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ABSTRACT 

We prove a Paley-Wiener theorem for a class of symmetric spaces of the compact type, in which 
all root multiplicities are even. This theorem characterizes functions of small support in terms of 
holomorphic extendability and exponential type of their (discrete) Fourier transforms. We also provide 
three independent new proofs of the strong Huygens' principle for a suitable constant shift of the wave 
equation on odd-dimensional spaces from our class. 

INTRODUCTION 

In the context of  spherical harmonic analysis, the compactness of  a symmetric 

space U / K  is reflected by the discreteness of  its dual space, which is the set o f  

irreducible K-spherical  unitary representations of  U. The same set parametrizes 

the set of  (elementary) spherical functions. Thus, the spherical Fourier transforms 

of  K-invariant  functions on U / K  are functions on a discrete set. Likewise, the 

formula for spherical inversion, which recovers a sufficiently regular function on the 

symmetric space in terms of  spherical functions, is given by a series. This structural 
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discreteness can be overcome for functions with "small support", by relating them 
to functions on the tangent space Tx(U/K) at some point x ~ U/K.  (Observe that 
it suffices to consider the special case x = x0 = {K} as any other point x can be 
achieved by a translation x = gxo.) This procedure can be easily illustrated in the 
Euclidean setting: consider a smooth function f : S  ~ --~ C, where S 1 denotes the 
unit circle. View f as a periodic functions on ~ by t ~ f ( e  it) and assume that f 
has small support, say in I - R ,  R] + 2JrZ, where 0 < R < Jr. We can then regard f 
as a smooth function on the real line with support in [ - R ,  R] by setting it equal 
to 0 outside of  the fundamental period [-Jr, ~r). By the classical Paley-Wiener 
theorem on R, the Fourier transform of  f is an entire function of  exponential 
type R. It therefore provides a holomorphic extension of  the Fourier transform of  f 
as a function on S 1 . Likewise, if  F is a holomorphic function on C of  exponential 
type R, 0 < R < 7r, then the inversion formula for the continuous Fourier transform 
gives a function f l  with support in I - R ,  R], and we can define a function f on S 1 
by f ( e  it) = f l  (t). 

The possibility of  characterizing central smooth functions with "small support" 
on compact Lie groups by means of  the entire extension and exponential growth 
of  their Fourier transform was first proved by Gonzalez in [10]. In this paper we 
extend the local Paley-Wiener theorem to all compact symmetric spaces U/K with 
even multiplicities: the K-invariant smooth functions on U/K with "small support" 
will be characterized in terms ofholomorphic extendability and exponential growth 
of  their spherical Fourier transform. Moreover, the exponential growth of  the 
transformed function will be linked to the size of  the support of  the function 
on the symmetric space. The given characterization relies on the fact that the 
spherical functions on a compact symmetric space extend holomorphically to the 
complexified symmetric space. Their restrictions to the noncompact dual symmetric 
space G / K  are in turn spherical functions on G/K.  This allows us to use known 
information on the spherical functions on G / K  and classical Fourier analysis on 
the Lie algebra of  a maximal abelian subspace of  q _~ Txo(U/K). In particular, 
the classical Paley-Wiener theorem is used to obtain the required holomorphic 
extension of  the compact spherical Fourier transform of  a K-invariant function on 
U/K with a small support. 

Properties of  holomorphic extendability for spherical functions on symmetric 
spaces have been the objects of  intensive recent study, with different approaches 
and perspectives. See, e.g., [19], [27], and [23]. The situation which we consider 
in this paper corresponds to symmetric spaces with even multiplicities. It is rather 
special because of  the existence of  shift operators providing explicit formulas for 
the spherical functions by relating them to exponential functions [22]. These shift 
operators are suitable multiples of  Opdam's shift operators. The multiplying factor 
has been chosen so, as to cancel the singularities of  the coefficients of  Opdam's 
shift operators along the walls of  the Weyl chambers. The resulting operators are 
differential operators with holomorphic coefficients. Hence, we can read off the 
properties of holomorphic extendability of the spherical functions directly from 
these formulas. Furthermore, the shift operators allow us, as mentioned above, 
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to reduce several problems in harmonic analysis on symmetric spaces of even 
multiplicities to the corresponding problems in Euclidean harmonic analysis. 

Our proof depends heavily on the assumption that all root multiplicities are even, 
and it is not possible to generalize it to obtain local Paley-Wiener type theorems for 
general compact symmetric spaces. On the other hand, the proof can be modified 
to hold for arbitrary root systems with positive even-valued multiplicity functions 
which are not geometric. This avenue is further explored in [5]. 

The relation between spherical transforms on compact and noncompact symmet- 
ric spaces investigated in this paper also yields a representation of smooth functions 
with "small support" on the compact space as integrals of spherical functions of  the 
noncompact dual. These integral formulas are the key ingredient for studying the 
solutions of the wave equation on Riemannian symmetric spaces of the compact 
type. From exponential estimates for the solutions, we deduce in Section 4 that the 
strong Huygens' principle is valid on these spaces. 

The (strong) Huygens 'principle states that, in odd dimensions, the light at time to 
at a location x influences at later times tl only those locations which have distance 
exactly tl - to from x. Hence, i f a  wave is supported in the sphere {x I Ilxl[ ~< R} at 
the initial time 0, then it will be supported in the annulus {x I t - R ~< IIx II ~< t + R} 
at time t. In particular, at times t > R, the wave will vanish inside the sphere {x I 
IIx II < t - e}. 

Several different authors have proved the validity of Huygens' principle on 
odd dimensional Riemannian symmetric spaces with even multiplicities of either 
the noncompact or the compact type. Here "light" is to be interpreted as a 
solution of a suitable wave equation, obtained by a certain constant shift of the 
d'Alembertian. Their proofs use a variety of different methods. The first results 
in this direction were given by Helgason [12,15], see also [17], who proved 
Huygens' principle for symmetric spaces G/K for which either G is complex or 
G = SO0(n, 1), and for compact groups. In the general case of odd dimensional 
Riemannian symmetric spaces of the noncompact type with even multiplicities, 
the validity of Huygens' principle was stated without proof by Solomantina [28]. 
A proof by Radon transform methods was provided by 01afsson and Schlichtkrull 
[25]. An independent proof was obtained by Helgason [16] by means of  his 
Fourier transform. In [6] the authors proved an exponential decay property for 
solutions of the wave equation with compactly supported initial data. This method 
implied another independent proof of the Huygens' principle for odd dimensional 
symmetric spaces with even multiplicities; see [6]. Finally, a completely different 
approach based on Heckman-Opdam's shift operators and explicit formulas for the 
fundamental solutions was provided by Chalykh and Veselov in [8]. The formulas 
of Chalykh and Veselov give the fundamental solution of the wave equation 
in polar coordinates. By replacing hyperbolic functions with their trigonometric 
counterparts, one can also deduce formulas for the fundamental solutions of the 
wave equation on compact symmetric spaces. These formulas will be valid for 
small values of  time. Using this argument, Chalykh and Veselov state that Huygens' 
principle holds also on Riemannian symmetric spaces of the compact type with even 
multiplicities. 
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In the context of Riemannian symmetric spaces, Huygens' principle has been 
much less studied for the compact type than for the noncompact type. In [26], 
Orsted used conformal properties of wave operators and of Lorentzian spaces 
covered by I~ x S 2n+1 to establish Huygens' principle for the wave, Dirac, and 
Maxwell equations on S 2n+1. His proof makes it clear that analogues will be valid 
for other linear differential operators with suitable hyperbolicity and conformal 
properties. A different proof for the wave equation on the odd sphere S 2n+1 were 
given by Lax and Phillips [21 ]. Branson [2] extended the Lax-Phillips proof to an 
infinite class of hyperbolic equations on the odd sphere. Helgason proved Huygens' 
principle for the compact group ease, see [15]. Finally, Branson and (31afsson [4] 
proved that the local Huygens' principle for a compact symmetric space U/K is 
valid if and only if Huygens' principle holds for the non-compact dual space G~ K. 

In this article we provide three independent new proofs of a local version of 
the strong Huygens' principle for compact symmetric spaces U/K with even 
multiplicities. One of these methods comes from exponential estimates for the 
smooth solutions of K-invariant Cauchy problems for the modified wave equations 
on U/K. These estimates are obtained by methods similar to those introduced 
for the noncompact setting in [6]. It is nevertheless important to mention that the 
use of the shift operators indeed reduces the proof of the of Huygens' principle 
on Riemannian symmetric spaces of either type (compact or noncompact) to the 
validity of the same principle in the Euclidean setting. The proof presented in this 
paper is therefore easier than that in [6]. 

Another proof of the local strong Huygens' principle is in the spirit of the paper 
of Chalykh and Veselov [8]. The formulas for the spherical functions proved in 
Theorem 2.9 permit us to derive an explicit formula for the solution of the wave 
equation corresponding to a given smooth initial condition. The tools for writing 
down these formulas appear in the proof of the local Paley-Wiener theorem. An 
essential property in our argument is that our shift operators, which link spherical 
functions to exponential functions, have regular (indeed analytic) coefficients. This 
fact was not proved in [8]. 

Our paper is organized as follows. In Section 1 we recall some structure theory 
of Riemannian symmetric spaces of the compact type. The spherical functions 
and spherical representations are introduced in Section 2. Theorem 2.9 proves the 
existence of differential shift operators. These provide explicit formulas for the 
spherical functions on compact symmetric spaces. The main theorem in this paper 
is the local Paley-Wiener theorem, which is stated and proved in Section 3. The 
integral formula for functions with "small support" is given by Corollary 3.16. 
Finally, Section 4 contains the proofs of the local strong Huygens' principle on 
Riemannian symmetric spaces of the compact type. 

