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Abstract—Consider the neutral difference equation
V(In - cxn—k) = f(n» xnaxn—k),

where k is a positive integer, 0 < ¢ < 1, V denotes the backward difference operator Vyn = yn —yn-1,
f: N x R? > R is continuous and decreasing with respect to the second argument. We give the
results that solutions of the equation convergent to constants. (€ 1998 Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Consider the difference equation

V(z‘n - cxn—k) = f(n, Tn, xn-—k)y (1)

where k is a positive integer, 0 < ¢ < 1,V denotes the backward difference operator Vy, =
Yn — Un-1,f : N x R? = R is continuous, and f(n,u,v) is decreasing with respect to u € R.

Some special cases of equation (1) have been discussed in the literature, for example, in [1,2],
the second author and Yu, respectively, considered the equation

V(zp — cZp-k) = —F(zn) + G(Tpn-k) 2)

and the special case where ¢ = 0 in equation (2), where k is a positive integer, 0 < c <1, f
and G are continuous, and F is increasing on R, and that if F(y) — G(y) does not change sign
for all y € R, then every bounded solution of equation (2) tends to a constant as n — oo; if
F(y) = G(y) for y € R, then every solution of equation (2) tends to a constant as n — oo.
Recently, in [3], we considered the special case where ¢ = 0 in equation (1) and gave the results
of asymptotic behavior of solutions of equation (1).

In this paper, we consider the case where 0 < ¢ < 1 in equation (1). For this case, equation (1)
is a neutral difference equation, and it can be viewed as a discrete analogue of the neutral delay
differential equation

%[z(t) —cz(t —r)) = f(t,z(t),z(t — 7)), 0<e<l, r>0. 3)
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The problem of the convergence of solutions of equation (3) has been investigated in [4], and
some special cases of equation (3) also have been considered for this problem by many authors

(see, e.g., [5-8]).
By a solution of equation (1), we mean a sequence {z,} of real numbers which is defined for
n > np — k + 1 and satisfies equation (1) for n =ng + 1, np + 2,..., and initial conditions
Tng—j = @5, j=0,1,...,k—1, (4)
where a;(j =0,1,...,k — 1) are some arbitrary real constants.

Throughout this paper, we shall assume that g : R — R is continuous, g(u,v) is decreasing
with respect to u and increasing with respect to v, and g(u,u) = 0, for all u € R, the real
sequence {p,} and {gn} satisfy:} .2, |pi| < 00, 0 < g, < M, where M is a positive constant.

Let {zx,} (n=ng—k+1,n9 —k+2,...) be a solution of equation (1). We define the set

N; = {Zk,’lk+ 1,...,(i+ l)k}, I, = {'n,o,’no +1,...,n¢ +2k}
and the sequences {4;} and {B;}:

A= max max{Zn,yn}, Bi= min min{Z.,yn},

where y, = Zp, —ctp_k/1 —c and i > —1 + np/k is a nonnegative integer. For the sake of
convenience, throughout this paper, we shall use the above notations.

Our aim in this paper is to prove that if either f(n,u,v) < 0 for v > v and f(n,u,v) <
gng(u,v) + py for u < vor f(n,u,v) > 0 for u < v and f(n,u,v) = ¢,g9(u,v) + p, for u > v,
then every bounded solution of equation (1) tends to a constant as n — oo; if (u — v) f(n,u,v) <
O(u # v) and either f(n,u,v) < gng(u,v) + pn for u < v or f(n,u,v) 2> ¢ug(u,v) + p, for u > v,
then every solution of equation (1) tends to a constant as n — oo. Our results as special cases
include the all results in [1].

2. LEMMAS

In this section, we will establish several important lemmas which will be used to prove our
main results in Section 3.

LEMMA 1. For anya; € R(j =0,1,...,k—1), the initial value problem (1) and (4) has a unique
solution.

