The minimal polynomial over \mathbb{F}_q of linear recurring sequence over \mathbb{F}_{q^m}

Zhi-Han Gaoa, Fang-Wei Fu$^b, \ast$

a Chern Institute of Mathematics, Nankai University, Tianjin 300071, PR China
b Chern Institute of Mathematics and the Key Laboratory of Pure Mathematics and Combinatorics, Nankai University, Tianjin 300071, PR China

Abstract

Recently, motivated by the study of vectorized stream cipher systems, the joint linear complexity and joint minimal polynomial of multisequences have been investigated. Let S be a linear recurring sequence over finite field \mathbb{F}_{q^m} with minimal polynomial $h(x)$ over \mathbb{F}_{q^m}. Since \mathbb{F}_{q^m} and \mathbb{F}_q are isomorphic vector spaces over the finite field \mathbb{F}_q, S is identified with an m-fold multisequence $S^{(m)}$ over the finite field \mathbb{F}_q. The joint minimal polynomial and joint linear complexity of the m-fold multisequence $S^{(m)}$ are the minimal polynomial and linear complexity over \mathbb{F}_q of S, respectively. In this paper, we study the minimal polynomial and linear complexity over \mathbb{F}_q of a linear recurring sequence S over \mathbb{F}_{q^m} with minimal polynomial $h(x)$ over \mathbb{F}_{q^m}. If the canonical factorization of $h(x)$ in $\mathbb{F}_{q^m}[x]$ is known, we determine the minimal polynomial and linear complexity over \mathbb{F}_q of the linear recurring sequence S over \mathbb{F}_{q^m}.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q^m} be a finite field with q^m elements, which contains a subfield \mathbb{F}_q with q elements. Let $S = (s_0, s_1, \ldots, s_n, \ldots)$ be a linear recurring sequence over \mathbb{F}_{q^m}. The monic polynomial $f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n \in \mathbb{F}_{q^m}[x]$ is called a characteristic polynomial over \mathbb{F}_{q^m} of S if

$$a_0s_k + a_1s_{k+1} + a_2s_{k+2} + \cdots + a_{n-1}s_{k+n-1} + s_{k+n} = 0, \text{ for all } k \geq 0.$$
If the characteristic polynomial \(f(x) \) is a polynomial over \(\mathbb{F}_q \), that is, all \(a_i \in \mathbb{F}_q \), we call \(f(x) \) a characteristic polynomial over \(\mathbb{F}_q \). Since the linear recurring sequence \(S \) over \(\mathbb{F}_q \) is ultimately periodic, a characteristic polynomial over \(\mathbb{F}_q \) of \(S \) does exist. The minimal polynomial over \(\mathbb{F}_q^m \) (resp. \(\mathbb{F}_q \)) of \(S \) is the uniquely determined characteristic polynomial over \(\mathbb{F}_q^m \) (resp. \(\mathbb{F}_q \)) of \(S \) with least degree. The linear complexity over \(\mathbb{F}_q^m \) (resp. \(\mathbb{F}_q \)) of \(S \) is the degree of the minimal polynomial over \(\mathbb{F}_q^m \) (resp. \(\mathbb{F}_q \)) of \(S \). Let \(h(x) \) be the minimal polynomial over \(\mathbb{F}_q^m \) of \(S \). It is known that \(h(x) | f(x) \) for any characteristic polynomial \(f(x) \) over \(\mathbb{F}_q^m \) of \(S \). Similarly, let \(H(x) \) be the minimal polynomial over \(\mathbb{F}_q^m \) of \(S \), we have \(H(x) | f(x) \) for any characteristic polynomial \(f(x) \) over \(\mathbb{F}_q^m \) of \(S \). Note that a characteristic polynomial \(f(x) \) over \(\mathbb{F}_q^m \) of \(S \) is also a characteristic polynomial over \(\mathbb{F}_q^m \) of \(S \). Hence, \(h(x) | f(x) \) for any characteristic polynomial \(f(x) \) over \(\mathbb{F}_q^m \) of \(S \). In particular, \(h(x) | H(x) \).