1. S Y M M E T R I C  S P A C E S  

1.1. Compact symmetric spaces 

In this section we recall some facts about compact symmetric spaces. We use [13, 
Chapter VII], and [29, Chapter II], as standard references. 
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Let U be a connected compact Lie group with center Z and Lie algebra u. Denote 
by 3 the center o fu .  Then u = 3 @ u t, where u' :=  [u, u] is semisimple. Let exp :u --+ 

U be the exponential map. I f3  ~ {0}, then we set F0 :=  {X 6 3 I expX = e}, where 
e denotes the identity o f  U. Then F0 is a full rank lattice in 3 and T :=  3/F0 is 
isomorphic to the identity connected component  o f  Z. We will from now on write 
T = Zo. Denote by U'  the analytic subgroup o f  U with Lie algebra u'. Then U'  
is semisimple with finite center and U = T U  ~ ~-- T ×F U ~ where F = T O U'  is a 

finite central subgroup o f  U. We will for simplicity assume that F is trivial. Thus 
U . . ~ T × U ' .  

Let r : U ~ U be a non-trivial analytic involution. Set U ~ :=  {u ~ U I r (u)  = u}, 
and define K be the identity connected component  o f  U r. Then U / K  is a connected 
compact symmetric space (also called Riemannian symmetric space o f  the compact  

type). The derived involution o f  r on u will be denoted by the same letter r. Thus 
r(exp(X))  = exp(r(X))  for all X ~ u. 

Let t~ denote the Lie algebra o f  K. We shall assume that t~ A 3 = {0}. Then 

t=u  := {x 

Set 

q := { x  u I = - x } .  

Then u = t~ ~ q and 3 --- q. 
For a real vector space V we denote by V* its dual and by Vc :=  V ®~ C its 

complexification. I f  V is a Euclidean vector space with inner product (., .) and 
W _ V is a subspace, then W ± denotes the orthogonal complement  o f  W in V. 
We identify W* with the space { f  E V* I f l w x  = 0}. The complex linear extension 
to Vc o f  a linear map q9 : V -+ V will be denoted by the same symbol ~0. For )~ 6 V* 
define hx ~ V by )~(H) = (H, hz). For ~. ~ 0 we set H~ :=  2(hz, h z ) - l h z .  Then 
)~(H~) = 2. Finally we define an inner product on V* by 

(~.,/z) :=  (hx, hlz) = Z(h~) =/~(hz) .  

Recall that the Killing form x on u is negative definite on u'. Fix an inner product 
(., .) on 3 and define a U-invariant inner product on u by 

(Zl +X1,Z2q-X2) := (Z1,Z2) --K(X1,X2), Z1,Z2 E3, X1,X2 Elt". 

Let b c q be a maximal abelian subspace and set bl :=  b N u'. Then 

b = 3 ~ b l .  

Set a :=  ib c uc  and al = ibl.  Then, by restriction, (., .) defines an inner product 
on a, and hence we can apply the above notational conventions to (a, (., .)). In 
particular, Hz c a is well defined for all nonzero Z 6 a*. 

For ot c b~ = a~ let 

:= { x  uc ) VH b: [H, X] = o (S)X} 
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and set m~ :=  dime u~. I f u ~  # {0}, then a is called a root and m~ is its multiplicity. 

We denote by A the set o f  roots and by W = W(A) the corresponding Weyl group. 
Recall that W is generated by the reflections sa with o te  A. Here s~(H)  :=  H - 

* Hence a is real ot(H)H~. I f  a 6 A, then u~ c u~, c~13 c : 0, and a 6 ib~ : a 1. 
valued on a and al~ = 0. Choose X e a so that or(X) # 0 for all roots or. Then A + :=  

{a ~ A l a ( X )  > 0} is a set ofposi t ive roots. We denote by ~3 the corresponding set 

o f  simple roots. 

1.2. Integration on U/K 

We now fix our normalization o f  measures. I f  L is a locally compact  Hausdorff  
topological group, then dl denotes a left invariant (Haar) measure on L. When L is 

a compact  group we normalize dl so that the volume o f  L is 1. In this case, i f  M is a 
closed (and hence compact) subgroup o f  L, then we normalize the invariant measure 

d ( l M )  on L / M  so that L / M  has volume 1. We then have for all f ~ L I ( L / M )  and 

g 6 L l (L) :  

f f f(lM)dl= 
L/M L L 

and 

fg(l)dl= f fg(lm)dmd(lM), 
L L/M M 

where Jr : L --+ L / M is the canonical projection l ~-~ l M. 

Let B :=  exp(b) and B1 :=  exp(bl) = B A U t. Then U = K B K  = T K B I K .  In 

particular, denoting by xo the point {K} e U / K ,  then K B  .xo = T ( K B 1 ) . x o  = U / K .  

Set M = Z K ( B )  and define qt : K / M  × B ~ U / K  by ~ ( k M ,  b) :=  kb .  xo. Then 
is smooth and surjective. Furthermore, 

(1.1) [det(d~P(kM,exp(n)))l = I-I I s in°t(H)l  ''~ =: 8(exp(H)). 
0lE£x + 

This proves the following integration formula (cf., e.g., [14, Theorem 5.10]). 

L e m m a  1.1. There exists a constant c > 0 such that fo r  all f e C ( U / K )  we have 

f f f f(kb.xo)6(b)dbd(kM). 
U/K K / M  B 

2. S P H E R I C A L  F U N C T I O N S  AND S P H E R I C A L  R E P R E S E N T A T I O N S  

In this section we recall some necessary facts about spherical functions and 
spherical representations. We refer to [14, Chapter V], as standard reference. Our 
main result in this section is Theorem 2.9. It states that, i fm~ is even for all ~ E A, 
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then there exists a differential operator D on B with analytic coefficients and a 
rational function Q on a~ = b~ such that 

3(b)~u(b)=Q(#)D( Z bW(~+P) ). 
w E W  

Here 7:~ is the spherical function corresponding to the spherical representation with 
highest weight/z, the function 3 is as in (1.1), and 

1 0.*. 
(2.1) P = 2  Z mc~c~ ~ 

c~cA + 

The differential operator D will be constructed explicitly from Opdam's shift 
operator and in addition the rational function Q will be explicitly determined. It is a 
holomorphic extension (and a trivial extension to T) of  the differential shift operator 
constructed in [22] for the noncompact symmetric case with even multiplicities. 

2.1.  S p h e r i c a l  r e p r e s e n t a t i o n s  

Let Or, V) be an irreducible unitary representation of  U. Let 

V K := {v c V I r k  ~ K: zr(k)v = v}. 

We say that Jr is spherical if  V K # {0}. In this case dim V K = 1. We denote by U the 
set of  equivalence classes of  irreducible unitary representations of  U and by UK the 
subset of  equivalence classes of  irreducible K-spherical representations. We shall 
use the same notation for a given unitary representation and for the corresponding 

A 
equivalence class in U. 

I f  ~ 6 b~ and b = exp(H) 6 B, then we write b z = e z(H) provided this is well 
defined. The same notation will be adopted for elements in the complexification 

h 
of  B. Let zr c U. As T is central in U, it follows by Schur's Lemma that rr is of  the 
form 

7r(tu) = tzzr' (u), t c T, u ~ U:, 

where )~ is some element ofi3* and Jr ~ = ~r [u,. 

I f  3 # {0}, then we let F0 := {X 6 3 [ exp(X) = e}, as before. Then 

ir~ := {L 6 i3" [VH c F0: ~.(U) 6 2JriZ} ~ T', 

where the isomorphism is given by )~ ~ Xz and Xz(t) := t ~. Note that, if  we do 
not assume T A U' = {e}, then we have to impose the additional condition that 
zr~(t) = tZid for all t 6 T A U ~. 

Let c be a Cartan subalgebra of  u containing b. Set C l := c N u:. We say that/z 6 i c* 
is an extremal weight of  an irreducible representation zr of  U i f /z  is the highest 
weight of  Jr with respect to some ordering in ic*. We fix an ordering on i3", then 
we extend it to i b* by using the lexicographic ordering on a~, and we finally extend 
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it to an ordering in ic*. I f  re is an irreducible representation of  U, then/z(rr) • ic* 
denotes the highest weight o f  7r with respect to this ordering. Similarly, if  a • U', 
then/z(tr) • ic~ denotes the highest weight of  o-. Notice that, in this notation, we 
have 

/~(Y~)lcl =/~(TrlU0. 

For ~ • c~ and ot • A let 

(~, or) 1 
(2.2) ~'~ -- (~, or) -- 2 ~'(H~)" 

Denote by A + = A+(U)  the set of  highest weights of  spherical representations 
of  U. Then we have A+(U)  = iF~ ~) A+(U' ) .  Here we employ the notation ~ to 
indicate that an element of  A+(U)  can be written in a unique way as a sum of  
an element of  I'~ and an element of  A + (U'). I f /~  • A + (U), then ~ru denotes the 
corresponding spherical representation and wu a K-invariant vector in the space of 
Jr u satisfying IIw~lt = 1. 

Theorem 2.1. Let (re, V) be an irreducible representation of  U. Then the following 
holds: 

(1) I f  Jr is spherical then It(Jr) • iF~ ~ a* l and 

( u ( . ) ,  oe) 
(2.3) -./~(~z)~ • N0 

for all ~ • A +. Here N0 = {0, 1,2 . . . .  }. 
(2) Let I~ • iI~ • a~ so that I~  • Z for all oe • A. I fU '  is simply connected, then 

there exists a unique spherical representation 7~ with extremal weight #. 
(3) l fU '  is simply connected then A+(U)  = iF~ @ {# • a~ ]Yet • A+: / ~  • N0}. 

2.2. Spherical functions 

Recall the following definition. 

Definition 2.2. Let G be a locally compact Hausdorff topological group and 
K C G a compact subgroup. A continuous function ~0:G --~ C is said to be 
spherical if  ~o is K-bi-invariant, is not identically 0, and satisfies the identity 

f ~o(xky) dk = ~o(x )~o(y) 

K 

for all x, y c G. 

