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Abstract 

De Bruijn and Kautz graphs have been intensively studied as perspective interconnection 
networks of massively parallel computers. One of the crucial parameters of an interconnection 
network is its bisection width. It has an influence on both communication properties of the 
network and the algorithmic design. We prove optimal bounds on the edge and vertex bisection 
widths of the k-ary n-dimensional de Bruijn digraph. This generalizes known results for k = 2 
and improves the upper bound for the vertex bisection width. We extend the method to prove 
optimal upper and lower bounds on the edge and vertex bisection widths of Kautz graphs. 

0 1998 Elsevier Science B.V. All rights reserved. 

1. Introduction 

The de Bruijn and Kautz digraphs were originally studied as asymptotically largest 

digraphs w.r.t. degree and diameter [4] and were proposed as promising topologies for 

massively parallel computer architectures [3]. Several graph-theoretic properties and 

algorithmic design problems have been widely studied for these graphs [l, 2, 13, 171. 

In this paper, we study vertex and edge bisection width of the k-ary n-dimensional 

de Bruijn and Kautz digraphs, respectively. The edge bisection width of a graph G = 

(V, E), denoted be(G), is the smallest number of edges removal of which divides G 

into two parts of equal size (up to 1 vertex). Similarly, the vertex bisection w-i&h, 

denoted bv(G), is the smallest number of vertices removal of which divides G into two 
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parts having at most [I V//21 vertices each. The edge bisection width is a fundamental 

concept in the theory of interconnection networks [ 131. In many problems, where a large 

portion of data must be moved from one half of a parallel computer to the second half 

(sorting, routing, gossiping), the computation and communication time depends heavily 

on the bisection width [ 10, 111. Monien et al. [15] defined the communication capacity 

of a network in terms of the edge bisection width. Another connection between the 

bisection width and the communication complexity appears in deriving lower bounds 

on the area and area x time2 complexity of VLSI circuits [20, 221. Bisection widths 

also play an important role in the algorithmic design [14] and in computing lower 

bounds on crossing numbers [ 121. 

Thompson [20] proved a lower bound on the bisection width of the binary shuffle- 

exchange graph to be R(2”/n). Hoey and Leiserson [8] found an optimal upper bound. 

Using a strong similarity between the shuffle-exchange and de Bruijn digraph, Leighton 

[ 131 derived the same optimal bound on the bisection width of the binary de Bruijn 

digraph. The same result was independently proved by Samatham and Pradhan [17]. 

Bounds on bisection widths of small de Bruijn digraphs are given in [15]. Recently, 

Feldmann et al. [6] have proved the best upper bound so far for the edge bisection 

width of the binary de Bruijn graph: 2 ln(2)2”/ IZ, which differs from the lower bound 

by a multiplicative factor of 1.4 only. 

As the binary de Bruijn digraph is of bounded degree, the vertex and edge bisection 

widths are of the same order. For the k-ary n-dimensional de Bruijn digraph, Pellegrini 

[16] proved an upper bound on the vertex bisection width to be O(k”/fi). 

The main results of this paper are as follows. We show that the vertex and edge bi- 

section widths of the k-ary n-dimensional de Bruijn digraph are O(k”/n) and O(k”+‘/n), 

respectively. This generalizes known results for k = 2 from [13, 171 and improves the 

upper bound on the vertex bisection width of Pellegrini [16] by a factor of fi. Using 

structural similarities between de Bruijn and Kautz digraphs, we extend the method to 

show that similar optimal bounds hold also for the Kautz digraph. It is noteworthy that 

our constant factors are very small. 

2. Preliminaries 

Given a graph G, let V(G) and E(G) denote its set of vertices and edges, re- 

spectively, and d(G) the maximum degree of G. A similar notation will be used for 

digraphs. 

