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Abst rac t - - -Cons ide r  the neutral difference equation 

v(x , .  - cx ._~)  = l ( n , x . , z . - k ) ,  

where k is a positive integer, 0 < c < 1, V denotes the backward difference operator Vyn --- yn -Yn-1, 
f : N x R 2 --* R is continuous and decreasing with respect to the second argument. We give the 
results that solutions of the equation convergent to constants. © 1998 Elsevier Science Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  

Consider  the  difference equat ion 

V(Xn -- CXn-k) = f (n ,  xn, xn-k),  (1) 

where k is a positive integer, 0 _< c < 1, V denotes the backward difference opera tor  Vyn  = 

yn - yn-1 ,  f : N × R 2 --* R is continuous,  and f ( n ,  u, v) is decreasing wi th  respect  to  u E R. 

Some special cases of  equat ion (1) have been discussed in the literature, for example,  in [1,2], 

the  second au thor  and Yu, respectively, considered the  equat ion 

V(xn  - cx ,_k )  = - F ( x n )  + G(xn-k) (2) 

and  the  special case where c = 0 in equat ion (2), where k is a positive integer, 0 < c < 1, f 

and G axe continuous,  and F is increasing on R, and t h a t  if F(y) - G(y) does not  change sign 
for all y E R, then  every bounded  solution of equat ion (2) tends to  a constant  as n -~ c¢; if 

F(y) =- G(y) for y E R, then  every solution of  equat ion (2) tends to  a cons tant  as n --* oo. 

Recently, in [3], we considered the  special case where c = 0 in equat ion (1) and gave the  results 

of  a sympto t i c  behavior  of  solutions of  equat ion (1). 
In  this paper,  we consider the case where 0 < c < 1 in equat ion (1). For this case, equat ion (1) 

is a neutral  difference equation,  and it can be viewed as a discrete analogue of  the  neutra l  delay 

differential equat ion 

d [ z ( t ) - c z ( t - r ) ] = f ( t , x ( t ) , z ( t - r ) ) ,  0 < c < 1 ,  r > O .  (3) 
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The problem of the convergence of solutions of equation (3) has been investigated in [4], and 
some special cases of equation (3) also have been considered for this problem by many  authors 
(see, e.g., [5-8]). 

By a solution of equation (1), we mean a sequence {Xn) of real numbers which is defined for 
n _> no - k + 1 and satisfies equation (1) for n = no + 1, no + 2 . . . .  , and initial conditions 

Xno-j = a j ,  j = 0 , 1 , . . . , k -  1, (4) 

where aj ( j  = 0, 1 , . . . ,  k - 1) are some arbi trary real constants. 

Throughout  this paper,  we shall assume tha t  g : R 2 -+ R is continuous, g(u, v) is decreasing 

with respect to u and increasing with respect to v, and 9(u, u) - O, for all u E R, the real 
sequence {Pn} and {qn} " oo satlsfY:~i_-i Ipd < c~, 0 < qn < M,  where M is a positive constant.  

Let {Xn} (n = no - k + 1, no - k + 2 , . . .  ) be a solution of equation (1). We define the set 

Ni = {ik, ik + 1 , . . . ,  (i + 1)k}, Ino = {no, no + 1 , . . . ,  no + 2k} 

and the sequences {A~} and {Bi}: 

A i  = m a x  m a x { x n ,  Yn} ,  
nEN~ 

B i - -  min min{xn, Yn}, 
nEN~ 

where Y n  = X n  - -  CXn-k/1 -- C and i > - 1  + no/k  is a nonnegative integer. For the sake of 
convenience, throughout  this paper, we shall use the above notations. 