For/z e A+(U)  define ~ : U --+ C by 

(2.4) ~pu(u) = (zru(u)w ~, w~), 
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where (., .) denotes the inner product in the space o f  Jr u for which this representa- 
tion is unitary. Then ~pu is a spherical function on U and every spherical function 

on U is o f  the form ~p~ for some/z  • A + ( U ) .  Notice that, with )~ :=/z13 • I'~ and 

# '  :=/~lb~ • A+(UI) ,  we have 

(2.5) Ctu(tu') = tZ(Jru,(u')wu, wu) = tz~pu,(u'), t • T, u' • U'.  

Since rru is unitary, (2.4) implies the following lemma. 

Lemma 2.3. Let lz • A+(U) .  Then 

~ ( u )  = ~ u ( u - ' )  

for  all u • U. 

Let t : U --~ Uc be the universal complexification o f  U. Hence, i f  L is a complex 
Lie group and ~o:U ~ L is a Lie group homomorphism,  then there exists a 

holomorphic homomorphism ~oc : Uc --+ L such that ~oc o t = ~0. As U is compact,  
it follows that there exists a faithful representation Jr : U -+ GL(n,  C) for some n. 
Applying the above to Jr, we conclude that t has to be injective. We can therefore 

assume that U is a subgroup o f  Uc. Since U is compact,  it follows that U is closed 

in Uc. 

Lemma 2.4. Let lz • A+(U) .  Then the spherical function Ct u extends to a 

holomorphic function on Uo  The extension is given by 

~u (g) = ((7v/~)c(g)w~, w/z). 

Let G to be the analytic subgroup o f  Uc with the Lie algebra 9 :=  ~ ~ i q. Then 
G is closed in Ue and K C G. We set p :=  iq and notice that a = ib is a maximal 
abelian subspace o f  p. Denote by re  the holomorphic extension o f  r to Uc and set 
0 -- r c l c .  Then 0 is a Cartan involution on G. We have K = G o . The symmetric 

space G / K  is called the noncompact dual of  U / K .  We set A = exp(a) and A1 = 

exp(al).  Finally we set Tc = exp(3c) and TR = Tc A G = exp(i3) _c A. 
Let us recall the standard notations and definition for the Iwasawa decomposition 

o f  G. Let 

n =  ( ~ O  ~, 

otEA + 

where, as usual, g~ = {X • g I VH • a: [H, X] = ot(H)X}. Then the Iwasawa map 

(2.6) K z A x N 9 (k , a , n )  ~-+ kan • G 

is a diffeomorphism. For x • G define (k(x), a(x), n(x)) • K x A × N by the 
inverse o f  the map in (2.6). We normalize the Haar measure dn on N so that 

fNa(O(n))-2pdn = 1. Here p is as in (2.1). Moreover, we normalize the Haar 
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measure da on A (and similarly dt on TR) so that the Fourier transform on Cc~(A), 
defined by 

f(x)=Ya(f)(X):= f f(a)a-Zda, f cCc~(A), )~6a~, 
A 

has inverse 

f(a) = f f(Z)a z d)~. 
ia* 

Finally we normalize the Haar measure dg on G so that the equality 

ff(g)dg=ffff(kan)a2 andadk 
G K A N  

holds for all f ~ Cc(G). 
For Z ~ b~ = a t let 

(2.7) ~oz(g)= f a(g-lk)-Z-P dk=  f a(gk)z-Pdk 

K K 

be the corresponding spherical function on G. Let G ~ be the analytic subgroup of  G 
corresponding to the Lie algebra g' := [g, g]. Notice that i f g  = th with t ~ T• and 
h c G',  then 

~oz (g) = t zx ~oz2 (h) 

where  )~1 is the restriction of)~ to 3c, ~,2 is the restriction of)~ to a lc  = ac O [Uc, ~C], 
and qg~. 2 is the spherical function on the semisimple Lie group G'  with spectral 
parameter )~2. Recall that ~0z = ~% if  and only if there exists w c W such that 

-- w/~. We also recall the following well known fact. 

L e m m a  2.5. Let tx ~ A + (U) and let ~pu denote the holomorphic extension to Uc 
of the spherical function ~pu on U. Then 

~t~lG = 99~+p • 

Proof. (Cf., e.g., [14, pp. 540-541].) Fix a highest weight vector u for re u such that 
w, = fK Jru(k)u dk. In particular (u, wu) = 1 and for b E B we have 

(2.8) ~Pu(b) = (•u(b)wu, wu) = f (Tcu(bk)u, w~,) dk. 

K 

As K is compact, it follows that (2.8) remains valid for the holomorphic extension 
o f ~ u .  In particular, it is valid for b c A. Thus, as (u, w u) = 1, 

(7ru(bk)u, wtz ) = a(bk)/Z(u, wu) = a(bk) (/z+p)-p 
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and hence 

= f a(bk) Oz+p)-p dk = ~Ou+p(b). 

K 

[] 

2.3. The  d i m e n s i o n  funct ion d(/z)  and the c - funct ion  

Set N := O(N) and normalize the Haar measure dh on N so that f~  a(h) -2p dfi = 1. 
I f  Re()~) > 0 for all o~ E A +, then the Harish-Chandra c-function for G / K  is given 

* by on a C 

(2.9) c(X) = f a(h) -~-p dh, )~ E c@ 

Observe that c(p) = 1. By the Gindikin-Karpelevic formula we have 

(2.10) c O 0 = c o  I - I  c~(X~), 
otEA+ 

where c,~ ()~) corresponds to a rank-one c-function, i.e. 

2-z~ F (X~) 
(2.11) c,~()~,~) = r(~(~mal t + 1 + ) ~ ) ) r ( ½ ( ½ m a  + m2, + ~.,~))' 

and the constant co is determined by c(p) = 1. In particular, this formula gives the 
meromorphic extension of  c to all of  a~. I f  m2~ = 0 for all ot then (2.11) simplifies 

to 

FO~)  
c(X) =Cl  H F(X~ + m ~ / 2 ) "  

~EA + 

I f  mc~ is even for all ot c A, then mza = 0 and, by the classification or by [22, 
Appendix C], there exists m 6 N such that m~ = 2m for all ot E A. 

The relation F(z + 1) = zF(z) implies then the following lemma. 

L e m m a  2.6. Suppose that m~ is even for all ot E A. Let 2m ~ 2N be the resulting 
common value of  m~ for all ot E A. Then 

m - 1  
1 

= c  1-I c(~) 
c~EA + k=0 

where the constant C is given by 

m - 1  
1 

C =  1-I I-I pc~ + k. 
~ A +  k=0  
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The dimension d0z) of  the spherical representation Jr u can be expressed as 
a limit of  ratios of  c-functions by means of  Vretare's formula, cf. [30] or [17, 
Theorem 9.10, p. 337]. In the even multiplicity case this formula simplifies because 

the limit involved can be computed as the quotient of  the limits of  the e-ftmctions 
appearing in the numerator and in the denominator of  the formula. 

Lemma 2.7. Assume that for all a ~ A the multiplicities ma are even, and let 2m 

be their resulting common value. Then the following properties hold: 

(1) p~ = m for every simple root or; 

(2) p~ ~ Z for  every ot ~ A; 
(3) p~ >1 m for every ot ~ A+; 
(4) For all Iz ~ A+(U)  we have 

d(#)  = 
c(-p) 

c(a + p ) c ( - ( a  + p ) )  

Proof. I f  ot is a simple root in a reduced root system A, then p~ = m. Indeed, 

p - mot is fixed by the reflection s~. This proves (1). All the remaining statements 
follow easily from the first and from Vretare's formula. [] 

Theorem 2.8. Assume that m~ is even for each ot ~ A, and let 2m be their resulting 

common value. Then the dimension function d extends as to a polynomial function 
on a~ given by 

m--1 k 2 - (x + p)g 
l - I  F I  " 

czEA + k=O 

Proof. This follows from Lemmas 2.6 and 2.7. [] 

2.4. The differential shift operator 

In this section we suppose that all multiplicities ma are even. Then the function 
6(b) of  (1.1) extends as a W-invariant holomorphic function on Bc = AB. (See 
Lemma 1.2 in [22].) The following theorem, which is a slight extension of  
Theorem 5.1(c) o f  [22], provides an explicit formula on A for the spherical 
functions on a symmetric space G/K.  This theorem is our starting point for 
investigating the holomorphic extension of the spherical functions on G / K  to its 
complexification U c / K o  By restriction, we shall then deduce explicit formulas for 

the spherical functions on the compact dual symmetric space U/K.  Because of  our 
context, we shall only consider the case for which mu is even for each ot c A. Recall 
that since we also assume that u' is simple, this means that the m~ have a common 
value 2m 6 21% 
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Theorem 2.9. Assume that all multiplicities m~ are even. Then there exists a W- 
invariant differential operator D on A with analytic coefficients, such that for all 

)~ c b~ = a t and all a ~ A we have 

1 D ( Z a W Z  ) 
(2.12) 8(a)q)), (a) -- d()~ - p~) 

w E W  

The right-hand side of(2.12) is holomorphic in )~. 

Proof. If  G (and hence U) is semisimple, then this follows from Lemma 2.7, 
Theorem 2.8, and [22, Theorem 5.1(c)]. For the general case, let D ~ be the 
differential operator from [22] on Al. By assumption, we have A _~ T~ × A1. For 
t 6 T~ and a c A1 we define the operator D by D( f ) ( ta )  := D'a f ( ta ) / e ( -p ) ,  where 
the subscript a indicates differentiation with respect to the variable a. [] 

We remark that the operator D r occurring in the proof of  Theorem 2.9 is of  
the form 3(a)D, where D is Opdam's shift operator of  shift 2m. Multiplication 
by ~(a) cancels the singularities of  the coefficients of  D. By construction, D' 
can be considered as differential operator on B1 with holomorphic coefficients on 
(B1)c = A 1Bl. Consequently the operator D itself can be considered as differential 
operator on B with holomorphic coefficients on Bc = AB. 

The following corollary, which allows us to holomorphically extend the fight- 
hand side of  (2.12), will also play a crucial role in the proof of  the local Paley- 
Wiener theorem. 