PROOF. Since f(n,u,v) is continuous on N x R? and decreasing with respect to u € R, by
setting ¢(n,u,v) = u — f(n,u,v), where n and v are independent of u,$(n,u,v) is also con-
tinuous and increasing with respect to u € R, and it is clear that lim, , o ¢(n,u,v) = —co
and limy_,. ¢(n,u,v) = o0o. Therefore, exists a function ¢~(n,z,v), the inverse function of
z = ¢(n,u,v), for all 2 € R.

By (1), we have
(Ny Tny Tn—k) = CTn—k + Tn—1 — CTn_1-k,

which implies that
Tn = ¢—1(n, CTpn—k + Tp-1 — CLp—1-k, -'L'n—k)a

forn=no+1,n0+2,....
Therefore, by the method of steps, we find that the initial value problem (1) and (4) has a
unique solution. The proof is complete.
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LEMMA 2. If f(n,u,v) < 0 for u > v, then A; > A;41 for all nonnegative integer i with
i>-14mng / k.
PROOF. Suppose the contrary. Then there exists an integer m > —1 + ng/k such that A4,, <
Am+1, that is
2% {Zn, Yn} < max max{zn,yn}.
Let am4+1 € Ny, such that
ma'x{xam+nyam+1} = Am+1.
Then we have only two cases to consider.
CASE 1. Amt1 = Tapyy 2 Yamer = Tamyr — Zapyy—k/1 —c. In this case, we have z,,,,, <
Zam41-ks 80d hence
Am+1 =Tapn41 < Tapmp1-k < nIIEI?VJj.{zn} < Ap,

which is contrary to the assumption A, < Apy1.

CASE 2. Ami1 = Yampr = Tamsr — CTamyr-k/1 =€ > Zq,,,,. In this case, we have Tapmyy >
Tq,,1—k» Which implies f(n,Za_ .., Zapnq1-k) < 0. On the other hand, in view of equation (1),
we have

f(n’ Zapmi19 xam+l—k) = v(xam-{rl - cwam-f»l_k)

= (xam+1 - cxam+1—k) - (xam+l_1 - cxam+l—l-k)

Tappr—1 — a1 —1-k
— 1 _ A _ m+1 m+1
( c) [ m+1 1—¢ ]

2(1-¢) [Am+1 —— s l{wn,yn}]
m m+
=0.

This is a contradiction, and so there exists no integer m such that A, < Apy1. This completes
the proof.

Similarly, we can prove.
LeEmMMA 3. If f(n,u,v) > 0 for u < v, then B; < By for all nonnegative integer i with
i>—-1+ng/k.

LEMMA 4. (See [1].) Let ¢ be a constant with0 < c <1, {zo,}(n=no—k+1,ng—k+2,...)
be a bounded sequence with
nli_{!gQ(:L‘,, —CTp) =0
exists. Then lim,_,o, T, exists and lim,,_, , = a/1 — ¢. The proof of Lemma 4 can be found
in [1].
LEMMA 5. Consider the ordinary difference equation
Up — Up_1 = G(Un, k), n=ng+1, ng+2,... (5)
and the initial condition
Upg = G, (6)
where K and a are any constants. Then the initial value problem (5),(6) exists a unique solution
{un(no,k)} (n = no,no +1,...), and for any given positive integer m, A(K) = unyo4m(no, k) is
independent of ng, and A(K) is continuous with respect to K.
PRrOOF. Set ¥(y,k) = y — g(y, k). By using the similar argument as in the proof of Lemma 1,
there exists a function ¥~1(z, k), the inverse function of ¥(y, k), for all z € R. Thus, by using the
method of steps, it is easy to know that the initial value problem (5),(6) has a unique solution
Un(no, k) = ¥~ (un—1(no, k), k), n=ng+1, np+2,..., ,
tny = (7
and it is easy to see that (7) implies A(K) = %ny+m(n0, k) is independent of no.
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Now we prove that A(K) is continuous with respect to K. Otherwise, there exists constants
Ky € R and ¢, > 0, and the sequence {K;} with K; — K, as i — oo, such that

[V(K:) — 9¥(Ko)| > €9 > 0,

that is
luno+m(n0’ki) - uno+m(n0, kO)I > €0 > 0. (8)