Similarly, for any \(m \)-fold multisequence \(S^{(m)} = (S_1, S_2, \ldots, S_m) \) over \(\mathbb{F}_q \), the monic polynomial \(g(x) \in \mathbb{F}_q[x] \) is called a joint characteristic polynomial of \(S^{(m)} \) if \(g(x) \) is a characteristic polynomial of \(S_j \) for each \(1 \leq j \leq m \). The joint minimal polynomial of \(S^{(m)} \) is the uniquely determined joint characteristic polynomial of \(S^{(m)} \) with least degree, and the joint linear complexity of \(S^{(m)} \) is the degree of the joint minimal polynomial of \(S^{(m)} \). Since \(\mathbb{F}_q^m \) and \(\mathbb{F}_q \) are isomorphic vector spaces over the finite field \(\mathbb{F}_q \), a linear recurring sequence \(S \) over \(\mathbb{F}_q^m \) is identified with an \(m \)-fold multisequence \(S^{(m)} \) over \(\mathbb{F}_q \). It is well known that the joint minimal polynomial and joint linear complexity of the \(m \)-fold multisequence \(S^{(m)} \) are the minimal polynomial and linear complexity over \(\mathbb{F}_q \) of \(S \), respectively.

The linear complexity of sequences is one of the important security measures for stream cipher systems (see [2,5,26,27]). For a general introduction to the theory of linear feedback shift register systems (see [2,5,26,27]), for a recent survey paper, see Niederreiter [21]. The notion of linear complexity over \(\mathbb{F}_q \) of linear recurring sequences over \(\mathbb{F}_q^m \) was introduced by Ding, Xiao and Shan in [5], and discussed by some authors, for example, see [1,12,14–18,20,21,23]. Recently, in the study of vectorized stream cipher systems, the joint linear complexity of multisequences has been extensively investigated (see [3,4,6–11,14–25,28–30]).

In this paper, we study the minimal polynomial and linear complexity over \(\mathbb{F}_q \) of a linear recurring sequence \(S \) over \(\mathbb{F}_q^m \) with minimal polynomial \(h(x) \) over \(\mathbb{F}_q^m \). If the canonical factorization of \(h(x) \) in \(\mathbb{F}_q^m[x] \) is known, we determine the minimal polynomial and linear complexity over \(\mathbb{F}_q \) of the linear recurring sequence \(S \) over \(\mathbb{F}_q^m \). The rest of the paper is organized as follows. In Section 2 we introduce and give some results on linear recurring sequences that will be used in this paper. In Section 3 we introduce a ring automorphism of the polynomial ring \(\mathbb{F}_q^m[x] \). We derive some results on this polynomial ring automorphism that are crucial to establish the main results in this paper. In Section 4 we determine the minimal polynomial and linear complexity over \(\mathbb{F}_q \) of a linear recurring sequence \(S \) over \(\mathbb{F}_q^m \) with minimal polynomial \(h(x) \) over \(\mathbb{F}_q^m \). In Section 5 we give a new proof for the lower bound of Meidl and Özbudak [17] on the linear complexity over \(\mathbb{F}_q^m \) of linear recurring sequence \(S \) over \(\mathbb{F}_q^m \) with given minimal polynomial \(g(x) \) over \(\mathbb{F}_q \). We show that this lower bound is tight if and only if the minimal polynomial over \(\mathbb{F}_q^m \) of \(S \) is in a certain form.

2. Linear recurring sequences

Let \(f(x) \) be a monic polynomial over \(\mathbb{F}_q \). Denote \(\mathcal{M}(f(x)) \) the set of all linear recurring sequences over \(\mathbb{F}_q \) with characteristic polynomial \(f(x) \). Note that \(\mathcal{M}(f(x)) \) is a vector space over \(\mathbb{F}_q \) with dimension \(\deg(f(x)) \). We need the following results on linear recurring sequences from [13]:

Theorem 1. (See [13, Theorem 8.55].) Let \(f_1(x), \ldots, f_k(x) \) be monic polynomials over \(\mathbb{F}_q \). If \(f_1(x), \ldots, f_k(x) \) are pairwise relatively prime, then the vector space \(\mathcal{M}(f_1(x) \cdots f_k(x)) \) is the direct sum of the subspaces \(\mathcal{M}(f_1(x)), \ldots, \mathcal{M}(f_k(x)) \), that is

\[
\mathcal{M}(f_1(x) \cdots f_k(x)) = \mathcal{M}(f_1(x)) + \cdots + \mathcal{M}(f_k(x)).
\]

Theorem 2. (See [13, Theorem 8.57].) Let \(S_1, S_2, \ldots, S_k \) be linear recurring sequences over \(\mathbb{F}_q \). The minimal polynomials over \(\mathbb{F}_q^m \) of \(S_1, S_2, \ldots, S_k \) are \(h_1(x), h_2(x), \ldots, h_k(x) \), respectively. If \(h_1(x), h_2(x), \ldots, h_k(x) \) are
pairwise relatively prime, then the minimal polynomial over \mathbb{F}_q of $\sum_{i=1}^k S_i$ is the product of $h_1(x), h_2(x), \ldots, h_k(x)$.