Our aim in this paper  is to prove tha t  if either f (n ,  u, v) < 0 for u > v and f ( n ,  u, v) <_ 
qng(u, v) + Pn for u _ v or f (n ,  u, v) > 0 for u < v and f (n ,  u, v) >_ qng(U, v) + Pn for u >_ V, 
then every bounded solution of equation (1) tends to a constant as n ~ oo; if (u - v ) f (n ,  u, v) < 
0(u # v) and either f (n ,  u, v) < qng(u, v) + Pn for u < v or f ( n ,  u, v) > qng(u, v) + Pn for u > v, 
then every solution of equation (1) tends to a constant as n --+ oo. Our results as special cases 
include the all results in [1]. 

2. L E M M A S  

In this section, we will establish several important  lemmas which will be used to prove our 
main results in Section 3. 

LEMMA 1. For any aj E R ( j  = O, 1 , . . . ,  k - 1), the initial value problem (1) and (4) has a unique 
solution. 

PaOOF. Since f (n ,  u, v) is continuous on N x R 2 and decreasing with respect to u e R, by 
setting ¢(n, u, v) = u - f (n ,  u, v), where n and v axe independent of u, ¢(n, u, v) is also con- 
tinuous and increasing with respect to u E R, and it is clear tha t  l imu- ._~  ¢(n, u, v) = - o o  
and limu-.oo ¢(n, u, v) = oo. Therefore, exists a function ¢-1(n ,  z, v), the inverse function of 
z = ¢(n,  u, v), for all z e R. 

By (1), we have 

¢ ( n , x , , , z . _ k )  = c z ,~_k  + z . - 1  - c z . , _ l _ ~ ,  

which implies that  

X n ~- ¢ - l ( n ,  C2gn_k q- Xn_  1 -- C X n _ l _ k , X n _ k )  , 

for n = no + 1,n0 + 2 , . . . .  
Therefore, by the method of steps, we find that  the initial value problem (1) and (4) has a 

unique solution. The proof is complete. 
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LEMMA 2. I f  f ( n , u , v )  < 0 for u > v, then A~ >_ Ai+z for all nonnegative integer i with 
i > - 1  + no/k.  

PROOF. Suppose the contrary. Then there exists an integer m > -1  + no/k  such that  Am < 
Am+i, that  is 

m a x { x n , y n } <  max max{xn,yn}. 
n6Nm n6Nra+l 

Let am+l 6 Nm+l, such that  
m a x { x . . + l ,  y ~ . + l  } = A m + l .  

Then we have only two cases to consider. 

CASE 1. Arn+l = xa.~+, >_ Ya.~+, = xa..+, -CXa..+a-k/1 --C. In this case, we have xa~+, <_ 
Xara+l_k~ and hence 

Am+s = x.~+l <_ x .~+,-k  <_ n6N.,{max x . }  < Am, 

which is contrary to the assumption Am < Am+l. 

CASE 2. Am+l = Ya.~+, = Xam+l --CXa..+,-k/1 --C > Xa.~+,. In this case, we have xa~+~ > 
xa~+,-k, which implies f (n ,  xa~+~,xa~+,-k) < 0. On the other hand, in view of equation (1), 
we have 

f (n ,  x.. .+, ,  x.~+,_k) = V(x.~+, - cx~+,_k)  

= ( z . . + ,  - ~ z . . + , _ k )  - ( x ~ . + , - 1  - ~ z . . + , - 1 - k )  
[ CXa,~+,- 1-k 1 Xam÷l-1 

= (1 - c)  [A , , ,+I  - 
i --7 J 

-[ - max {Xn,y.}] _> (1 c) Am+l neN~UN..+, 

----0. 

This is a contradiction, and so there exists no integer m such that  Am < Am+l. This completes 
the proof. 

Similarly, we can prove. 

LEMMA 3. / f  f (n ,U,V)  > 0 for u < v, then Bi < Bi+i for all nonnegative integer i with 
i > - 1  + no/k.  

LEMMA 4. (See [1].) Let  c be a constant with 0 < c < 1, {xn}(n = no - k + 1, no - k + 2 , . . .  ) 
be a bounded sequence with 

exists. Then limn-.oo Xn exists and limn-.o¢ Xn = ~/1 - c. The proof of Lemma 4 can be found 
in [11. 