Corollary 2.10. Suppose that )~ c b E is such that )~ ~ 4-{0, 1 . . . . .  m - 1} for some 
ot c A +. Then D ( ~ w c  w b wz) = O for all b ~ BC := AB. 

Proof. The last statement in Theorem 2.9 ensures that D(Y~.wc w b wx) = 0 for all 
b ~ A. Since D()-~wc w b ~z) is holomorphic (possibly multivalued) on Bc and it 
vanishes on A, it must be identically zero on Bc. [] 

Because of  Corollary 2.10, the only obstruction to the holomorphic extension 
to Bc of  the fight-hand side of  (2.12) is the fact that the functions b w~ might be 
multivalued. This obstruction is solved by choosing a domain where the exponential 
function is a diffeomorphism. 

Let 0 ~ V C bc and e ~ / . /C  Bc be open, connected and such that exp : V -+ /g  
is an analytic diffeomorphism. We will assume furthermore that V A b is open and 
connected, and that V (and hence also L/) is W-invariant and contains a. Then, by 
Theorem 2.9, and Corollary 2.10, qgx has an analytic extension to U. 

Theorem 2.11. The function 

A+(U) × L/f3 B 9 (/z, b) w-~ ~iz(b) ~ C 

has a holomorphic extension to b E x Lt given by: 
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~p~ (b) = ~z+p(b) 

d()QS(b) 
toEW 

1 
-- d()QS(b) E DbW(X+P) 

wEW 

= ~(b)-I \~eA+ k=o k2 - (Z + p ) ~ ]  \ ~ e w  

Furthermore, the analytic continuation satisfies 

apz = ~w(x+p)-p 

for all w ~ W and k ~ b~. 

Proof. The first claim follows from Lemma 2.5, Theorem 2.9 and Corollary 2.10, 
as the right-hand side of(2.12) extends to a analytic function on b~ x H. The state- 
ment Oz = aPw(z+p)-p follows from the Weyl group invariance o fL  ~+ ~,0x(b). [] 

As a corollary, we obtain the following explicit formulas for the spherical func- 
tions on Riemannian symmetric spaces of  the compact type with even multiplicities. 

Corollary 2.12. Let tz ~ A+(U). Suppose that all multiplicities m~ are even. Then 
the following holds on B: 

(2.13) 

1 
= d ( ; )  

wEW 

Proof. This follows from the fact that w(/z + p) E A+(U) and that for all v 
A + (U) the function b ~ is single valued and holomorphic on Be. 

2.5. The classification 

We finish this section by giving the classification - up to coverings - of the 
symmetric spaces U / K  with even multiplicities with the property that U is semi- 
simple and U/K irreducible. Here K stands for an arbitrary connected, compact 
and simple Lie group. We list also the noncompact Riemannian dual G / K  as well 
as r := rank(U/K) =- dim(b), the multiplicities m, ,  and the dimension d of  U/K.  
In all these cases the multiplicities m~ are constant. 

The first line of  Table 1 corresponds to the complex case, in which the Lie algebra 
admits a complex structure. 
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Table 1 

U / K  G / K  mc~ rank r dimension d 

K × K / K  ~-- K K c / K  2 r d 

SU(2n)/Sp(n) SU*(2n)/Sp(n) 4 n - 1 (n - 1)(2n + 1) 

E6(-78)/F4 E6(-26)/F4 8 2 26 

SO(2(n + 1)) SO0(2n + 1, 1) 
"~ S 2 n + l  2n 1 2n + 1 

SO0(2n + 1) SO(2n + 1) 

3. THE LOCAL P A L E Y - W I E N E R  THEOREM FOR COMPACT SYMMETRIC SPACES WITH 
EVEN MULTIPLICITY 

In this section we introduce the spherical Fourier transform of  K-invariant functions 
on the compact symmetric spaces U / K .  We then assume that all multiplicities are 
even and use the results from the last section, in particular Theorem 2.11, to show 
that the Fourier transform, which in the beginning is only defined on a discrete set, 
extends holomorphically to b E as long as the K-invariant function has sufficiently 
small support. We then define the Paley-Wiener space on b E and prove the local 
Paley-Wiener theorem. This theorem generalizes the results obtained by Gonzalez 
in [10] for the case U = K x K, where K is a connected, compact, simple Lie group. 
Notice that in this case U / K  ~- K.  

Let H" II be the norm on u with respect to the U-invariant inner product 
constructed in Section 1, and let d be the associated Riemannian distance function 
on U / K .  For R > 0 let BR := {X c q ] IIXII ~< R} and DR := {x e U / K  [d(x,xo)  <~ 
R} denote the corresponding balls of  radius R with center 0 and xo, respectively. We 
suppose that R is chosen so that the map Exp : X --+ exp X • x0 is a diffeomorphism 
of  BR onto DR. Finally we define 

(3.1) C ~ ( U / K )  K := { f  ~ Co°(U/K)  K [ Supp(f)  ___ DR}. 

Here and in the following the superscript K denotes K-invariance. 
Note that zr : B --+ B - x0 is a finite covering. We will identify B with the image 

B.  x0. This is allowed, as we will only be considering K-invariant functions. Then, 
for every f ~ C ~ ( U / K )  K we have Suppf  c DR i f  and only if Supp(flB) _ DR. 

3.1. The spherical Fourier transform on U / K  

For f ~ LZ(U/K)  K define f :  A+(U) -+ C by 

(3.2) 5e(f)(/z) = j~(/z) := (f,  ~tz) 

= f f(u)gru(u-1) du 
u 

= c f f(b)  u (b-1)a(b) db. 

B 
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Here we have used the equality 7tu(u) = ~/r/z(t/-1) from Lemma 2.3, and c is a 
suitable positive constant depending on the fixed normalization of  measures. We 
call f the spherical Fourier transform of  f and the map 5 r the spherical Fourier 
transform. It is well known that f ~-~ { dv/-d-(-~f(/~)} is a unitary isomorphism of  
L2(U/K) K onto £2(A+ (U)). The inversion formula is stated in the next theorem. 
In the following we shall often consider the K-bi-invariant functions 7ix on U as 
K-invariant functions on U/K. 

Theorem 3.1. Let f E L2(U/K) K. Then 

f = Y~. d(lz)f(tz)gru, 
ItEA + 

where the sum is taken in L2(U/K) K. I f  f E C~(U/K)  K then the above sum 
converges in the C~-topology. 

Let E be a differential operator on B. Then the formal adjoint operator E* is 
defined by the relation 

f f(b)Eg(b) db = f E*f(b)g(b)db 
B B 

for all f ,  g E C~(B). In this section D denotes the differential operator from 
Theorem 2.11. Hence 

(3.3) 6(b)~u(b) = d(/z) -1 Z DbW(U+P)" 
wEW 

If~. = )~R + i)~j ~ b~ with )~R, )~l 6 b*, then we set 

(3.4) Re )~ := )~R and Im ~ 1 =  ~.1. 

Definition 3.2. A holomorphic function f : b~ --+ C is said to be of  exponential 
type R > 0 if for each N 6 No there exists a constant CN > 0 such that 

If(z)]  ~< CN(1 + II)~ll)-Ne RIIRe~II 

for all ,~ ~ b~:. 

Lemma 3.3. Let p : b~ --+ C be a polynomial function. Assume that F : b~ -+ C is 
an entire function so that )~ ~ p()~)F()O is of  exponential type R. Then F itself is 
of  exponential type R. 

Proof. Let n = dime b~. Choose a basis )~1 . . . . .  )~n of  b~ and identify b~ with C n 
b y  ZZj~.j ~ ( iZ l  . . . . .  iZn) .  The fact that F is of  exponential type follows then 
from [ 17, Chapter III, Theorem 5.13]. The type R, which is not explicitly computed 
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in this reference, can be easily deduced from formula (62) in that proof. Indeed one 
obtains the estimate 

IF(z)I <. C sup [p(z + w)F(z + w)], 
Ilwll~<l 

which shows that F and p F have the same exponential type. 

Theorem 3.4. Suppose that all multiplicities are even. Let # e A+(U), w e W 
and f ~ C~(U/K)  K. Then 

c 
£(.) = f [D* f(b)]b -w(#+p) db, 

B 

where I Wl denotes the cardinality of  W. 

Assume that R > 0 is chosen so that Exp is a diffeomorphism of  BR onto DR, 
and let f c C~(U/  K) K. Then A+(U) ~ # ~ f ( # )  c C extends to a holomorphic 
function on b~ of  exponential type R such that for all )v e b E and all w e W we 
have: 

= + p) - p ) .  

Proof. Observe that ~ (b -1) = ~ (b) because the multiplicities are even. The formula 
for f follows then directly from Corollary 2.12, formula (3.2) and the W-invariance 
of D and f .  For the second part, we note that, by Theorem 2.11, for every fixed 
b e DR N B the map 

b~ D )v ~+ a ( b - 1 ) ~ ( b  -1) C (7 

is holomorphic. Hence, as we are integrating over a compact set, the map 

z c f  f (b)~(b-1)~(b)db E C 

DR 

is holomorphic. By Theorem 2.1 l, we have for the holomorphic extension: 

(3.5) d(Z)f(Z) = clWl f db. 

DR 

The statement on the exponential type R of  f follows now using Lemma 3.3 
because the right-hand side of (3.5) is a Fourier transform for the torus B. [] 

3.2. The local Paley-Wiener theorem 

In this subsection we prove the non-trivial part of the local Paley-Wiener theorem 
for compact symmetric spaces with even multiplicities. But first let us introduce 
some notation. Let ~ :U '  --+ U' be the universal covering of U ', and set U = 
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T x /7'. Let exp~ : u -+ U be the exponential map, and let rl l  := id x ~ : U --+ U. 
Then expg = ~1 o exp, .  Set R" := exp~ ~.~ Then~ t/1 ( ~ ' )  = K. Since K A T = {e}, 
we have K C U'. The symmetric space U'/K is the universal covering manifold 
of  U'/K. Let d" denote the Riemannian metric on U/~" induced by the fixed 
U-invariant inner product on u. The induced map rh : U/K ~ U/K is a local 
isometry. Let x'o = {K} be the base point in U/K.  Setting DR := {~ e U/R" I 
d(~, ~o) ~< R}, we have 01 (/gR) = DR. Finally, let Exp~ :q ---* U/R" be defined by 
Exp , (X)  := expff X.  ~'o. Then Expu = ~1 o Expo. 