It is easy to extend this result to the following case:

Lemma 1. Let S_1, S_2, \ldots, S_k be linear recurring sequences over \mathbb{F}_q. The minimal polynomials over \mathbb{F}_q of S_1, S_2, \ldots, S_k are $H_1(x), H_2(x), \ldots, H_k(x)$, respectively. If $H_1(x), H_2(x), \ldots, H_k(x)$ are pairwise relatively prime over \mathbb{F}_q, then the minimal polynomial over \mathbb{F}_q of $\sum_{i=1}^k S_i$ is the product of $H_1(x), H_2(x), \ldots, H_k(x)$.

Now we establish the following lemma which will be used in this paper:

Lemma 2. Let S be a linear recurring sequence over \mathbb{F}_q. The minimal polynomial over \mathbb{F}_q of S is given by $\sigma(x) = h_1(x)h_2(x) \cdots h_k(x)$ where $h_1(x), h_2(x), \ldots, h_k(x)$ are monic polynomials over \mathbb{F}_q. If $h_1(x), h_2(x), \ldots, h_k(x)$ are pairwise relatively prime, then there uniquely exist sequences S_1, S_2, \ldots, S_k over \mathbb{F}_q such that

$$S = S_1 + S_2 + \cdots + S_k$$

and the minimal polynomials over \mathbb{F}_q of S_1, S_2, \ldots, S_k are $h_1(x), h_2(x), \ldots, h_k(x)$, respectively.

Proof. By Theorem 1, we have

$$\mathcal{M}(\sigma(x)) = \mathcal{M}(h_1(x)) + \cdots + \mathcal{M}(h_k(x)).$$

Then, there uniquely exist sequences S_1, S_2, \ldots, S_k over \mathbb{F}_q such that $S_j \in \mathcal{M}(h_j(x))$ and

$$S = S_1 + S_2 + \cdots + S_k.$$

Assume that the minimal polynomial over \mathbb{F}_q of S_j is $h_j'(x)$ which is a divisor of $h_j(x)$ for $1 \leq j \leq k$. By Theorem 2, the minimal polynomial over \mathbb{F}_q of S is $\prod_{j=1}^k h_j'(x)$. Thus,

$$h_1'(x)h_2'(x) \cdots h_k'(x) = h_1(x)h_2(x) \cdots h_k(x).$$

Since $h_j'(x)|h_j(x)$ for $1 \leq j \leq k$, we have

$$h_j'(x) = h_j(x), \quad 1 \leq j \leq k,$$

which completes the proof. □

3. Polynomial ring automorphism

We define σ to be a mapping from the polynomial ring $\mathbb{F}_q[x]$ to itself as follows: For $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{F}_q[x],$

$$\sigma : \mathbb{F}_q[x] \rightarrow \mathbb{F}_q[x],$$

$$f(x) \rightarrow \sigma(f(x))$$

where $\sigma(f(x)) = a_0^q + a_1^qx + \cdots + a_n^q x^n$. It is easy to see that σ is a ring automorphism of $\mathbb{F}_q[x]$. Throughout the paper, we will use the fact that

$$\sigma(f(x)g(x)) = \sigma(f(x))\sigma(g(x)), \quad \text{for any } f(x), g(x) \in \mathbb{F}_q[x].$$
Denote $\sigma^{(k)}$ the kth usual composition of σ. Note that $\sigma^{(0)}$ is the identity mapping. Since $a^{q^m} = a$ for any $a \in \mathbb{F}_{q^m}$, we have $\sigma^{(m)}(f(x)) = f(x)$. Denote $k(f)$ the minimum positive integer k such that $\sigma^{(k)}(f(x)) = f(x)$.

Lemma 3. For any $f(x) \in \mathbb{F}_{q^m}[x]$ and positive integer l, $\sigma^{(l)}(f(x)) = f(x)$ if and only if $k(f)|l$.

Proof. It is easy to see that $\sigma^{(l)}(f(x)) = f(x)$ if $k(f)|l$. On the other hand, if $\sigma^{(l)}(f(x)) = f(x)$, we assume that $l = k(f)w + r$ and $0 \leq r < k(f)$. Then

\[f(x) = \sigma^{(l)}(f(x)) = \sigma^{(r)}(\sigma^{(k(f)w)}(f(x))) = \sigma^{(r)}(f(x)). \]

Hence, $r = 0$ by the definition of $k(f)$. Therefore, $k(f)|l$. \(\square\)

Now we define an equivalence relation \sim on $\mathbb{F}_{q^m}[x]$: $f(x) \sim g(x)$ if and only if there exists positive integer j such that $\sigma^{(j)}(f(x)) = g(x)$. The equivalence classes induced by this equivalence relation \sim are called σ-equivalence classes.