LEMMA 5. Consider the ordinary difference equation 

u .  - u . _ ,  = g(u. ,  k), n = no + 1, no + 2 , . . .  (5) 

and the initial condition 

Ur, o = a ,  (6 )  

where K and a are any constants. Then the initial value problem (5),(6) exists a unique solution 
{un(no, k)} (n = no, no + 1 , . . .  ), and for any given positive integer m, A(K) = Uno+m(n0, k) is 
independent of no, and A(K) is continuous with respect to K. 

PROOF. Set ~b(y, k) = y - g(y, k). By using the similar argument as in the proof of Lemma 1, 
there exists a function ¢ - l ( z ,  k), the inverse function of ¢(y, k), for all z E R. Thus, by using the 
method of steps, it is easy to know that  the initial value problem (5),(6) has a unique solution 

un(no, k ) = ¢ - l ( u n _ l ( n o ,  k) ,k) ,  n = n o  + 1 ,  n0 + 2 , . . . ,  (7) 
~no "~" a~ 

and it is easy to see that  (7) implies A(K) = Uno+m(no, k) is independent of no. 
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Now we prove that )~(K) is continuous with respect to K. Otherwise, there exists constants 
Ko E R and eo > 0, and the sequence {K~} with Ki --* Ko as i --* co, such that  

I ¢ ( K d  - ¢ (K0) l  _> ,o > o, 

that  is 

JUno+re(no, ki) - Uno+m(no, ko)l > eo > 0. 

Without  loss of generality, we may assume/ to  - 1 < Ki  < K0 + 1. Then 

(8) 

Uno+l(nO, ki) - g(Uno+l(nO, ki), ki) = Uno(no, ki) = a 

= Uno+l(no, ko + 1) -g(Uno+l(no,  ko + 1), ko + 1) 

<-- Uno+l(nO, ko + 1) -g(Uno+l(no,  k0 + 1), k~), 

which implies uno+l(n0, ki) < Uno+l(no, ko + 1). 
Furthermore, using induction, we can prove 

un(no,  ki) <_ u , (no ,  ko + 1), 

Similarly, we can prove 

f o r n = n o ,  n o + l ,  . . . .  (9) 

Un(no, ki) > un(no, ko - 1), for n = no, no + 1 , . . . ,  

which together with (9) implies 

Un(no, ko - 1) < un(no,  ki) < Un(no, ko + 1), for n = no, no + 1, . . . .  (10) 

It follows that  {uno+l(no, ki)}~--1,2 .... are bounded and so there exists a convergent subsequence 

{Uno+l(no,k~l))}iffil,2 .... with Uno+1(no,k~ 1)) ---, Vno+l as i ---* co, where {K~ x)} C {Ki).  By (10), 

{uno+2(no, k~l))}iffil,2 .... are also bounded, so there exists a convergent subsequence {Uno+2(no, 

k~Z))}iffix,2.., with Uno+2(no, k~ 2)) ---, Vno+2 as i ~ CO, where {K~ ~)} c {K~X)}. Generally, consider 
the sequence {uno+t(no, k~t-x))}i=l,2,...(1 < l < m) ,  we an choose a convergent subsequence 
{Uno+t(no, k~t))},ffil,2 .... with uno+z(no, k~ 0) --. Vno+t as i ---} CO, where {K~ t)) C {K~'-I)}. Thus, 
we get some sequences:{K~ m)} C {K~ m-l)} C . . .  C {K~ 1) } C {K~}. It is clear that  limi_.oo un 

(no, k~ "0) = v~ for n = no, no + 1 , . . . ,  no + m. 
On the other hand, we have 

Let i --. co. Then 

n = n o ,  n o +  l , . . . , n o + m .  

vn - vn-x  = g(v,~, ko), for n = no, no + 1 , . . . ,  no + m, 

which implies that  {vn} (n  = no, no + 1 , . . . ,  no + ra) are some terms of the solution of the initial 
value problem (5),(6) for K = K0. But {un(n0, k0)} are also the solution of the initial value 
problem (5),(6) for K = K0, according to the uniquence of solution for the initial value problem 
(5),(6), we have 

v ,  = un(no,  ko), n = n 0 ,  no + l , .  . . , no  + m.  