Without loss of generality, we may assume Ky — 1 < K; < Ko+ 1. Then

Uno+1(10, ki) — g(Uno+1(T0, k:), ki) = Uny (10, k) = a
= Ung+1(n0, ko + 1) — g(ung1(no, ko + 1), ko + 1)
< Ung+1(n0, ko + 1) — g(tne41(no, ko + 1), k;),

which implies ung41(n0, ki) < tng+1(n0, ko + 1).
Furthermore, using induction, we can prove

Un(no, ki) < un(no, ko + 1), forn=mng, ng+1,.... (9)
Similarly, we can prove
Un(no, ki) > un(no, ko — 1), forn =mng, ng+1,...,
which together with (9) implies
Un (19, ko — 1) < up(ng, ki) < un(no, ko + 1), forn =mng, ng+1,.... (10

It follows that {tng+1(n0, ki) }i=1,2,... are bounded and so there exists a convergent subsequence
{tno+1( no,k )}._1 2,.. With un,,.,.l(no,k( ) = Uno+1 88 1 — 00, where {K(l)} C {Ki}. By (10),
{un°+2(no,k )}1—1 2,.. are also bounded, so there exists a convergent subsequence {ting+2(no,
k( V}i=1,2... with un0+2(’no, k )) = Uno+2 881 — 00, where {K (2)} c{K (1)} Generally, consider
the sequence {u,,o,,.;(no,k( )},_1 2, (1 < I £ m), we an choose a convergent subsequence
{uno.,.z(no,k )},_1 2,... with uno+g(no, Dy 5 Uno+! 88 © — 00, where {K(l)} C {K(l }. Thus,
we get some sequences:{K; m)} c {K; (m=1) }c---c{K (1)} C {K;}. 1t is clear that lim;_,oo up,
(no, k( )) =uv, for n=mng,n0+1,...,n0+m.

On the other hand, we have

Uy, (no,k(m)) - Up—1 (no, k,(m)) =g (un (no,kfm)) ,k,(m)) , n=mng, ng+1,...,n9 +m.

1

Let ¢ — oo. Then
Un — Un—1 = g(vn, ko), forn=ng, no+1,...,n0 +m,

which implies that {v,}(n = ng,ng +1,...,n0 4+ m) are some terms of the solution of the initial
value problem (5),(6) for K = Ky. But {un(ng,ko)} are also the solution of the initial value
problem (5),(6) for K = Kj, according to the uniquence of solution for the initial value problem
(5),(6), we have

Un = Un(no, ko), n=ng, ng+1,...,n0+m.

Therefore,
lim u n k( ) = u,(ng, k n=ng, ng+1 ng+m
P n 0, 4 n( 0y O)a y 10 yeers TYQ )

1~—+00

which is contrary to (8). This completes the proof of Lemma 5.
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LEMMA 6. Let m be a given positive integer, {un(ng,€)} (n =no,n0 +1,...) be the solution of
the initial value problem

Up — Un—1 = g(un,a +¢€), n=np+1, ng+2,...,uy, =a < A4, (11)

where A is a constant and ¢ is a parameter with 0 < ¢ < 1. Then there exists a positive constant p
independent of ng and € such that

A+ € —un(ng,€) > p>0,

forn=mng,ng+1,...,m9 +m.

PROOF. Since K = A + ¢ is continuous with respect to ¢, it follows from Lemma 5 that
u(€) = A+ € — Uny+m{no, €)

is continuous with respect to ¢ and is independent of nyg.
By (11), we have

uﬂo+1(n0)€) - g(uno+1(n0a €),A+ 6) = uno(nOa 6) =a<Ate=A+e- g(A +¢€a+ é),
which implies up,+1(n0,€) < A + €. Furthermore, using induction, we can prove
un(no,€) < A+, forn=mng, no+1,.... (12)
It follows that
u(e) = A+ € — upygym(no, €) > 0. (13)
Let 1 = ming<c<1 p(€). Then it is certain that x > 0 and u is independent of ng and e.
In view of (11) and (12), for all n = ng + 1, ng +2,..., we have
Un (N0, €) — Up—1(ng, €) = g(un(no,€),a+¢€) > g(A+e,a+¢€) =0.