Lemma 4. Let $f(x)$ be a polynomial over \mathbb{F}_{q^m}. Then $\sigma(f(x))$ is irreducible over \mathbb{F}_{q^m} if and only if $f(x)$ is irreducible over \mathbb{F}_{q^m}.

Proof. Since $f(x) \in \mathbb{F}_{q^m}[x]$, we have $f(x) = \sigma^{(m)}(f(x))$. Then, we only need to prove that $\sigma(f(x))$ is irreducible over \mathbb{F}_{q^m} if $f(x)$ is irreducible over \mathbb{F}_{q^m}. Assume that $\sigma(f(x))$ is not irreducible over \mathbb{F}_{q^m}, that is to say there exist two nonconstant polynomials $r_1(x), r_2(x)$ in $\mathbb{F}_{q^m}[x]$ such that $\sigma(f(x)) = r_1(x)r_2(x)$. Therefore,

\[f(x) = \sigma^{(m)}(f(x)) = \sigma^{(m-1)}(\sigma(f(x))) = \sigma^{(m-1)}(r_1(x))\sigma^{(m-1)}(r_2(x)) \]

where $\sigma^{(m-1)}(r_1(x)), \sigma^{(m-1)}(r_2(x))$ are nonconstant polynomials over \mathbb{F}_{q^m}, which contradicts to the fact that $f(x)$ is irreducible over \mathbb{F}_{q^m}. Hence, $\sigma(f(x))$ is irreducible over \mathbb{F}_{q^m}. \(\square\)

The following theorem is crucial to establish the main results in this paper.

Theorem 3. Let $f(x)$ be a monic irreducible polynomial in $\mathbb{F}_{q^m}[x]$, then the product

\[f(x)\sigma^{(2)}(f(x))\cdots\sigma^{(k(f)-1)}(f(x)) \]

is an irreducible polynomial in $\mathbb{F}_q[x]$.

Proof. Let $\deg(f(x)) = n$. Then, by [13, Chapter 2, Theorem 2.14] there exists $\alpha \in \mathbb{F}_{q^{nm}}$ such that

\[f(x) = (x - \alpha)(x - \alpha^{q^m})(x - \alpha^{q^{2m}})\cdots(x - \alpha^{q^{(n-1)m}}) \tag{1} \]

where $\alpha, \alpha^{q^m}, \ldots, \alpha^{q^{(n-1)m}}$ are different roots of $f(x).$ Let $g(x)$ be the minimal polynomial of $\alpha \in \mathbb{F}_{q^{mn}}$ over \mathbb{F}_q. By [13, Chapter 2, Theorem 2.14], $g(x)$ is an irreducible polynomial over \mathbb{F}_q and

\[g(x) = (x - \alpha)(x - \alpha^q)(x - \alpha^{q^2})\cdots(x - \alpha^{q^{d-1}}) \tag{2} \]

where d is the least positive integer such that $\alpha^{q^d} = \alpha$. Since $\alpha^{q^{mn}} = \alpha$ and $\alpha, \alpha^q, \ldots, \alpha^{q^{(n-1)m}}$ are distinct, we have $d | mn$ but $d \nmid im$ for $1 \leq i \leq n - 1$. Then, we claim that d must be a multiple
of n. Otherwise, we have $\gcd(d, n) < n$. Since $d \mid mn$, then we have $\frac{d}{\gcd(d, n)} \mid \frac{mn}{\gcd(d, n)}$. Since $\frac{d}{\gcd(d, n)}$ and $\frac{n}{\gcd(d, n)}$ are relatively prime, we have $\frac{d}{\gcd(d, n)} \mid m$. Then, $d \mid \gcd(d, nm)$. This gives a contradiction since $\gcd(d, n) < n$. Therefore, d is a multiple of n. Let k be the positive integer such that $d = nk$. Since $d \mid mn$, then $k \mid m$. Let s be the positive integer such that $m = sk$. Then, we claim that s and n are relatively prime. Otherwise, we have $\frac{n}{\gcd(n, s)} < n$. Since $n \mid \frac{mn}{\gcd(n, s)}$, then $kn \mid \frac{kn}{\gcd(n, s)}$, that is $d \mid \gcd(n, s)$. This gives a contradiction since $\frac{n}{\gcd(n, s)} < n$. Therefore, s and n are relatively prime. Thus, \{ $s \mid j = 0, 1, \ldots, n - 1$ \} is a complete residue system modulo n, i.e., there exist $(i_0, i_1, \ldots, i_{n-1})$, a permutation of $(0, 1, 2, \ldots, n - 1)$, such that $js \equiv i_j \pmod{n}$. So we have $kjs \equiv ki_j \pmod{dk}$, i.e., $jm \equiv ki_j \pmod{d}$. Hence, $\alpha^{q^jm} = \alpha^{q^ji_j}$ for $0 \leq j \leq n - 1$. Therefore, it follows from (1) that