Definition 3.5. We say that R > 0 is small if  the following two conditions are 
satisfied: 

(1) Exp6 : BR --+ DR is a diffeomorphism; 
(2) q~l(Dn) is a disjoint union of  copies diffeomorphic to Dn under/71. 

Note that we are using the base point x0 to define small. By translation, any other 
point could be used. The following statements would then still be valid. Notice also 
that, i f  R is small, then 71 gives a diffeomorphism of/gR onto DR. Moreover, in 
this case, the restriction of Exp is a diffeomorphism of  BR onto DR. 

We underline that we are employing the following notion of  diffeomorphism for 
closed subsets: If  C and C' are closed subsets of  manifolds M and M t, respectively, 
then a map 0 : C --+ C' is said to be a diffeomorphism if  there exists open sets U in 
M and U' in M ~ with C C U and C' C U', so that 0 : U -+ U t is a diffeomorphism. 
According to Theorem 2.1, we have 

(3.6) 

{ /**, } = A + :  = / z e i P ~ @ a * l g c c ~ A + :  /zc~.-- ~No • 

We set 

(3.7) A := {/x ~ iF~ (9 a* I roe ~ A: /x~ ~ Z}. 

The decomposition 

(c, L2W/K))  = 
/x~A+(U) 

where £ stands for the left-regular representation of  U in L2(U/K) and V~r u denotes 
the Hilbert space of  ~r u, implies the following lemma. 

Lemma 3.6. A function f ~ C(U/K)  is of  the form g o ill for some g ~ C(U/K) 
if  and only if f ( tz)  = O for all tx ~ A + \ A+(U). I f fhas  support in DR, then g has 
support in DR. 
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Definition 3.7 (Local Paley-Wiener space). We shall denote by PWR(b*) the 
space ofholomorphic functions of  exponential type R satisfying F(wO~ + p) - p) = 
F()~) for all )~ • b~ and all w • W. Furthermore, we set 

(3.8) PWR(b*, U) := {F • PWR(b*) [ ¥/z • A + \ A+(U): F(/z) = 0}. 

We call PWR(b*, U) the local Paley-Wiener space on b~ relative to U. 

Theorem 3.8 (Local Paley-Wiener theorem). Suppose that all multiplicities are 
even. Let R > 0 be small (according to Definition 3.5). Then the Fourier transform 
U is a bijection o f C ~ ( U / K )  K onto PWR(b*, U). 

We have already seen that the Fourier transform maps C ~ ( U / K )  K injectively 
into PWR(b*), so we only have to show the surjectivity. Given F • PWR(b*), then, 
by the inversion formula in Theorem 3.1, we have to define 

(3.9) f =  Z d(l~)F(l~)~t,. 

/zeA+(u) 

We must show: 

(1) f is smooth and K-invariant; 
(2) f = F; 
(3) Supp(f) c DR. 

We start with some necessary preliminaries. Let X • u and/z • A + (U). Denote 
by zr~ (X) the bounded linear map defined on V u by 

Jr~(X)v := lim zru(exptX)v - v, v • V~. 
t~0 t 

We can extend zr~ to all o f u c  by complex linearity. 

Lemma 3.9. Let X • u and It • A+(U). Then 

11 2 (x)ll rl.lllIxll 

Proof .  Notice that, if X • u, then there exists k • U such that Ad(k)X • c, where c 
is the Cartan subalgebra from Section 2. Furthermore, 

ll 2(Ad(k)x)ll = = 11 2 (x)ll . 

We can therefore assume that X • c. 
Denote the set of  roots ofcc  in uc by A(c), the set of positive roots from Section 2 

by A+(c) and the corresponding set of  simple roots by E (c). Finally, let W(c) denote 
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the corresponding Weyl group. As rru extends to a representation of  Uc it is easily 

seen that Ilzr~(w(X))II = liftS(X)II for all w ~ W(c) and X 6 c. Let 

ic + = {X c i c  I Vot E A+(c): or(X) > 0}. 

Then, if X ~ ic, there exists w ~ W such that w(X) ~ ic +. Let w0 be the longest 
element in W(c). Then there exists a orthogonal basis vz consisting of  weight 

vectors for b, i.e. for all X e b we have 

~2~(x)vx = x(x)v~. 

Furthermore, each weight is of  the form 

~ = I X -  E n~o t=woix+  E k,~ 
c~(c)  ~E(c) 

for some n~, k~ E No. If  X ~ i c + we get: 

Ix(X) ) Ix(X) - Enotot(X) = (woIx)(X) 4- E ko~ot(X) >/(woIx)(X). 

As [[Ix[I = [[w0Ixll it follows that 

I (x)l ilIxllllXll 

and hence for X c c: 

])~(X)[ = ])~(iX)] ~< IIIxll IlXll. 

The claim in the lemma therefore follows. [] 

L e mm a  3.10. Let F ~ PWR(b*, U) and define f by (3.9). Then f ~ C~(U/K)  K, 
and f(Ix) = F(Ix) for all Ix c A+ (U). 

Proof. Let Ix ~ A+(U) _ ib*. By Theorem 2.8 we have that d 0 0  is a polynomial 
of degree L = 2mlA+l. Furthermore, 

It follows that for each N ~ N, there exists a constant C > 0 such that 

Id(Ix)F(Ix)~(b)I <, CN(1 4- IlIxll) -N. 

By choosing N large enough, it follows that the series (3.9) converges uniformly. 
Hence f is continuous. As each lp~, is K-bi-invariant, we deduce that f is 
K-invariant. Choose a basis X1 . . . . .  Xk o f u  with IIXj II = 1 for all j ,  and let 

gt~ (tl . . . . .  tk) := ~tz (exp(tl X1) • • • exp(tk Xk)). 

412 



For a fixed j ,  let gl = exp(t lX0. . .exp(t j_lX3_l  ) and g2 = exp(tj+lXj+l)... 
exp(tkXk). Then 

~-~gt~(tl .... .  tk) ----I(Jru(g,)rr~(Xj)Tr.(g2)w., ~.)1 
J 

~< Ilttll 

by Lemma 3.9. Iteration shows that for any multi-index o~ E N~, we have 

]D'~ gtt(tl . . . . .  tk)] <~ II~tll I~l 

where loll = c~1 + . . -  +C~k. It follows, as above, that the series ~-:~ttd(i,z)F(i.t)D°~g,u × 
(exp(tl XD... exp(tkX~)) converges uniformly. Hence / is smooth. In particular, we 
have f • L2(U/K) K, and therefore 

d( tx) f ( l z )~=f= ~ d(Iz)F(lz)~P, 
,eA+(v) ~ea+(~) 

in LE(U/K). Taking the inner product with ~p,, we see that f(/z) = F(/z) for all 
. • h ~ ( v ) .  [] 

We will now show that Supp(f) _ D R. For this, it is enough to show that 
Supp(~f) _ DR. 

Lemma 3.11. Let R be small according to Definition 3.5. Let F • PWR(b*, U), 
and define f by (3.9). Then for b • B: 

8(b)f(b)=O( ~ F(12)bW("+P)). 
IzEA +K(U), w e W  

Proof. I fb  • B, then by the proof of Lemma 3.10, we have 

/zeA+(U) w e W  /ZeAK(U) w e W  

Hence, for all b • B with 8(b) ¢ 0, we get 

8(b)f(b)=8(b) E d(lz)F(be)O~(b) 
t~eA+(U) 

= ~ F(lz) Z DbWOZ+P) 
/z~A+(U) w~W 

= D (  ~ F(lx)~-'~bW(U+P)). 
/~cA+(U) w~W 
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As both sides are continuous in b, it follows that this holds on {b 6 B I 8(b) ~ 0} 

= B .  [] 

Before finishing the proof of  the main theorem, we need the following well- 
known lemma. Recall that, for /z  6 ib*, we have introduced the notation )~(b)  := 
b ~, provided b t~ is defined for all b c B. 

L e m m a  3.12. Let FI := {X E bl I e x p , ( X )  c R'}. Then 

I" 1 = {X E [31 [V~ E A:  /.t(X) E 2zriZ}. 

Furthermore, ~fF = F0 @ F1, then iF* = A and the map 
A 

A ~/z ~ X~z ~ b / F  

is a bijection. 

Proof. See the proof of  Lemma 4.1 in [14, p. 535]. [] 

L e m m a  3.13. Let F ~ PWR(b*) and b ~ B. Then 

/zEA +, wEW IzEA 

Proof. Set G(/z) := F(/z - p). Then G is of  exponential type R. It follows, as in the 
proof of  Lemma 3.10, that Y~uca G(lz) bu defines a smooth function on B. From 
F(w()~ + p) - p) = F 0 0  we obtain that G(wO~ + p)) = G(Z + p) for all )~ ~ b E and 
w c W. Finally, part (2) of  Lemma 2.7 implies that/x w-~/z + p is a bijection on A. 
As A + is a fundamental domain for the action of  W on A, we have: 

Z G(Iz)bU = Z G(# + p)b ~+p 
I~EA Iz~A 

1 
= ~ F(lz)iWtZ+p-------~l Z bW(~+P) 

/z+pEA + w~W 

where W u+p := {w ~ W I w(/z + p) = / z  + p}. 
For the final step, assume first that /x + p 6 A +, bu t /z  ¢ A +. Then there is a 

simple root t3 ~ A + such that (/x,/~) < 0. As /z 6 A, it follows that /zf ~ Z. In 
particular,/zf ~< - 1 .  Since (# + p,/~)/> 0 we have, using part (1) of  Lemma 2.7, 

(~ + p, ~) 
0~< - - ( / z+p) t~  ~ < - l + m .  

