among hospitalized patients is substantial. Further research is needed to assess the value of large hospital discharge databases for documenting and distinguishing the costs of specific bacterial pathogens.

ECONOMIC EVALUATION OF INFLUENZA PANDEMIC MITIGATION STRATEGIES IN THE US USING A STOCHASTIC MICROSIMULATION INFLUENZA MODEL

Sander B1, Nizam A2, Garrison LP3, Postma MJ4, Halloran ME5, Longini Jr IM7

1University of Toronto, Toronto, ON, Canada, 2Emory University, Atlanta, GA, USA, 3University of Washington, Seattle, WA, USA, 4University of Groningen, Groningen, The Netherlands

OBJECTIVES: To project the potential impact of pandemic influenza mitigation strategies on health outcome, cost, and cost-effectiveness from a societal perspective. **METHODS:** We use a stochastic agent-based model to simulate pandemic influenza in the community. We compare 16 strategies to no intervention, focusing on targeted antiviral prophylaxis (TAP) with oseltamivir (treatment of identified index cases and prophylaxis of exposed people) alone and in combination with school closure. We also consider pre-vaccination of the population. We use the human capital approach to estimate productivity loss. Outcomes include number of cases, deaths, QALYs, direct and indirect costs, and incremental cost-effectiveness ratios (ICERs) expressed as costs per QALY gained. **RESULTS:** In the absence of intervention, we predict a 50% attack rate with an economic impact of $187 per capita. TAP + school closure and pre-vaccination + school closure (preventing 94–96% of cases at $2730 per capita) are comparable in terms of QALY gain and total costs. The ICER compared to TAP alone (the most effective single strategy) is about $50,300/QALY for either strategy. The most effective single strategy is TAP alone (prophylaxis of 60% of close contacts of index cases) which effectively prevents 54% of cases at a cost of $120 per capita. If vaccine is available and administered before the onset of the pandemic, then pre-vaccinating 70% of the population with a partially effective vaccine prevents 48% of cases and is the least costly alternative ($99 per capita), dominating all but one TAP only strategies, treatment and school closure. Sensitivity analysis on key variables does not change the ranking of strategies but shows that mortality has the greatest impact on QALYs and hence ICERs. **CONCLUSION:** Targeted antiviral prophylaxis is an effective and cost-saving measure for mitigating pandemic influenza. Adding school closure provides greater benefit and is likely to be an attractive strategy if mortality is high.

THE COST OF THE METABOLIC SYNDROME IN THE ELDERLY: FINDINGS FROM THE CARDIOVASCULAR HEALTH STUDY

Curtis LH1, Hamill BG1, Bethel MA2, Anstrom KJ3, Gottdiener JS4, Schulman KA5

1Duke University, Durham, NC, USA, 2Duke Clinical Research Institute, Durham, NC, USA, 3University of Maryland Hospital, Baltimore, MD, USA

OBJECTIVES: The cardiovascular consequences of the metabolic syndrome and its component risk factors (i.e., abdominal obesity, low HDL cholesterol or elevated triglycerides, hypertension, elevated blood glucose) have been documented in the elderly. To date, little is known about how the metabolic syndrome and its components translate into long-term medical costs. **METHODS:** We used clinical data and matching, longitudinal Medicare claims from 3789 individuals aged 65 years and older in the Cardiovascular Health Study followed up to 10 years. The metabolic syndrome was defined according to the National Cholesterol Education Program’s Third Adult Treatment Panel Report (NCEP-ATP III) criteria. W calculated costs by summing Medicare payment amounts for each participant, and discounted costs at 3% annually. Log-linear regression models were used to estimate the independent contributions of the metabolic syndrome and its component risk factors to 10-year medical costs among. **RESULTS:** As defined by the NCEP ATP III criteria, the metabolic syndrome was present in 47% of the sample. Total per patient costs to Medicare were 20% higher among those with the metabolic syndrome ($40,827 vs. $32,962, p < 0.001). Controlling for age, gender, race and other covariates, abdominal obesity, low HDL cholesterol, and elevated blood pressure were associated with 15% (95% confidence interval [CI] 4.3%–26.7%), 16% (CI: 1.1%–31.8%), and 20% (CI 10.1%–31.7%) higher total costs, respectively. When added to the model, the metabolic syndrome composite variable did not contribute significantly (p = 0.32). **CONCLUSION:** Abdominal obesity, low HDL cholesterol, and hypertension, but not the metabolic syndrome, are important predictors of long-term costs in the Medicare population. The combined effects of abdominal obesity, low HDL cholesterol, and elevated blood pressure are associated with 50% higher Medicare costs.