$$f(x) = (x - \alpha^{q^{ki_0}})(x - \alpha^{q^{ki_1}})(x - \alpha^{q^{ki_2}}) \cdots (x - \alpha^{q^{ni-1}})$$

$$= (x - \alpha)(x - \alpha^q)(x - \alpha^{2q}) \cdots (x - \alpha^{q(n-1)q}).$$

By (3) and the definition of σ, we have

$$\sigma^{(1)}(f(x)) = (x - \alpha^q)(x - \alpha^{2q})(x - \alpha^{3q}) \cdots (x - \alpha^{q(n-1)q}).$$

By (2)-(4) and note that $d = nk$, we have

$$g(x) = f(x)\sigma(f(x)) \cdots \sigma^{(k-1)}(f(x))$$

and

$$\sigma^{(k)}(f(x)) = (x - \alpha^q)(x - \alpha^{2q})(x - \alpha^{3q}) \cdots (x - \alpha^{qk}) = f(x).$$

Since d is the least positive integer such that $\alpha^d = \alpha$ and $d = nk$, we have that $f(x), \sigma(f(x)), \ldots, \sigma^{(k-1)}(f(x))$ are different from each other. Hence, $k = k(f)$. Therefore,

$$g(x) = f(x)\sigma(f(x)) \cdots \sigma^{(k(f)-1)}(f(x)).$$

Note that $g(x)$ is an irreducible polynomial over \mathbb{F}_q, we complete the proof. \Box

Let $f(x)$ be a monic irreducible polynomial in $\mathbb{F}_{q^n}[x]$. It is known from Lemma 4 that $f(x), \sigma(f(x)), \ldots, \sigma^{(k(f)-1)}(f(x))$ are irreducible polynomials in $\mathbb{F}_{q^n}[x]$. Denote

$$R(f(x)) = f(x)\sigma(f(x)) \cdots \sigma^{(k(f)-1)}(f(x)).$$

By Theorem 3, $R(f(x))$ is irreducible in $\mathbb{F}_q[x]$. Note that $R(f(x))$ is a multiple of $f(x)$ in $\mathbb{F}_{q^n}[x]$. Using Theorem 3, we could give a refined version of [13, Chapter 3, Theorem 3.46] as follows:

Theorem 4. Let $f(x)$ be a monic irreducible polynomial over \mathbb{F}_q and $n = \deg(f(x))$. Let m be a positive integer. Denote $u = \gcd(n, m)$. Then the canonical factorization of $f(x)$ into monic irreducibles over \mathbb{F}_{q^n} is given by

$$f(x) = h(x)\sigma(h(x)) \cdots \sigma^{(k(h)-1)}(h(x))$$

where $h(x)$ is a monic irreducible polynomial over \mathbb{F}_{q^m} and $k(h) = u$.
Proof. By [13, Chapter 3, Theorem 3.46], the canonical factorization of \(f(x) \) into monic irreducibles over \(\mathbb{F}_{q^m} \) is given by

\[
f(x) = f_1(x)f_2(x) \cdots f_u(x)
\]

where \(f_1(x), f_2(x), \ldots, f_u(x) \in \mathbb{F}_{q^m}[x] \) are distinct irreducible polynomials with the same degree. Let \(h(x) = f_1(x) \). By Theorem 3, \(R(h(x)) \) is an irreducible polynomial in \(\mathbb{F}_q[x] \). Since \(f(x) \) and \(R(h(x)) \) have a common factor \(h(x) \) in \(\mathbb{F}_{q^m}[x] \), \(f(x) \) and \(R(h(x)) \) are not relatively prime in \(\mathbb{F}_q[x] \). Note that \(f(x) \) and \(R(h(x)) \) are monic irreducible polynomials in \(\mathbb{F}_q[x] \). So, \(f(x) = R(h(x)) \). By Lemma 4, \(h(x), \sigma(h(x)), \ldots, \sigma^{(k(h)-1)}(h(x)) \) are all irreducible polynomials over \(\mathbb{F}_{q^m} \). Therefore, the canonical factorization of \(f(x) \) into monic irreducibles over \(\mathbb{F}_{q^m} \) is given by

\[
f(x) = h(x)\sigma(h(x)) \cdots \sigma^{(k(h)-1)}(h(x))
\]

and \(k(h) = u \). \(\square \)

In certain sense, Theorem 4 could be considered as a converse procedure of Theorem 3.