Therefore, 

.lim un (no, k~m)) = Un(no, ko), n = n o ,  no + l , . . . , n o  + m,  
$'-'~ 0 0  

which is contrary to (8). This completes the proof of Lemma 5. 
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LEMMA 6. Let m be a given positive/nteger, {un(no, e)} (n = no, no + 1,... ) be the solution of 
the initial value problem 

U n - - U n _ l = g ( u n , a + e ) ,  n = n o + l ,  n o + 2 , . . . , U n o = a < A ,  (11) 

where  A is a constant  and  e is a pa rame te r  with  0 < e < 1. Then  there exis ts  a pos i t ive  cons tant  # 

independen t  of  no and  e such that  

A + e - un(no,  e) >_ # > O, 

for  n = no, no + 1 , . . . , n o  + m.  

PROOF. Since K = A + e is continuous with respect to  e, it follows from L e m m a  5 t h a t  

#(e) = A + e - Uno+m(no, e) 

is cont inuous  with respect  to  e and is independent  of  no. 

By  (11), we have 

Uno+l(no, e) - g(Uno+l(n0, e), A + e) = Uno(n0, e) = a < A + e = A + e - g ( A  + e, a + e), 

which implies uno+l(no, e) < A + e. Furthermore,  using induction, we can prove 

un(no,  e) < A + e, for n = no, no + 1 , . . . .  

I t  follows t h a t  

#(e) = a + e - U~o+m(no, e) > 0. 

Let  # = mino_<~l #(e). Then  it is certain tha t  # > 0 and # is independent  of  no and e. 

In  view of  (11) and (12), for all n = no + 1, no + 2 , . . . ,  we have 

un(no,  e) - u n - l ( n o , e )  = g (un (no , e ) , a  + e) > g (A  + e ,a  + e) = O. 

T h a t  is 

u.Cn0, ) > u.-iCno, ), 

and hence, 

U.o+ (no, > 

which together with (13) implies 

for n = no + 1, no + 2 , . . . ,  

for n = no, no + I , . . .  ,no + m, 

A + e -  un(no,e)  >_ A + e -  Uno+m(no,e) >_ # > O, 

(12) 

(13) 

un(no,  e) - (A - e) > v > 0, for n = no, no + 1 . . . .  , no + m. 

where  A is a constant  and ~ is a parameter  wi th  0 <_ e <_ 1. Then  there ex/sts a posi t ive  constant  v 

independen t  o f  no and e such tha t  

for n = no, no + I,..., no + m. This completes the proof of Lemma 6. 

By an analogous argument, we can prove the following. 

LEMMA 7. Let  m be a given posi t ive  integer, {un(no,  e)} (n = no, no + 1 , . . .  ) be the  solution o f  

the  initial value prob lem 

u n - u n - l  = g ( u n ,  a - e ) ,  n = n o + l ,  n o + 2 , . . . ,  

Uno = b > A,  (14) 
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3.  M A I N  R E S U L T S  

In this section, we will state and prove the main results of this paper. 

THEOREM 1. Assume t ha t  

(i) u > v impl ies  f ( n ,  u, v) < O; 

(ii) f ( n ,  u, v)  < qng(u, v) + Pn for u _< v. 

Then  every  bounded solut ion o f  equat ion (1) tends to  a constant  as n --+ oo. 