Let Z? denote the set of all integers and let _CYk = (0, 1, . . . , k - 1). The k-ary 

n-dimensional de Bruijn digraph B(k,n) consists of k” vertices. Vertices are labeled 

with strings u,-~u,-z . . u1 uo over the alphabet Tk. Vertex x is adjacent to vertex 

y iff the last II - 1 letters of x are the same as the first n - 1 letters of y. The k- 

ary n-dimensional Kautz digraph K(k,n) consists of k” + k”-’ vertices labeled with 

strings u,-~ . ..uo over the alphabet ZYk+i so that Vi = l,...,n - 1, u, # ui-1. Similar 

to the de Bruijn digraph, adjacency between vertices is based on left shifting: 
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U,,_] . . . UQ is adjacent to ~~-2.. . UOC( for all a E Tk,_i - {~a}. An edge joining u = u,,_ I 

. . . uo to L‘ = ~,,_2.. . ~0% will be denoted by (u,u) = (u,_i .u~~x). More generally, a 

path starting in u,?_i . . UO, passing through ~~-2.. ugz),_i, u,,_3.. UOU,_~U~-~. . . and 

ending in w,?_i . . wg will be denoted by (u,_i . . UOL;,-1 ~~-2.. . w,_l . . . M/O). 

Since the orientation of arcs has no influence on bisection widths, we consider de 

Bruijn and Kautz graphs obtained from the digraphs by omitting orientations and we 

also use the same notation as for digraphs. Note that the resulting graphs have double 

edges, the de Bruijn graph has loops, and d(B(k,n)) = d(K(k,n)) = 2k. 

The operation of cyclic shifting, rotation, induces an equivalence on the vertex set 

of the de Bruijn graph. The equivalence classes are called & Bruijn necklaces. For 

a given vertex u = un_i . . . ua E V(B(k,n)), the length j of the necklace containing 

u is the number of rotations of u needed to get u again. Clearly, jln. Necklaces of 

length n are called full necklaces of B(k, n) and shorter necklaces are called degenerute 

necklaces. 

It has been shown in [21] that Kautz vertices can also be partitioned into necklaces. 

The lengths of necklaces of K(k,n) are divisors of either n or n - 1. There is a one- 

to-one correspondence between necklaces of B(k, n) U B(k, n - 1) and K(k, n) of length 

23. Necklaces of length n and n - 1 are called the jhll Kuutr necklaces of the $rst 

and second type, respectively. Necklaces of length j < n, jln and j < n - 1, ,jl(n - 1) 

are called the degenerate Kautz necklaces of the first and second type, respectively. 

Vertex u,_ I ug belongs to a Kautz necklace of the first type if u,_i # ug and to a 

necklace of the second type otherwise. 

Lemma 2.1 (Tvrdik, 1994). Let ml(k,n)(mz(k,n)) denote rhe number oj’ uertices of’ 

necklaces of the jirst (second) type in K(k, n). Then ml (k, n) = k” f k and mz(k, n) = 

k”-’ F k, where the upper sign is taken lf n is ecen. 

Let ?? denote the complex plane. For z E W, let Re{z} and Im{z} denote the real 

and imaginary part of z, respectively. If 5 = exp(2zfl)/n is the nth primitive root of 

unity, then /7(t) denotes the cyclotomic ring over 2, i.e., set {c:L,i u,ci : u, E Y}. 

Let 4(n) denote the Euler’s totient function, i.e., the number of all positive integers 

smaller than n and relatively prime to n. A fundamental result about T(t) says that 
{l/i’2 ).,., @Wi } is a basis of T(t), see [18]. It means that every element of 

-iu([) can be expressed as a linear combination of 1, t,. , <4(n)_’ over Y and if 
cf$-’ Uirl = 0, u,~~,thenu~=Oforalli=O,l,..., 4(n)-1. 

A routing R of a graph G = (V,E) is a set of 1 V I( 1 V 1 - 1) paths connecting each 

ordered pair of distinct vertices of G. For any u, L’ E V(G), the path from u to r in R 

will be denoted by R(u,u). The load of a vertex z! E V in routing R is the number of 

paths, denoted [(G, R, v), going through r where c is not an end vertex. The load of 

an edge e E E in R is the number of paths, denoted n(G, R, e), going through e. The 

vertex forwarding index of G is defined as 
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The edge forwarding index of G is defined as 

n(G) = rnp m$;{rc(G,R,e)}. 

Since we consider de Bruijn and Kautz graphs derived from digraphs just by omitting 

the orientation of the arcs, the forwarding indexes are different compared to those 

derived in [7]. 

Lemma 2.2. For k, n 3 2 

$B(k,n))<nk”-’ 

x(K(k,n))dnkn-’ + (n - l)k”-2 

(1) 

(2) 

Proof. To prove (1 ), consider the routing R where R(u, II) = (u,_I . . . UOU,_I . ~0) 

for any u, n E V(B(k,n)). Every pair of vertices is connected by a path of length 

exactly n, we ignore shorter paths implied by possible periodicity of string patterns. 