4. Minimal polynomials over \(\mathbb{F}_q \) and \(\mathbb{F}_{q^m} \)

Now we determine the minimal polynomial and linear complexity over \(\mathbb{F}_q \) of a linear recurring sequence \(S \) over \(\mathbb{F}_{q^m} \) with minimal polynomial \(h(x) \in \mathbb{F}_{q^m}[x] \).

Theorem 5. Let \(S \) be a linear recurring sequence over \(\mathbb{F}_{q^m} \) with minimal polynomial \(h(x) \in \mathbb{F}_{q^m}[x] \). Assume that the canonical factorization of \(h(x) \) in \(\mathbb{F}_{q^m}[x] \) is given by

\[
h(x) = \prod_{j=1}^{l} P_{j_0}^{e_{j_0}} P_{j_1}^{e_{j_1}} \cdots P_{j_l}^{e_{j_l}}
\]

where \(\{P_{uv}\} \) are distinct monic irreducible polynomials in \(\mathbb{F}_{q^m}[x] \), \(P_{j_0}, P_{j_1}, \ldots, P_{j_l} \) are in the same \(\sigma \)-equivalence class and \(P_{j_0}, P_{j_1}, \ldots, P_{j_l} \) are in the different \(\sigma \)-equivalence classes when \(u \neq t \). Then the minimal polynomial over \(\mathbb{F}_q \) of \(S \) is given by

\[
H(x) = \prod_{j=1}^{l} R(P_{j_0})^{e_j}
\]

where \(e_j = \max\{e_{j_0}, e_{j_1}, \ldots, e_{j_l}\} \) for \(1 \leq j \leq l \).

Proof. By Lemma 2, there uniquely exist sequences \(S_1, S_2, \ldots, S_l \) over \(\mathbb{F}_{q^m} \) such that

\[
S = S_1 + S_2 + \cdots + S_l
\]

and the minimal polynomial over \(\mathbb{F}_{q^m} \) of \(S_j \) is \(P_{j_0}^{e_{j_0}} P_{j_1}^{e_{j_1}} \cdots P_{j_l}^{e_{j_l}} \) for \(1 \leq j \leq l \). Let \(H_j(x) \) be the minimal polynomial over \(\mathbb{F}_q \) of \(S_j \). Since \(P_{j_0}, P_{j_1}, \ldots, P_{j_l} \) are in the same \(\sigma \)-equivalence class, then \(R(P_{j_0})^{e_j} \) is a multiple of \(P_{j_0}^{e_{j_0}} P_{j_1}^{e_{j_1}} \cdots P_{j_l}^{e_{j_l}} \). So, by Theorem 3, \(R(P_{j_0})^{e_j} \) is a characteristic polynomial over \(\mathbb{F}_q \) of \(S_j \). Hence, \(H_j(x) \) divides \(R(P_{j_0})^{e_j} \) in \(\mathbb{F}_q[x] \). Since, by Theorem 3, \(R(P_{j_0}) \) is irreducible over \(\mathbb{F}_q \), we have \(H_j(x) = R(P_{j_0})^{e_j} \) where \(e_j \leq e_j \). By the definition of \(e_j \), there exists \(e_{ju_j} \) such that
Lemma 1, the minimal polynomial over \mathbb{F}_q of S_j is of the following form:

$$R(P_v^0) = P_v^0 \sigma(P_v) \cdots \sigma^{(k(P_v^0) - 1)}(P_v).$$

Since P_{u0} is irreducible over \mathbb{F}_q, there exists a positive integer j such that $P_{u0} = \sigma^{(j)}(P_v)$. This contradicts to the fact that P_{u0} and P_v are in the different σ-equivalence classes. Therefore, $R(P_{u0})_{\ell u}$ and $R(P_v)_{\ell v}$ are relatively prime. Then, $H_1(x), H_2(x), \ldots, H_l(x)$ are pairwise relatively prime. By Lemma 1, the minimal polynomial over \mathbb{F}_q of $S = \sum_{j=1}^l S_j$ is the product of $H_1(x), H_2(x), \ldots, H_l(x)$. Therefore, we have

$$H(x) = \prod_{j=1}^l R(P_{j0})_{\ell j}$$

which completes the proof. \(\square\)

Corollary 1. Under the notation of Theorem 5, the linear complexity over \mathbb{F}_q of S is given by

$$L_{\mathbb{F}_q}(S) = \sum_{j=1}^l e_j k(P_{j0}) \deg(P_{j0})$$

where $k(f)$ is defined in Section 3.