PROOF. Let { x n }  (n = no - k + 1, no - k + 2 , . . .  ) be a bounded solution of equation (1). 
Lemma 2, we know that  the sequence {mi} has finite limits as i --+ oo and let 

By 

lim Ai  = A .  (15) 
i--*Oo 

Set L = limn-.oo infyn and S = limn--.~ supyn, where Yn = Xn - C X n - k / 1  --C. It  is easy to see 
that  

- o o  < L  < S  < A < oo. 

In the following we are going to prove L = S. 
Assume L < S. Then we take a constant D such that  L < D < S _< A. Obviously, for any 

large positive integer N* > 0, we may choose integers n*, no, and constant #1 > 0, such that  

n* _> N*, no, E Nn*, and 
1 

Ip l < (16) Yno < D, 1- c . 
$~nO 

It  is clear that  

Z,,o = {no, no + 1,...,no + c N.. U N,,.+, U N,.+,, 

and so n - k e N n .  - x U Nn° U N n . + l ,  for all n E Ino . 

In view of Lemma 2, we have 

A , . - 1  > An .  > A, .+ I  > A,~.+~. 

For all n E Ino, we have 

x.-k _< max max{x , ,yn}  = A , . - 1 .  
n e N ~ * - l  U N ~ ,  U N ~ .  +I 

Set A n . - 1  = A + en. .  Then 

x n - k  <_ A n . - 1  = A + en*, for all n E Ino (17) 

and by (15) and Lemma 2, without loss of generality, we may assume 0 < en* _< 1. Now we define 

Z n ~ . y n  - - ~  

1 n 

- Z 1 c .  Ipd. 
SB~n 0 

If xn  < X n - k ,  then Yn = Xn - CXn_k/1 - c < Xn. By (17), we have 

zn <_ Yn <- A + en*, for all n E Ino, 

which yields 

g(zn,  a + en. ) >_ g (A  + en. ,  a + en- ) = 0, for all n E Ino. 
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Thus, by (I) we have 

Vz~ = Vyn [P.I 
1 - - c  

1 
= 1 - c  [ f ( n ' x n ' x n - k )  - IP - I ]  

1 1 
< 1 - c qng(xn '  Xn-k )  < "~-~_cqng(zn, Xn-k )  

1 
< 1 - c qng(zn 'a  + en*) 

1 • 
< -~-L"~_cMg(zn, a + en ), for all n E I~ o. 

If Xn > x n - k ,  then f ( n ,  xn ,  Xn-k )  < 0, which implies 

Vz .  = XYy. IP~[ 
1 - - c  

1 
-= 1 - c  [ f ( n ' x n ' z n - k )  - IP - I ]  < O. 

On the other hand, for n E/no  we have 

Zn < yn 

< m a x  
nENn*-I UN,~* U N,**+I U Nn.+2 

= A n . - 1  = A + en. 

mo.X{Xn, Yn} 

which implies 

l-c M g ( z n ' a + e n ' )  >- M g ( A + e n . , a + e n . )  = 0 ,  

and hence, V z n  < 1/1 - c M g ( z n ,  a + en* ). 
Therefore, for n E Ino, we always have 

h 4  
z .  - z . -a  = Vz,,  <_ ~ c g ( z . , a  +~n. ). (i8) 

Now let {un(no,  en. )} be the solution of the initial value problem 

M 
U n - U n - i  = - ~ ' ~ _ c g ( U n , a + e n . ) ,  n = n o +  l ,  n0 + 2 , . . . ,  

(i9) 
Uno = D. 

Notice that  Zno < Yno < D < A.  It follow from Lemma 6 that  there exists a constant # > 0 such 
tha t  

( A + e n . ) - u n ( n o , e n . ) > p > O ,  f o r a l l n e I n o ,  (20) 

and ~t is independent of no and en.. 
By comparing (18) and (19), it is easy to prove that  

z .  < u .  (no, e . . ) ,  for all n e I .  o. 

Therefore, it follows from (20) that 

An* - I - Zn = ( A + en* ) - Zn 

> (A  + en.)  - un (no, en.)  