That is
tn(ng, €) > Up-1(ng, €), forn=ng+1, ng+2,...,

and hence,
Ung+m (N0, €) 2 Uy (ng, €), forn=ng, ng+1,...,m9+m,

which together with (13) implies
A+e—up(ng,e) 2 A+e—tpgym(no,€) 2 p >0,
for n = no,ng + 1,...,n9 + m. This completes the proof of Lemma 6.

By an analogous argument, we can prove the following.

LEMMA 7. Let m be a given positive integer, {un(no,€)} (n = ng,no +1,...) be the solution of
the initial value problem

Up — Un—1 = g(un,a—¢€), n=np+1, ng+2,...,

14
u-n°=b>A, ( )

where A is a constant and e is a parameter with 0 < ¢ < 1. Then there exists a positive constant v
independent of ng and ¢ such that

un(ng,e) —(A—€) >v>0, forn=mng, ng+1,...,n9 +m.
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3. MAIN RESULTS

In this section, we will state and prove the main results of this paper.

THEOREM 1. Assume that
(i) u > v implies f(n,u,v) < 0;
(ii) f(n,u,v) < gng(u,v) +pn foru <v.
Then every bounded solution of equation (1) tends to a constant as n — oo.

PROOF. Let {zn} (n =nop —k+1,m0 —k +2,...) be a bounded solution of equation (1). By
Lemma 2, we know that the sequence {4;} has finite limits as ¢ — oo and let

lim A,‘ = A. (15)

1—00

Set L = limy,_, infy, and S = limy,—,oc SUP Yy, Where y, = 2, — cTn—r/1 — c. It is easy to see
that
—-0<L<S<A<x.

In the following we are going to prove L = S.

Assume L < S. Then we take a constant D such that L < D < § < A. Obviously, for any
large positive integer N* > 0, we may choose integers n*, ng, and constant p; > 0, such that
n* 2 N*, ng, € Ny., and

1 n
Yno <Dy T > Ipil < (16)
1:=n.o

It is clear that
I, = {no,no +1,...,n0+ 2k} C Np- UNn‘+1 UNn‘+2’

and so n — k € Np+_31 U Np+ U Npe41, for all n € I,
In view of Lemma 2, we have

Ape1 2 Ape 2 Apeg1 > A'n‘+2'
For all n € I,,,, we have

Tn-k < ma-x{xn’yn} = Ap_1.

max

nENL« UNn‘ UN'\'+1
Set Ap«_1 = A+ €,+. Then

Tp-k S Apr—1 = A+ €5+, for all n € I, (17)

and by (15) and Lemma 2, without loss of generality, we may assume 0 < €,« < 1. Now we define

1 n
Z'n:yn_l__czlpil'

i=ng

If £n < Tn—k, then y, = Ty — cTp_k/1 — ¢ < T4. By (17), we have
Zn Syn < A+é€., forallnely,

which yields
g(zn, 0+ €ne) 2 g(A+ €pe,a+€n-) =0, for all n € I,,.
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Thus, by (1) we have

Vin = Vyn - 1|p_n|c

- 1_1_c[f(n, Tn, Tn—k) — |Pnl]

Qng(zn, zn—k) < Qng(zn,mn—k)

“1l1-c¢

1-¢

<

1= CQng(zn’a + En‘)

1
< l—_—zMg(zn,a + €ne), for all n € I,,,,.

If £, > Ty, then f(n,zn,2n-k) < 0, which implies
Vz, =Vy, - llp—_"lc

1
= i‘:'_c'[f(n’ Tn, 2:‘n,---k) - |Pn” <0.

On the other hand, for n € I, we have

Zn S Yn

max max{Zn,yn}
nENﬂn_l U N,,,n U N,,‘¢+1 U N"a +2

=Ape_1=A+¢€p-

which implies

1 1
1____cMg(zn’a+eﬂ') 2 i—_cMg(A+€""a + En") =0,

and hence, Vz, < 1/1 — cMg(2,,a + €,).
Therefore, for n € I,,, we always have

M
Zp = -1 = V2z, < T cg(zn,a + €n+). (18)

Now let {un(n0,€n-)} be the solution of the initial value problem

M
un—un_1=—1-_—cg(un,a+en.), n=ng+1, ng+2,..., (19)

Up, = D.

