences of the "brations CS¹�P�PS¹�P�
and S¹S�PS¹�P� we get that �

�
(CS¹�P�), �

�
(S¹�P�), and �

�
(S¹S�), n*2, are canonically

isomorphic.
Take s : S�PS¹�P� that corresponds under these isomorphisms to a given element of

�
�
(CS¹�P�, lo (a)). Let s� : S� PS¹S� be the mapping which is a lifting of s under the covering

S¹S�PS¹�P�. Fix an orientation on S�. Then for every x3S� the local orientation at
pr�(s�(x))3S� induces a local orientation at pr�(s(x))3�P�.

There is a unique isometric autodi!eomorphism I
�

of �P� such that

(a) it maps pr�(s(*)) to pr�(s(x));
(b) the di!erential of it sends s(*) to s(x);
(c) the local orientation at pr�(s(x)), which is described above, coincides with the one induced by

the di!erential of I
�

from the local orientation at pr�(s(*)).

Let s� : S�P�CS¹�P� be the mapping that sends x3S� to h(I
�
(l )) (the lifting to CS¹�P� of the

translation of l by I
�
).

Set the value of g on the element of �
�
(CS¹�P�, lo (a)) corresponding to s to be the element of

�
�
(�CS¹�P�, lo ) represented by s� . A straightforward veri"cation shows that g is the desired

homomorphism from �
�
(CS¹�P�, lo (a)) to �

�
(�CS¹�P�, lo ). This "nishes the proof of Lemma

12.3.1. �

12.3.3. One veri"es that �
�
(CS¹F)"0 and �

�
(CS¹F)"�

�
(S�), n*3, for F equal to S� or �P�.

Now Lemma 12.3.1, isomorphism �
�
(�

�o ��
CS¹F, lo )"�

���
(CS¹F, lo (a)), and the weak homotopy

equivalence given by the h-principle (see 8.2.1) imply the "rst statement of the Theorem. (Note that
�
�
(S�)"�.)
One veri"es that �

�
(S¹F)"0, n*2, for FOS�, �P�. The exactness of sequence (11) and the

isomorphism �
�
(�

�o ��
CS¹F, lo )"�

���
(CS¹F, lo (a)) imply that �

�
(�CS¹F, lo )"0, n*2. Using the

weak homotopy equivalence given by the h-principle we get the second statement of the Theorem.
This "nishes the proof of Theorem 7.3.1. �
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