> # > 0, for all n E Ino. 
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Yn 
i=nO 

<_An°-1 - # + # 1 ,  for all n E/no. 

We may take #x > 0, such that #t  _< #/2,  then 

y ,  < A n . - t  - -'# for all n E Ino. 
- -  2 ~ 

(21) 

Again since N , . + I  = {(n* + 1)k, (n* + 1)k+ 1 , . . . ,  (n* +2)k} C Ino, let an.+x E N, -+I  such that 

maX{Xa..+1, Ya.o+, } = A. .+I .  

Then there are two possible cases to consider. 

CASE A. xa..+l -< Y=..+I. In this case, by (21) we have 

An-+2 _< An.+1 = Ya.,.+~ <_ A . . - 1  # 
2 '  

that  is 

CASE B. Xa,**+x > Ya.*+l" 

# 
A , . - 1  - An.+2 _> ~ > 0. 

In this case, xa . .+l  = An.+1 >_ An'+2.  From (17), we obtain 

(22) 

Ya,,*+l --'~ Xa"*+I --c:r'a"*+x-k > An .+2-  cAn*-I 
1 - c  - 1 - c  

Substituting the above inequality into (21), we get 

An*-1  - A n . + 2  - c A n . - t  > # > O, 
1 - c  - 2  

that  is 

An--1 - A,-+2 _> (1 - c )2  > 0. 

Combining (22) and (23), we obtain 

(23) 

A , . - 1  - An.+2 _> (1 - c )2  > 0. (24) 

Notice that  n* _> N* and N* may be sufficiently large. It is obvious that  the inequality (24) 
contradicts limi--.oo Ai = A, and hence L = S. That  is, 

lira xn - c x n - k  = L = S 
,--*co 1 - c 

exists and is finite. Since 0 < c <: 1, it follows from Lemma 4 that lim.-.oo x .  = L. This complete 
the proof of Theorem 1. 

By an analogous argument, we can prove the following. 

THEOREM 2. I f  

(i) u < v impl ies  f ( n ,  u, v)  > O, 

(ii) f ( n ,  u, v)  >_ qng(U, v) + Pn for u >_ v, 

then  every  bounded solut ion o f  equat ion (1) tends  to  a constant  as n --, oo. 
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THEOREM 3. Assume that 

(i) ( u  - v)/(n, u, v) < 0 for u # v; 
(ii) ei ther  f (n,  u, v) <_ qng(u, v) + pn for u <_ v; o r / ( n ,  u, v) >_ qng(u, v) + p,~ for u >_ v. 

Then every solution of  equation (1) tends to a constant as n --* oo. 

PROOF. By  L e m m a  2 and 3, it is easy to  see tha t  every solution of  equat ion (1) is bounded  if (i) 

holds, and hence it follows from Theorems 2 and 3 tha t  every solution of  equat ion (1) tends  to  a 

cons tant  as n --* c~. This  completes the proof  of  Theorem 3. 

In  the  following, we consider the neutral  delay difference equat ion 

V(xn  - cxn-k)  = q n ( - F ( x n )  + G(xn -k )  ) + Pn, (25) 

where F, G : R ~ R are continuous,  and F is increasing on R. Set g(u, v) = - F ( u )  + F(v) .  By 

using Theorems  1-3, we get the following. 

COROLLARY 1. II f F(u)  ~ G(u) and Pn <_ O, then each bounded solution of  equation (25) tends 

to a constant as n --* oo. 

COROLLARY 2. I f  F(u)  < G(u) and Pn ~_ O, then each bounded solution of  equation (25) tends 

to  a constant as n --4 oo. 

COROLLARY 3. I f  F(u)  - G(u) and Pn = O, then each solution of  equation (25) tends to a 

constant as n ~ oo. 

REMARK. Note  t h a t  [1] given Corollaries 1-3 only in case qn = 1, Pn = 0. Our  results, obviously, 
improve and extend those of  [1]. 
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