(~, ~) 

By Corollary 2. l0 it follows that 

D(w~wbW(lZ+P) ) = 0 .  

Finally, i f /z  + p 6 A + and/x ~ A +, then W u+p = {e}. The claim thus follows. [] 
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L e m m a  3.14. Suppose that R > 0 is small in the sense of  Definition 3.5. Let F 
PWR (b*). Define h : b --+ C by 

h(X) = E F(Iz -- P)e~(X)" 
/tEA 

Then h is a F-periodic smooth function on b and Supp(h) ___ BR + F. 

Proof. It follows from Lemma 3.12 and from the proof  of  Lemma 3.10 that h is 
smooth and F-periodic. It therefore defines a smooth function on the abelian group 

b / F .  Hence 

F( t t  - p) = vo l (b /F)  -1 f h(X)e-/t(x) dX 

b/r 

By the classical Paley-Wiener theorem there is a g ~ C~(b)  such that ~'(~.) ---- 
F(~ - p). Here the Fourier transform o f g  is defined by 

1 f g(X)e -z(x) dX, )~ ~ ib* 
~'()~)_ (27r)n 

b 

where n = dim b, as before. We claim that there exists a constant V ¢ 0 such that 

E g ( X  + Y) = yh(X) .  
YEF 

Indeed, let 

G(X) --~ E g(X + Y). 
Y c F  

Then G is F-periodic and 

G(/z) = vo l (b /F)  -1 f G(X)e -/t(x) dX 

b/F 

F) -1 f g(X)e -u(X) dX vol(b/  

b 

= vo l (b /F)  - l  (2rr)"~'(/z) 

= vol(b/F)-1(27c) n F(t t  - p) 

= vo l (b /F)  -1 (27r)nh(/z). 

But this implies that 

G = vo l (b /F)  -1 (2yr)nh. 
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Observe that (BR + Y1) O (BR + Y2) = 0 if yl, Y2 e F and Yl # Y2. Hence Supp(g) _c 
BR implies that Supp(G) c_ BR + F. The same must therefore hold for h. [] 

We now finish the proof of  the local Paley-Wiener theorem by proving the 
following lemma: 

L e m m a  3.15. Assume that R > 0 is small in the sense of  Definition 3.5 and that 
F e PWR(b*, U). Then there exists a f ~ C~(U/K)  K such that f(lz) = F(Iz)for 
all IX e A +. Hence the spherical Fourier transform ~ : C~ ( U / K ) K ~ PWR (b*, U) 
is surjective. 

Proofi By Lemma 3.6 we can assume that U = U and K = R'. Hence A + = A +. 
Define a smooth K-invariant function f on U/K by 

f (x )  = Z d(iz)F(iz)~pu(x). 
/zeA + 

Then f 0 z )  = F(/z) for all/z ~ A +, cf. Lemma 3.10. As already observed, it suffices 
to prove that Supp(f ln)  _ DR, which is equivalent to the condition Supp(Sfls) ___ 
DR. By Lemmas 3.11 and 3.13 we have for X ~ b: 

(3.10) (Sf)(expX)= D (  ~ F(tz) ~ e w(u+p)(x)) 
/zeA+ w e W  

-D  E -- ( t zeAF(l~-p)etZ(x))=Dh(X)  

where h is the function defined in Lemma 3.14. Here Dh is defined locally by 
Dh := D(h o exp-1). According to Lemma 3.14, we know that h (and hence Dh) 
has support in BR + F. Thus df  has support in DR. [] 

We conclude this section by proving two integral formulas for the smooth 
functions on U/K with "small support". The first formula, which can be deduced 
from the proof of  the local Paley-Wiener theorem, will play a decisive role in 
proving the validity of  Huygens' principle on U/K. 

Corollary 3.16. Suppose that R > 0 is small in the sense of  Definition 3.5 and that 
f E Cc~(U/K) g. Then the following integral formulas hold on B: 

ib* 

where D is the differential operator of  Theorem 2.11, and 

,f f(b) -= ~ f(~. - p)~ox(b) d(L) d~. 

ib* 
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Proof. Suppose b = expX 6 DR A B. Then by (3.10), we have 3(b)f(b) = Dh(X). 
The function h is determined by the proof of Lemma 3.14 with F = f .  Keeping 
the notation of that proof, we obtain h(X) = g(X) because X ~ BR, and ~'(~) = 
f()~ - p) for all )~ ~ b~. Hence 

h(X)=g(X)= f y(Z)e-~(X)dz= f f(Z-p)e-X~X)dz 
ib* ib* 

ib* 

This proves (3.11) because both f ib  and fib* f(~" - P )  b-zd)~ are supported in 
exp BR. The last formula follows then immediately from Theorem 2.11 and the 
W-invariance of)~ ~ f0~ - p). 

Remark  3.17. So far we have only discussed the Paley-Wiener theorem for 
compact symmetric spaces with even multiplicities. The reason is that our main 
tool, Theorem 2.9, which gives the holomorphic extension of the spherical functions 
in terms of the usual exponential functions on a and a differential operator D with 
analytic coefficients, only holds for even multiplicities. The differential operator D 
and its formal adjoint are used to reduce the proofs and formulas to similar 
statements for Euclidean spaces. The same method will be used in the next section, 
and in fact those results are only valid for even multiplicities. But, in response 
to a request by one of the referees, we would like to comment briefly on the 
general case here; see also [1] for the Paley-Wiener theorem on the sphere Sp, 
and [7] for the Paley-Wiener theorem on the complex Grassmann manifolds 
SU(p q- q)/S(Up × Uq), using different methods. 

In the general case of compact symmetric spaces, one first needs to show that 
the Fourier transform maps the compactly supported smooth functions into the 
Paley-Wiener space, i.e., the generalization of our Theorem 3.4. For that, the first 
task is to prove the analytic extension as in Theorem 2.11. Because of Lemma 2.5, 
this essentially reduces to the analytic extension of the spherical functions on 
the noncompact dual G/K to the complex domain KcA exp(2if2)Kc, where f2 = 
{X ~ a I V~ ~ A: lu(X)l < zr/2} (see [18] for more information on the domain 
KcA exp(2i g2)Ke). Several approaches are possible in accomplishing this. A proof 
using the Heckman-Opdam system of differential equations was commtmicated 
by J. Faraut at the conference "Harmonic Analysis on Complex Homogeneous 
Domains and Lie Groups", Rome, May 17-19, 2001. We reproduce the ideas of this 
proof just below. Note that this proof holds for all positive multiplicity functions. 
For the special case of Riemannian symmetric spaces, another proof was given in 
[20, Proposition 1.3]. 

The second task is then to derive the Paley-Wiener estimates stated in The- 
orem 3.4. The first statement in this direction was given by E. Opdam in [23, 
Proposition 6.1], for all positive multiplicity functions. For the special case of  
Riemannian symmetric spaces, a second proof was given by B. Krrtz in [18]. Both 
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statements give estimates for the spherical functions only on the smaller domain 
KcA exp(i f2)Kc. Thus taking this approach would require a smaller support than 
assumed in this article, cf. [5]. For this smaller domain, one would obtain a 
generalization of  our Theorem 3.4. But the surjectivity, which as so often is the 
difficult part, is still open. 

We finish this remark by a short explanation of  Faraut's proof of  the holomorphic 
extension of  the spherical functions. On Ac the spherical functions are solutions of  
the Heckman-Opdam system, which is a holonomic system of  differential equations 
with meromorphic coefficients and regular singularities. Let ~ be as in (1.1) and set 
F := {h ~ AC ] ~(h) = 0}. Since the coefficients are regular in exp(2if2) \ F, all 
solutions of  the Heckman-Opdam system must be regular on this set. Moreover, 
the spherical functions are also holomorphic on a neighborhood of  A. So they must 
extend to be holomorphic on exp(2i f2). 

The result that the spherical functions are regular in a neighborhood of  A was 
obtained by Heckman and Opdam; cf. the article by Heckman in [11], or [23]. 

4. THE LOCAL H U Y G E N S '  PRINCIPLE FOR COMPACT SYMMETRIC SPACES WITH EVEN 

M U L T I P L I C I T I E S  

Let L x  denote the Laplace-Beltrami operator on a Riemannian symmetric space X 
of  the noncompact or compact type. The modified wave equation on X is the partial 
differential equation 

(4.1) (Lx  =t= Ilpll2)u = u . ,  

where u = u(x, t) is a function of  (x, t) ~ X x I and I __ 1R is an interval con- 
taining 0. The sign in front of  Ilpl[ 2 := (p,p)  has to be chosen + i f X  is of  the 
noncompact type, and - if X is of  the compact type. 

Let f ~ Cc~(X) be fixed. Huygens' principle concerns specific support properties 
for the smooth solution u of  (4.1) which satisfies the Cauchy conditions 

u (x, 0) = 0, 
(4.2) 

ut(x, O) = f ( x ) .  

Recall that solving a Cauchy problem with initial conditions u(x, 0) = g(x), 
ut(x, O) = f ( x ) ,  where f ,  g c Cc~(X) are arbitrary, can always be reduced to 
solving a Cauchy problem with initial conditions of  the form (4.2), and that support 
properties like Huygens' principle reduce at the same time. Indeed, i fui for i = 1, 2 
is the solution to Lui = ( u i ) t t  (for L the operator on the left in (4.1)) with Cauchy 
data (0, j~), then u := u2 + (Ul)t is a solution with Cauchy data 

u (x,  0) = f l ( x ) ,  

ut(x , 0) = f2(x) --~ (Ul)tt(x, 0) = f2(x) --~ (LUl)(X, 0) = f2(x). 