Using Theorem 5, we could also give a refinement of [18, Proposition 2.1]:

Theorem 6. Let $f(x)$ be a polynomial over \mathbb{F}_q with $\deg(f) \geq 1$. Suppose that

$$f = r_1^{e_1} r_2^{e_2} \cdots r_l^{e_l}, \quad e_1, e_2, \ldots, e_l > 0,$$

is the canonical factorization of f into monic irreducibles over \mathbb{F}_q. Denote $n_i = \deg(r_i)$. Suppose by Theorem 4 that the canonical factorization of $r_i(x)$ into monic irreducibles over \mathbb{F}_q^m is given by

$$r_i(x) = P_i(x) \sigma^{(1)}(P_i(x)) \cdots \sigma^{(u_i - 1)}(P_i(x))$$

where $u_i = \gcd(n_i, m) = k(P_i(x))$. Let S be a linear recurring sequence over \mathbb{F}_q^m. Then, the minimal polynomial over \mathbb{F}_q of S is $f(x)$ if and only if the minimal polynomial $h(x)$ over \mathbb{F}_q^m of S is of the following form:

$$h(x) = \prod_{i=1}^l P_i^{e_{i0}} \sigma^{(1)}(P_i)^{e_{i1}} \cdots \sigma^{(u_i - 1)}(P_i)^{e_{ui} - 1}$$

where $0 \leq e_{ij} \leq e_i$ and $\max(e_{i0}, e_{i1}, \ldots, e_{ui-1}) = e_i$ for every $i = 1, 2, \ldots, l$.

Proof. It follows from Theorem 5 that the minimal polynomial over \(\mathbb{F}_q \) of \(S \) is \(f(x) \) if the minimal polynomial \(h(x) \) over \(\mathbb{F}_{q^m} \) of \(S \) is given by (7).

Conversely, suppose that the minimal polynomials over \(\mathbb{F}_q \) of \(S \) is \(f(x) \). Then, \(h(x) \) is a factor of \(f(x) \) in \(\mathbb{F}_{q^m}[x] \) since \(f(x) \) is also a characteristic polynomial over \(\mathbb{F}_{q^m} \) of \(S \). By (5) and (6), the canonical factorization of \(f(x) \) into monic irreducibles over \(\mathbb{F}_{q^m} \) is given by

\[
f(x) = \prod_{i=1}^{l} P_i^{e_i}(x) \sigma^{(1)}(P_i)^{e_{i1}} \cdots \sigma^{(u_i-1)}(P_i)^{e_{iu_i-1}}.
\]

So \(h(x) \) must be of the form

\[
h(x) = \prod_{i=1}^{l} P_i^{e_{i0}}(x) \sigma^{(1)}(P_i)^{e_{i1}} \cdots \sigma^{(u_i-1)}(P_i)^{e_{iu_i-1}}
\]

where \(0 \leq e_{ij} \leq e_i \) for every \(i = 1, 2, \ldots, l \). By Theorem 5, the minimal polynomial over \(\mathbb{F}_q \) of \(S \) is given by

\[
H(x) = \prod_{i=1}^{l} R_i(x)^{e_i} = \prod_{i=1}^{l} r_i(x)^{e'_i}
\]

where \(e'_i = \max\{e_{i0}, e_{i1}, \ldots, e_{iu_i-1}\} \). Due to the uniqueness of the minimal polynomial over \(\mathbb{F}_q \) of \(S \), we have \(H(x) = f(x) \). Hence, \(e'_i = e_i \). Therefore, the minimal polynomial \(h(x) \) over \(\mathbb{F}_{q^m} \) of \(S \) is of the form (7). This completes the proof. \(\square \)

At the end of this section, we give an example to illustrate Theorem 5 and Corollary 1.

Example 1. Let \(\mathbb{F}_2 \subseteq \mathbb{F}_4 \) and let \(\alpha \) be a root of \(x^2 + x + 1 \) in \(\mathbb{F}_4 \). So, \(\mathbb{F}_4 = \{0, 1, \alpha, 1 + \alpha\} \). Let \(S \) be a periodic sequence over \(\mathbb{F}_4 \) with the least period 15. The first period terms of \(S \) are given by

\[
\alpha^2, \alpha, \alpha^2, \alpha^2, \alpha^2, 0, \alpha, \alpha^2, 0, \alpha, 0, 0, 1.
\]

The minimal polynomial over \(\mathbb{F}_4 \) of \(S \) is \(x^3 + \alpha^2x^2 + \alpha^2 \). We first factor \(x^3 + \alpha^2x^2 + \alpha^2 \) into irreducible polynomials over \(\mathbb{F}_4 \):

\[
x^3 + \alpha^2x^2 + \alpha^2 = (x + \alpha)(x^2 + x + \alpha).
\]