For estimating the upper bound on forwarding indexes, this is acceptable since the 

truly shortest path routing gives forwarding index of the same order, or even exactly 

the same values if IZ is prime. Consider an edge e = (x,x,_r . . .x1x0). Then e is an 

edge of R(u,u) iff for some Odidn - 1, q-1 . ..ug = ~1 . ..ajx....xi+i and u,_i . . . 

00 = xi.. .xo/I~ . . .Pn_i-l, where ~(1 . . cli and pi . . fin-i-1 are arbitrary k-ary strings 

of length i and n - i - 1, respectively. It follows that the number of paths R(u, u) 

containing e is at most CyIsl k’k”-‘-’ = nk”-‘. 

In case of Kautz graphs, we will use a similar routing. Due to the constraints on 

Kautz string patterns, we have to distinguish two cases. Consider two vertices un_r . . 

ug and q-1.. .VO of K(k,n). Then R(u,u) = (q-1 . . .UOU,-1 . . . UO) if us # u,_i and 

R(u, u) = (u,_~ . . . UOU,_~ . . UO) otherwise. Every vertex and every edge of K(k, n) will 

be loaded both by paths of length n and by paths of length 12 - 1. Using a similar 

argument as above, we get (2). 0 

3. De Bruijn graph 

The main result follows from the following four lemmas: 

Lemma 3.1. For k>2,n>3, 

Proof. We extend the complex plane diagram method, first used by Hoey and Leiserson 

to prove an upper bound on the edge bisection width of the binary shuffle-exchange 

graph [8]. The original method relies on a suitable mapping of the vertices of the 

shuffle-exchange graph into the complex plane and on joining the images of adjacent 
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vertices by line segments. An edge bisection is obtained by deleting all edges incident 

with the real line. 

We use the same function for mapping the vertices of a de Bruijn graph into the 

complex plane. However, the construction of the bisection and the analysis of the upper 

bound essentially differs from [8] as it will be seen later. Define a mapping 

,f : V(B(k.n)) - +?, 

so that 

Observe that if (u, U) E E(B(k, n)), then 

either ,f(u) = <f(a) + q or ,f(c) = (f’(u) + r2, 

where ri,r2 t {-k + l,..., -l,O, l,..., k - l}. If we join images of adjacent vertices 

by straight-line segments, we get a drawing of B(k.n) in the complex plane. From now 

on, we will not distinguish between vertices and edges of B(k,n) and their images in 

V, respectively. 

The mapping ,f is not one-to-one. The main problem when using this method is to 

estimate the number of vertices mapped into the origin. In the binary case [8, 131. the 

vertices mapped into the origin are precisely the vertices of degenerate necklaces. This 

does not hold in the general case. For example, vertex 020111 of B(3,6) is mapped 

into the origin, but it belongs clearly to a full necklace. 

Define 

MU = {u E V(W,n)) I f(u) # O,Im{f’(u)) = 0). 

M2 = 1~ E VWn)) I Re{.f(u>} = Im{f(u)l = 01. 

Let MI = Mii u A412 and A4 = MI u M2. We claim that M is a vertex bisection of 

B(k,n) dividing V(B(k,n)) into sets X and Y defined as follows 

X = {u E V(B(k,n)) / Im{f(u)} > 0) - MII, 

Y = {u E V(B(k,n)) / Im{f(tl)} < 0) - MII. 

First, we show that there is no edge joining X and Y. Suppose that there is an edge 

(u,r) E E(B(k,n)) such that u E X and n E Y. Then 

WI”(u)} > 0, Im{f(u>} < 0, Im{ U(u)} 3 0, Im{ tf(ti)} 6 0. (3) 

Assume w.1.o.g. that f(v) = [f(u) + Y, where r~{-ktl,..., -1,OJ ,.... k-1). 

This together with (3) implies that 0 > Im{f(v)} = lm{if(u)} 20, a contradiction. 
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Second, we prove that IX/, 1 Yj d r l/(B(k, n))/21. There is a l-l correspondence 

between vertices of B(k,n) with positive and negative imaginary parts. Vertex u = 

u,_i . . . uo corresponds to vertex U = ii~_iii,,_2.. . iio, where Us = k - 1 - ui, since 

f(u)+f(u)=(k-1)5”-‘+...+(k-l)t+(k-l)=O. 