Moreover, if u(x, t) is the solution corresponding to (4.2), then u ( x , - t )  corre- 
sponds to the initial conditions u(x, O) = O, ut(x, O) = - f ( x ) .  This allows us to 
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restrict our analysis to values t/> 0. Finally, the general case can be reduced to the 
K-invariant one. We shall therefore assume in the following that f • Cc~(X) t(. In 
this case, the solution u will be a K-invariant function of  the variable x • X. 

The property that the support of  the solution u is compact is stated by the 
principle of  finite propagation speed. This principle holds, more generally, for 
solutions of  wave equations on arbitrary Riemannian manifolds. (See, e.g., [9, 
Chapter 5].) In our setting, it corresponds to the following lemma. We recall the 
notation DR := {x • X I d(x, xo) <~ R} for the closed ball of  center x0 and radius R. 

Lemma 4.1 (Finite propagation speed). Let u e C°*(X x I) be solution to the 
Cauchy problem (4.2). Let e > 0 and let t • I f3 (0, +oo). Suppose that the Cauchy 
datum f in (4.2) satisfies Supp(f)  c De. Then Supp(u(., t)) C De+t. 

For positive values of  t e I,  the solution u(x, t) to the Cauchy problem is 
therefore supported inside the positive cone 

(4.3) Ce := {(x, t) • X x [0, oo) I d(x, xo) <. e + t}. 

Let s, t, f and u be as in Lemma 4.1. We say that the (strong) Huygens 'principle 
holds provided Supp(u(., t)) c_ {x • X I t - e <~ d(x, xo) <. t + e}. 

Thus, when the strong Huygens' principle holds, the solution of  u(x, t) to the 
Cauchy problem is supported for positive t • I inside the conical shell 

(4.4) S e : = { ( x , t ) • X x [ O ,  oo) l t - e < ~ d ( x , x o ) ~ t + e } .  

Huygens' principle holds true (at least for small values of  t) for the wave 
equation on odd dimensional Riemannian symmetric spaces X of  the noncompact 
or compact type for which all root multiplicities are even. (See the references in the 
introduction.) Observe that dim(U/K) is odd if and only if dim(b) = rank(U/K) is 
odd. Indeed dim• U / K  = dimuc/~c = dimnc +dim b - see the tables in Section 2.5 
for the list of  possible values. 

The main result of  this section is the following local version of  Huygens' 
principle on symmetric spaces of  the compact type. 

Theorem 4.2. Let U / K  be a Riemannian symmetric space o f  the compact type 
with all multiplicities even. Let R > 0 be small according to Definition 3.5. Let 
0 < e < R, and let f e C ~ ( U / K )  K. Assume that U /K  is odd dimensional (that is, 
rank(U/K) = dim b is odd). 

Suppose that u(x, t) is a smooth solution of  Cauchy's problem 

(4.5) 
( g v / K  -- IlPlle)u = u . ,  

u(x ,  O) = O, 

ut (x, O) = f (x). 

Then the following properties are satisfied: 
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Figure 1. 

(a) (Local exponential Huygens' principle) There is a constant C > 0 so that for 
all (x, t) • U / K  x [0, R - e] and all y • [0, oo) we have 

(4.6) [8(x)u(x, t)] ~< Ce -×(t-d(x'x°)-e). 

(b) 

Here 6 denotes the K-invariant extension to U/ K of  the W-invariant function 
defined in (1.1). 

(Local strong Huygens' principle) 

Supp(u) A (U/K x [0, R - el) = Supp(u) ¢q (DR x [0, R -- e]) _c Se, 

where S~ denotes the e-shell (4.4). 
(c) Suppose dim(U/K) >~ 3. Let D be the differential operator o f  Theorem 2.11. 

Then for all b = expX • B and t • [0, R - e] the smooth solution u(b,t) 
to (4.14) is given by formula 

(4.7) 
f2n/2 D(  O__~ (n-3)/2 

3(b)u(b,t) = [(n - 3)/2]!~2,_1 \ 0 ( t z ) J  (tn-2(Mtg)(X))" 

Here g • C~(b) w is the inverse Euclidean Fourier transform of  f O~ - p) and 

(4.8) 1 f (Mr g)(X) .-- g(s)da(s)  
~"2n_l (r) 

Sr (X) 

is the mean value o f  a function g: b ~ C on the Euclidean sphere Sr(X) := 
{X • b I IIXII = r} in b ~ ~n with respect to the O(n)-invariant surface 
measure da. Moreover, f2n-1 (r) denotes the surface area of  St (x), and f2n-1 := 
~"~n_ 1 (1). 

Parts (a) and (c) of Theorem 4.2 seem to be new in the context of  symmetric 
spaces of the compact type. As we shall see in the following, they both imply 
the local strong Huygens' principle of  part (b). Another independent proof of 
Theorem 4.2 will be given in Corollary 4.4. 
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The remainder of  this section is devoted to the proofs of  the three parts of  
Theorem 4.2. To underline the various necessary steps, we have subdivided them 
into different lemmas and corollaries. Before entering the details of  the proofs, we 
remark that, since the solution u(x, t) is smooth and K-invariant in the x-variable, 
it suffices to examine its restriction to B x [0, R - e]. This will be common to all 
three methods which we are going to describe. 

Recall that for all/z ~ AK(U) + we have 

(4.9) LU/Kgtu = -(IX + 2p, tz)Tt u. 

By Lemma 4.1, for fixed t > 0 the solution u(-, t) to (4.5) is supported inside 
Dt+e. This allows us to interchange integration and differentiation with respect the 
variable x ~ U/K.  Hence, taking the spherical Fourier transform of(4.5) for fixed t, 
we obtain: 

(4.10) 

-II/z + pl[2 ~(/z, t) = utt (#,  t), 

~'Oz, o) = o, 

~',(~, O) = f ( ~ ) .  

Lemma 4.3. Let U /K  be a Riemannian symmetric space of  the compact type with 
all even multiplicities. Let R > 0 be small according to Definition 3.5, and let 0 < 
e < R. Let u(x, t) be a smooth solution of  Cauchy's problem (4.5) with Cauchy 
datum f ~ C ~ ( U / K )  K. Then for X E ib* 

(4.11) f f O ~ - p , t ) =  f O ~ - p )  sin(lIMIt) . 
IIMI 

Consequently, for all (b, t) 6 B x [0, R - e] we have 

{ f sin(liMit) b~ dX'~. 
P) ] 

k 
ib* 

Proof. Suppose that t ~ (0, R - e). Then t + e < R is small, and the local 
Paley-Wiener Theorem 3.8 ensures that /z ~ fi'(/z, t) extends uniquely to )~ 
~'0~, t) c PWt+e(b*, U). Likewise, fftt(lz, t) and - ( / z  + p, /z  + p)fi'(/z, t) admit 
unique holomorphic extensions in PWt+e(b*, U), respectively to ~ttO~, t) and 
-()~ + P, )~ + P)~'G, t). Finally, ~'(tz, 0), fi't0z, 0) and f( /z)  extend uniquely to 
PWe (b*, U). By uniqueness, we conclude that the equations in (4.10) hold for the 
holomorphic extensions. Setting co(X, t) := fi'(~. - p, t), we are therefore reduced to 
the Cauchy problem 

O)tt(~., t) = -IlMI2~o(k, t), 

~o 0., 0) = 0, 

o~,(x, o)  = f ( x  - p) ,  

from which (4.11) follows. 
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By Lemma 4.1, u(., t) c C~+e(U/K) I¢. Since t + e is small according to Defini- 
tion 3.5, formula (4.12) is then a consequence of  (3.11) and (4.11). [] 

Define v : b × ( - R  + e, R - e) --+ C by 

(4.13) v(X,t) := f / ( Z -  p)sin(ll Ht)eX(X)d) . 
IlZll 

ib* 

Then v(X, t) is the solution of  the Cauchy problem for the wave equation on b ~ Rn: 

Lbv(X, t) = 1)it(X, t) 
(4.14) v (X, O) = 0 

vt(X, O) = g(X), 

where g 6 C~(b)  w is the inverse Euclidean Fourier transform of  f o ,  - P). 
Since exp:BR ~ DR is a diffeomorphism and since the operator D preserves 

supports, we have proved the following corollary, yielding the first proof of  the 
local strong Huygens'  principle of  Theorem 4.2. 

Corol lary  4.4. Suppose U/ K is a symmetric space of the compact type with even 
multiplicities. Let R be small according to Definition 3.5, and let 0 < e < R. Then 
the strong Huygens "principle holds for (4.5) on U / K × [0, R - e] provided it holds 
for (4.14) on b x [0, R - e l .  Hence the local strong Huygens'principle holds if 
dim(U/K) is odd (i.e. if rank(U / K) = dim b is odd). 

To prove the local exponential Huygens'  principle, we apply the procedure of  
[6] to the integral appearing at the right-hand side of  (4.12). Our computations 
are nonetheless easier than those in that article. Since we only consider the even 
multiplicity situation, we can employ our differential operator D. This allows us to 
work in a Euclidean setting by replacing the spherical functions appearing in the 
integral formulas studied in [6] with exponential functions. 

Let S denote the unit sphere in ib*, and, as before, let n = dimb = rank(U/K). 
With respect to polar coordinates (co, p) 6 S × [0, +c~) in ib*, we have d)~ = 
pn-l dcodp. 

Setting 

We(p, X) := pn-1 [ f(pco _ p)epw(X) do), (4.15) 

S 

we obtain for b = exp X ~ B 

. sin(H~.llt) eX(X ) d2,) 
(4.16) 3(b)u(b,t)=D( f 

/ 
ib* 

= D ( f o  ~e(P'X)p sin(pt)dp). 
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Lemma 4.5. Suppose n :--- dim b/s odd. Then the following properties hold. 