Note that

\[
\sigma(x + \alpha) = x + \alpha^2, \quad \sigma^{(2)}(x + \alpha) = x + \alpha.
\]

\[
\sigma(x^2 + x + \alpha) = x^2 + x + \alpha^2, \quad \sigma^{(2)}(x^2 + x + \alpha) = x^2 + x + \alpha.
\]

So we have

\[
k(x + \alpha) = 2, \quad k(x^2 + x + \alpha) = 2.
\]
Then, by Theorem 5 and Corollary 1, the minimal polynomial over F_2 of S is

$$
(x + \alpha)\sigma(x + \alpha)(x^2 + x + \alpha)\sigma(x^2 + x + \alpha)
$$

$$
= (x^2 + x + 1)(x^4 + x + 1) = x^6 + x^5 + x^4 + x^3 + 1
$$

and the linear complexity over F_2 of S is

$$
L = 1 \times k(x + \alpha) \times \deg(x + \alpha) + 1 \times k(x^2 + x + \alpha) \times \deg(x^2 + x + \alpha) = 2 + 2 \times 2 = 6.
$$

5. Remarks on the lower bound of Meidl and Özbudak

Meidl and Özbudak [17] derived a lower bound on the linear complexity over F_{q^m} of a linear recurring sequence S over F_{q^m} with given minimal polynomial $g(x)$ over F_q. In this section, using Theorem 6 we give a new proof for the lower bound of Meidl and Özbudak and show that this lower bound is tight if and only if the minimal polynomial over F_{q^m} of S is in a certain form.

Corollary 2. Let $f(x)$ be a monic polynomial in $F_q[x]$ with the canonical factorization into irreducible polynomials over F_q given by

$$
f = r_1^{e_1} r_2^{e_2} \ldots r_k^{e_k}, \quad e_1, e_2, \ldots, e_k > 0.
$$

Suppose that S is a linear recurring sequence over F_{q^m} and the minimal polynomial over F_q of S is $f(x)$. Then, the linear complexity $L_{F_{q^m}}(S)$ over F_{q^m} of S is lower bounded by

$$
L_{F_{q^m}}(S) \geq \sum_{i=1}^{k} e_i \frac{n_i}{\gcd(n_i, m)}
$$

where $n_i = \deg(r_i)$ for $i = 1, 2, \ldots, k$. Furthermore, suppose by Theorem 4 that the canonical factorization of $r_i(x)$ into monic irreducibles over F_{q^m} is given by

$$
r_i(x) = P_i(x)\sigma^{(1)}(P_i(x))\cdots\sigma^{(u_i-1)}(P_i(x))
$$

where $u_i = \gcd(n_i, m)$ for $i = 1, 2, \ldots, k$. Then, the lower bound is tight if and only if the minimal polynomial $h(x)$ over F_{q^m} of S is of the following form:

$$
h(x) = \prod_{i=1}^{k} \sigma^{(j_i)}(P_i)^{e_{ij}}
$$

where $0 \leq j_i \leq u_i - 1$ for $i = 1, 2, \ldots, k$.

Proof. It follows from (10) and (12) and Theorem 6 that the minimal polynomial $h(x)$ over F_{q^m} of S is of the form:

$$
h(x) = \prod_{i=1}^{k} p_i^{e_{i0}}(P_i)^{e_{i1}}\cdots\sigma^{(u_i-1)}(P_i)^{e_{i(u_i-1)}}
$$

where $0 \leq e_{ij} \leq e_i$ and $\max{e_{i0}, e_{i1}, \ldots, e_{i(u_i-1)}} = e_i$ for every $i = 1, 2, \ldots, k$. Note from (12) that $\deg(P_i(x)) = n_i/u_i$. Hence, by (13),
\[L_{\mathbb{F}_{q^m}}(S) = \deg(h(x)) \geq \sum_{i=1}^{k} e_i \deg(P_i(x)) = \sum_{i=1}^{k} e_i \frac{n_i}{\gcd(n_i, m)} \]

and the equality holds if and only if

\[h(x) = \prod_{i=1}^{k} \sigma^{(j_i)}(P_i)^{e_i} \]

where \(0 \leq j_i \leq u_i - 1\) for \(i = 1, 2, \ldots, k\). This completes the proof. \(\square\)

Remark 1. Meidl and Özbudak \[17, Proposition 3\] showed that there exists a linear recurring sequence over \(\mathbb{F}_{q^m}\) such that the lower bound (11) is tight. We give in Corollary 2 the necessary and sufficient condition under which the lower bound (11) is tight.

Acknowledgments

The authors would like to thank the two anonymous reviewers for their valuable comments that helped to improve the paper.

References