It follows from the definition of X and Y that 

(XI = IY(<l~(B(k,~)) -Ml/2 < lW(k,n))jP. 

Third, we estimate the cardinality of the set M. Let us start with A42. We claim that 

Observe that IM2 I is the number of strings u,_i . . ug satisfying 

&&n--1 +~~~+ul5+uo=o, (4) 

where O<ui<k-1. AS {I,( ,..., 54(“)-‘} is a basis of Z(i;), for all j = 4(n), . . , n- 1, 

there exist aij E 3 such that 

4(n)- 1 

5’ = C aijf. (5) 
i=O 

By substituting (5) into (4), we get 

4(n)- 1 n-l &n)-l 

C Uj<j + C Uj C L7ijti = 0. 
j=O j=+(n) i=O 

By rearranging the terms we have 

d(n)- 1 n-l 

‘C (Uj + 2 UiLZji)(j = 0. 
j=O i=b(n) 

The linear independence of { I,<,. . . , So-’ } implies a system of 4(n) linear equations 

with unknowns uo,ui,...,u,_t 

n-1 

Uj + C UiUj, = 0, (6) 
i=4(n) 

where j = 0, 1, . . ,4(n) - 1. Thus, IA42 ( is the number of solutions of (6) satisfying 

O<ui<k - 1,i = 021 , . . ,n - 1. By choosing z+(~), . . . , u,_l arbitrarily from %k and 

substituting them into (6), we get a system of 4(n) linear equations with unknowns 

~0, . . . , q,cn)_ 1. Clearly, this system has at most one solution satisfying 0 < Ui ,< k - 1, i = 

0, 1,. .,4(n) - 1. Hence, 
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Using the lower bound on 4(n) from [19, p. 2301, 

O(n) 3 l/26, 

for n 3 1, we get the claimed bound. 

Observe that 

<f(z+l . . uo) = U,~_,fy + 24,,_&-’ + ” + U[j< 

= u,_p + u,_~~‘7--2 + ” + ln& + u,-{ 

= f(u,-2 . . uou,-1 ). 

(7) 

If f(u) = 0, then the whole necklace (either full or degenerate) containing u is mapped 

into the origin. If f(u) # 0, then the necklace containing u is full and consists of 

vertices (‘f(u), for ,j = 0, 1,. . . , IZ - 1, centered symmetrically around the origin. Each 

of these necklaces contributes by exactly 2 vertices to Ml. Hence, 

Lemma 3.2. For k>2,n 23 

2k”+’ 
be(B(k,n))d--- 

n (I+&). 

Proof. Consider the vertex bisection A4 from the proof of Lemma 3.1. Take arbitrarily 

a subset M’ of M having rIMI/ ve ices. Adding M’ either to X or to Y induces 2 rt’ 

edge bisections. It is easy to see that the smaller one has at most klMl edges, which 

implies the result. 0 

Lemma 3.3. For k 22, n 3 14 

hv(B(k,n))>& 1 - !-$ 
( > 

Proof. Consider a vertex bisection C of B(k,n), i.e., there exists a partition of V into 

three sets A, B, C such that ICI = bv(B(k, n)) and no edge joins A with B. Assume 

IAl < ]B]. Since ICI > 1, then lA( < []Vl/21 - 1 and (BIG LiVl,i2]. For any routing R, 

there are at least 2]A]lBI paths of R going through vertices of C. This implies 

Chung et al [5] proved that i(B(k,n)) <(n - 1)k”. Hence, 

2lAI PI hdWkn)>2 (n _ 1 )kn 3 
2lAltk” - IAl - h(B(kn))) 

(n - 1)k” 
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which implies 

214k” - IAl> 
bv(B(k,n))2 (n _ 1)/p + 2lAI 2 

Wk” - IAl) 
&” 

Observing that for n > 14 

JAI = k” - lB( - b#(k,n))> y - $ (1 + -$j$) 

we get 

b 
V 

CBCk,njj>2(k”/2)(L - 13/n)(k”/2)(1 + 13/n) >k” 
, 

nk” ’ 2n 

Lemma 3.4. For k 2 2, n 3 2 

Proof. We apply the Leighton’s lower bound formula [ 131 for the bisection width. For 

any graph G = (V,E) 

be(G>> 211 WJ 11 w21 , 
n(G) ’ (8) 

From Lemma 2.2, n(B(k,n))dnk”-‘. By substituting this into (8), we get 

be(B(k,n)) > W” - 1YWk” + 1 j/21 _ k”+’ , 
nkn- l 2n 

Note that if k is even, then the second-order term disappears. By combining the 

above lemmas, we get directly the main theorem. 