Notice that zp, < yn, < D < A. It follow from Lemma 6 that there exists a constant 4 > 0 such
that
(A+€ne) — un(ng,€ns) > u >0, for all n € I,,, (20)

and p is independent of ng and ¢,,..
By comparing (18) and (19), it is easy to prove that

Zn < un(ng, €p+), for all n € I,,.
Therefore, it follows from (20) that

Apec1—2zn=(A+ €n*) — 2Zn
2 (A+ €ne) — un(ng, €n<)
>u>0, for all n € I,
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That is

1 n
Yn =2n t 1o Z |pil
i=ng
SApey —p+p, for all n € I,,.
We may take y; > 0, such that u; < u/2, then
Un < Apo_g — g for all n € I,,. (21)
Again since Np«y1 = {(n* + 1)k, (n* +1)k+1,...,(n*+2)k} C I, let ape41 € Ny« 4 such that
ma-x{wa,.-+11 yan‘+1} = An'+1'

Then there are two possible cases to consider.
Case A. z,,.,, < Ya,.,,- In this case, by (21) we have

Aprgz S Apeqr = Yoo < Ape1— g,

that is
Ape_1— An-+2 > g > 0. (22)

CaSE B. z4,.,, > Ya,.,,- In this case, 7o ., = Ays41 2 Ap+42. From (17), we obtain

Tapesr ~ Layey1—k > An‘+2 — CAp»—1
ya,,-_,_l - .

1-c¢ - 1-¢

Substituting the above inequality into (21), we get

Apesa—CApr1
] — >
An 1 T 25 >0,
that is
Apooy = Apepr > (1 - c)%‘ >0. (23)
Combining (22) and (23), we obtain
Aprcy = Apepa > (1 - c)% > 0. (24)

Notice that n* > N* and N* may be sufficiently large. It is obvious that the inequality (24)
contradicts lim; ..o A; = A, and hence L = S. That is,

Ip — Clpn—k _

n—oco0 1l-—¢

exists and is finite. Since 0 < ¢ < 1, it follows from Lemma 4 that lim,, .o, n = L. This complete

the proof of Theorem 1.
By an analogous argument, we can prove the following.

THEOREM 2. If
(i) u < v implies f(n,u,v) >0,
(ii) f(n,u,v) 2 gng(u,v) + p, foru > v,
then every bounded solution of equation (1) tends to a constant as n — oo.
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THEOREM 3. Assume that

(i) (u—v)f(n,u,v) <0 for u #v;

(ii) either f(n,u,v) < gng(u,v) + pn for u < v; or f(n,u,v) > gng(u,v) + p, for u > v.
Then every solution of equation (1) tends to a constant as n — co.

ProoF. By Lemma 2 and 3, it is easy to see that every solution of equation (1) is bounded if (i)
holds, and hence it follows from Theorems 2 and 3 that every solution of equation (1) tends to a
constant as n — co. This completes the proof of Theorem 3.

In the following, we consider the neutral delay difference equation
V(xn — CTp_k) = ‘In("'F(xn) + G(xn—k)) + Pn, (25)

where F,G : R — R are continuous, and F is increasing on R. Set g(u,v) = —F(u) + F(v). By
using Theorems 1-3, we get the following.

COROLLARY 1. If F(u) > G(u) and p, <0, then each bounded solution of equation (25) tends
to a constant as n — 0.

COROLLARY 2. If F(u) < G(u) and p, > 0, then each bounded solution of equation (25) tends
to a constant as n — 00.

COROLLARY 3. If F(u) = G(u) and p, = 0, then each solution of equation (25) tends to a
constant as n — oo.

REMARK. Note that [1] given Corollaries 1-3 only in case ¢, = 1, p, = 0. Our results, obviously,
improve and extend those of [1].
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