(a) The function qJe(p, X) extends to a holomorphic function on C x be. It is 
even in p ~ C and W-invariant in X c b. Moreover, for every N E N there is 
a constant KN > 0 such that 

(4.17) ]~(p, X)[ ~< KNIP]"-I(1 + ]pl)-Nellmpl(e+llXII) 

for all p ~ C and X E b. 
(b) Suppose, furthermore, that n 5~ 1. Let D be the differential operator of  Theo- 

rem 2.11. Then the function p - l  DqJe(p, X) is holomorphic on C x bc. It is 
odd in p c C and W-invariant in X E b. Moreover, for every N E I~ and every 
compact Q c b there is a constant KN, a > 0 such that 

(4.18) DqJe(p, X) <<. KN.QEpIn_2( 1 + ipl)_Nellmpl(e+llXll) 

for all p ~ C and X E Q. 

Proof. As the integrand in (4.15) is holomorphic in (p, X) c C × bc and continuous 
in co e S, it follows from Morera's theorem that qJE is holomorphic in C × be. The 
fact that qJ~ is even in p and W-invariant in X is a consequence of  the O(b*)- 
invariance ofdw,  the W-invariance of)~ ~-~ f()~ - /9 ) ,  and the fact that n is odd. 

Recall the notation (3.4) for the real and imaginary parts in b~. If  (p, w) e C x S 
and X ~ b, then 

]lRe(pco - p)1[ = ][Re(pco)II = IImpl Ilcoll = Ilmpl 

and 

Re(pw(X)) = - I m p l m w ( X )  ~< IlmplllXII. 

Since f E PWs(b*), we therefore obtain for all p 6 C, 02 6 S and X E b: 

I f  (po) - p)e p°2(x) ] <<. CN(1 -]'- [Ipw -- Pll)-NeellRe(p°2-P)lle Re(p~°(X)) 

<~ CN(1 q-]pl)-NeellmplellmplllXII ' 

from which the estimate (4.17) immediately follows. Formula (4.15) shows then 
that p-lqjE(p, X) remains holomorphic provided n > 1. It is odd in p ~ C and 
W-invariant in X c b. The same property holds therefore also for p-~DqS~(p, X) 
because D is W-invariant and has holomorphic coefficients. Suppose n ) 3. 
Differentiation under integral sign gives 

DqJ,(p, X) _ pn-2 f f(poJ - p)De pw(X) do). 
P 

S 
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Notice that De p°)(x) = f(X, co, p)e pw(x) where f(X, w, p) is holomorphic in 
X 6 b~, polynomial in o2 c S and polynomial in p ~ C. For every compact subset Q 

of  b there is a constant C/c so that 

[f(X, og, p) I <~ Cg(1 + Ipl) ~ 

where s = deg D is the polynomial degree of  f in the variable p. This, with the 
same argument used for (4.17), proves the estimate (4.18). [] 

We now use Lemma 4.5 to prove exponential estimates for the solution u(x, t). 
Since Oe(p, X)/p is odd, we obtain from (4.16) that for all b = expX E B, t E 
[0, R - e] and g > 0 we have 

1 f D~e(p,X) eiprd p 
2 p 

l ( f D ~ e ( P + i y ' X )  eiptdp)e-Yt. 
= 2 p.q_iF 

In the above computations, the differentiation under integral sign and the shift in 
the path of  integration are justified by the estimates of  Lemma 4.5. 

Lemma 4.6. Under the assumptions of Theorem 4.2, the local exponential 
Huygens "principle of Theorem 4.2(b) holds when rank(U/K) > 1. 

Proof.  Equation (4.19) together with estimate (4.18) give for all b = exp X E B and 

l ( y  DqJ~(P-biy'X) [eiPt ) 
lr(b)u(b't)[ <~-2 p+iF [dp e -Yt 

Since IIXI[ : d(x,xo) when x c Kexp(X)K, we conclude that for all (b, t) E B × 
[0, R - e] and all t 6 [0, c~), we have 

I•(b)u(b, t)[ ~< Ce -Y(t-d(x'x°)-e), 

where C is a positive constant. The inequality then extends by K-invariance to 
U/ K. [] 
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As in [6], the exponential estimates need to be worked out directly when 
rank(U/K) -- 1. In this case the definition of  qJ~(p, X) simplifies since S = {+i}. 

We shall identify b E with C by )~ = (or,)~)/(ot, or). As )~ ~ f 0 -  - P) is even, it 
follows that 

qJ e(P, X) = f (ip -- p ) e  ipX -q- f (--ip -- p ) e  - i pX  

= 2 f ( i p  - p) cos(pX). 

In the rank one case we can write the operator D in the form D = D'(d/dX) ,  
where the D t is an odd differential operator with holomorphic coefficients. (See 
Corollary 4.16 of  [22].) Hence 

DqJe(p, X) D'(d/dX)~E(p,  X) 

P 
2 f (ip - p)D' (d /dX)  cos(pX) 

P 

= - 2 f ( i p  - p)D' sin(pX). 

Formula (4.16) then yields, for b = expX • B and t • [0, R - e], 

(4.20) (7 ) %(p, x) 
6(b)u(b, t) = D \  j 0 P sin(pt)dp 

( J )  1 D ~Pe (P, X) eipt dp 
= ~  p 

- - 0 0  

O(3 

1 f D ~ e ( p , X )  eiptdp 
2i p 

- - 0 0  

O0  

= i f f ( i p  - p)D' sin(pX) e ipt dp. 

- - 0 0  

Since f • PWe(b*), for all N • N there are positive constants C N and C~v so that 

] f  (ip - p)sin(pX)] ~< CN(1 + ]lip -- pll)-NesllRe(ip-P)lleRe(ipc°(S)) 

~< C~v(1 + ]p[)-NeellmplellmplllXll 

for all p • C and X • b. As in Lemma 4.5(b) we conclude that f ( i p  - p)D' sin(pX) 
is a holomorphic function o f (p ,  X) • C x b, and for every N • N and every compact 
Q c b there is a constant KN, Q > 0 such that 

(4.21) ]f( ip  - p)D'sin(pX)] <~ KN, Q(1 "[-]p[)-Ne[Imp](e+l]X]]) 
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for all p 6 C and X ~ Q. This allows us to shift the contour of  integration in (4.20) 
and get for all p 6 C and b = exp X c B: 

(4.22) ~ ( b ) u ( b , t ) = ( j f ( i p - g + p ) D ' s i n ( ( p + i y ) X ) e i p t d p ) e  - ~ t . _  

The same argument used in Lemma 4.6, together with (4.21) and (4.22), yields the 

following lemma. 

L e m m a  4.7. Keep the assumptions of Theorem 4.2. Then the local exponential 
Huygens 'principle of Theorem 4.2(a) holds when rank (U / K) = 1. 

The local exponential Huygens'  principle provides a second proof  of  the local 
strong Huygens'  principle. 

Corol lary 4.8. Keep the assumptions of Theorem 4.2. If  dim(U/K) is odd, then 
the local strong Huygens'principle of Theorem 4.2(b) holds for the modified wave 
equation on U/K. 

Proof. The finite propagation speed ensures that 

Supp(u) n (U/K x [0, R - e]) = Supp(u) n (DR x [0, R - el) __ Ce, 

where Ce denotes the positive e-cone (4.3). As y -+ ¢~, we obtain from (4.6) 
that 8(x)u(x, t) = 0 for all x with t - d(x,xo) - e > 0. Thus Supp(u) n (U/K x 
[0, R - el) is contained in the e-shell S~ of(4.4). [] 

We now turn to the proof of  the explicit formulas for the smooth solution of  the 
Cauchy problem (4.2) for the modified wave equation on U/K. These formulas are 
a consequence of  (4.12) and of  the explicit formulas known for the solution to the 
Cauchy problem (4.14) for the Euclidean wave equation. 

For r > 0 we denote by Sr(X) := {X c b ] IIXII = r} the Euclidean sphere in 
b ~ R n of  center X and radius r. Again, we let ~ n - l ( r )  denote the surface area of  
Sr(X), and write simply ~2n-1 for ~2n-1(1). Recall the definition (4.8) o f  the mean 
value (Mrg)(X) of  a function g : b --+ C o n  Sr(X). 

L e m m a  4.9. Suppose dim b = n is at least 2. 

If n is odd, then the solution to (4.14) is given by 

an/2 ( 0 ~ (n-3)/2 
(4.23) v(X, t) = [(n - 3)/2]!~2n-1 ~,O(t2)) (t"-2(M'g)(X))" 

If n is even, then the solution to (4.14) is given by 

(4.24) v(X, t) = 

t 
1/2 ( 0 ~ (n-Z)/Z(rn_Z(Mrg)(X)) dr. 

[(n ---X/Z]! f r(t2 -- r2) ~ Or 2 ] 
0 
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Proof. See, e.g., [17, p. 481]. [] 

Corollary 4.10. Let U/K be a symmetric space of  the compact type with even 
multiplicities. Suppose rank(U/K) >~ 2. Let D be the differential operator of  
Theorem 2.11, and keep the notation of  Lemma 4.9. As in (4.14), let g ~ C~(b)  w 
be the inverse Euclidean Fourier transform of  f O~ - p ). I f  n = rank(U/K) = dim b 
is odd, then the smooth solution u (b, t) to (4.14) is given, for all b = exp X c B and 
t c [0, R - e], by the formula 

ff2n/2 
8(b)u(b ,  t) = 

[ ( n  - 3)/2]!Qn-1 
( ~ ~ (n-3)/Z(tn-2(Mt g)(X)). 

Dko( t2)]  

I f  n is even, then the solution to (4.14) is given for all b = expX c B and t c 
[0, R - ~] by the formula 

(4.25) 8(b)u(b, t) = 

t 

1/2 Dfr(t2 _r2) 
[(n - 2)/2]! 

o 

x ~ 0 r 2 ]  (rn-2(Mrg)(X)) dr" 

Proof. This is immediate from (4.12), (4.13), and Lemma 4.9. [] 

Corollary 4.10 proves, in particular, Theorem 4.2(c). It also yields a third proof of  
the local strong Huygens '  principle. Indeed, (4.7) shows that u(b, t) is determined 
by the values of  the Cauchy datum f in a thin shell around St (X), where b = exp X. 
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