Theorem 3.1. For k > 2, n > 3 

4. Kautz graph 

In this section, we extend the previous arguments to prove optimal bounds on 

bisection widths of Kautz graphs. 
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Lemma 4.1. For k32,n>,3 

hv(K(k.n))<F 1.k.s. 

Proof. From the definitions of the de Bruijn and the Kautz graph, it is easy to see that 

K(k,n) c B(k + 1,n). Consider the vertex bisection set M = MI U Ml of B(k + 1, n) 

from Lemma 3.1. We claim that the set M’ = M n V(K(k,n)) is a vertex bisection of 

K(k,n). Using a similar argument as in the proof of Lemma 3.1, we can show that there 

is a one-to-one correspondence between vertices u and U of K(k,n) such that u and ii 

are symmetrical w.r.t. the origin of the complex plane. Let MT = Ml n V(K(k,n)) and 

A4; = M2 n V(K(k,n)). First, we estimate the cardinality of M,*. Clearly, IMT 1 equals 

to the number of integer solutions of (6) satisfying 0 d u1 d k, i = 0, 1, . . , n ~ 1, and 

ui # ui+l,i = 0, 1,. . ., n - 2. Similarly as in the proof of Lemma 3.1, we can choose 

arbitrarily u~_I,...,u~(~) from 9k+t so that ui # ui_l,i = n - l,...,$(n) + 1, and 

substitute them into (6). This can be done in (k + l)knP2-G(n)+’ = k”-“(n) + k”p’-‘b(n) 

ways and for each of them we get a system of 4(n) linear equations with at most one 

integer solution for unknowns z.Q(~)-~, . . , uo from Zk+l. Hence, 

Since M; consists of vertices of necklaces of the first (u,_I # us) and second (u,_ I = 

UO) type, we can decompose M; = M2; Uhf&, where M2; (Mz2) is the set of solutions 

of (6) of the first (second, resp.) type. Full necklaces of the first type which are 

not mapped into the origin contribute by exactly two vertices to MT. Since the full 

necklaces of the second type that are not mapped into the origin can contribute by 

more than two vertices to MT, we have by Lemma 2.1 

2(k”zt.k-jM;,I) 
IM;l6 n + (kn-’ 7 k - lM2;l). 

Since IM; I = lMTl / + IMT21, we have I MT,/ <k”-“(“) + k”-4(“)p’ and 

lM*l = IM;/ + IM;l<2(knn+k) +k”-’ +k+ qlM;,l 

Using (7), we get the result. Cl 

Lemma 4.2. For k >, 2, n 3 3 

2k”+’ 
be(K(k, n)) G - 

n 

Proof. We apply the argument as in the proof of Lemma 3.2. III 
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Lemma 4.3. For k > 2, n 2 2 

be(K(k,n))3 (k ;f)kfl. 

Proof. The proof is the same as for Lemma 3.4 using n(K(k, n)) < nkn-l + (n - 1 )kfl-* 
from Lemma 2.2. 0 

By combining the above lemmas, we get 

Theorem 4.1. For k 3 2, n 3 3 

(k+;r-l <h,(K(k,n))<2k” 
n 

2k”+’ 
(k :I )k” <be(K(k, n)) d - 

n 

Observe that if n = O(k), then the upper bounds are optimal. 

5. Final remarks 

Due to the method used, our upper bounds hold for n 23 only. In case n = 2 

asymptotically optimal upper bounds for the edge bisection follow from a result of 

HromkoviE and Monien [9]. They proved that in any n vertex d-regular graph there 

exists a bisection of size nd/4 + o(n). For the vertex bisection width it is sufficient to 

remove one half of vertices. It remains an open problem to improve our bounds. The 

experimental results on the edge bisection widths of binary de Bruijn graphs, computed 

for n < 10 by Monien et al. [ 151, suggest that the upper bound could be improved by a 

factor of 2.5. A possible approach is to extend the method used by Feldmann et al. [6] 

for the case k = 2. Another open problem is to prove optimal bounds for the Kautz 

graph if n = o(k) by improving the upper bound on the number of intersections of 

the Kautz necklaces of the second type with the real axis. 
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