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In this paper we consider n-person games in which each player has a convex 
strategy set over which his closed strictly quasi-concave payoff function is defined. 
The interaction of the players’ strategies is via linear constraints in the form of a 
convex cone. An appropriate duality theory is developed and applied to an example 
with economic significance. The resulting analysis leads naturally to a means for 
solving such a game that merely involves the solution of a set of linear equations. 

1. INTR~DLJ~TI~N 

It is now well known that for zero sum games with mixed strategies, the 
game played by one player is the linear programming dual of the game 
played by the other player [ 121. Hence one may determine the equilibrium of 
the game by choosing the easier of the two linear programs and then use 
duality to find the solution for the other. This use of duality would be more 
valuable if we could attack games of a more complicated nature than zero 
sum games. We propose to do this in the sequel. 

This research was motivated by the application of game theory to the 
analysis of economic equilibria. Although the study of economic equilibria 
was initiated by Walras [ 181 and Edgeworth [5] in the 19th century, it was 
the work of Shubik [ 171 that first analysed such problems within the 
framework of game theory. In this paper, we develop a duality theory for this 
class of games. This theory has value in that both additional insights are 
obtained and a new basis is established for computing economic equilibria. 
The approach we use to solve such games has perhaps been foreshadowed by 
the works on linear exchange models by Eaves (41 and Gale (61. 

Specifically we consider n-person games with quasiconcave utility 
functions to be maximized by each player. The strategy set for each player is 
convex. Interaction among players is by the restriction of the vector of all 
players’ strategies to a convex cone. We determine a dual game 
corresponding to this class of game. 
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In a previous paper [S], we developed a duality theory for quasi-concave 
programs which provides the basis for the duality theory for games presented 
here. The important results are given below. 

Let [ui, Ui] be the pair of a payoff function (utility function) for player i 
together with the strategy set Ui. We can associate a pair [ui, Vi] of dual 
quasi-concave payoff function ui defined over a convex strategy set Vi. 

DEFINITION. The utility transform of [ui, Ui] is a pair [vi, Vi] defined by 

Uj(p’) 2 .!:fi (- ui(xi)l (Pi7 xi> < O}, 

Vi& {piI inf {-Ui(X’)l ($,X')<O} >-Co}. 
X’EUi 

Here (., ‘) denotes the usual inner product in finite-dimensional Euclidean 
space. 

By construction, for xi E Ui, pi E Vi, and (pi, xi) < 0 we have the utility 
inequality holding: 

q(x”) + u,(p’) < 0. 

The dual function vi has economic significance and is related to the 
indirect utility function first introduced by Roy [ 161. The constraint 
(pi, xi) < 0 can be thought of as a budget constraint formed by the inner 
product of primal and dual variables, commodity and price. For recent 
economic results in this area, the reader is referred to Lau [9] or Diewert 
121. 

Of interest is the condition for the utility inequality to hold at equality. 
This requires the use of a generalization of gradients as quasi-concave 
functions are not necessarily differentiable. 

DEFINITION. The local supergradient of a quasi-concave function ui(xi), 
xi E Ui is a set defined by 

PCUi(Xi) 42 { piI Ddx’Ui(Xi) Q (Ax’, pi), 

V feasible directions Ax’ with respect to Ui }. 

Here DAXiui(xi) is the directional derivative of ui at xi in the direction Ax’. 
For differentiable functions, the local supergradient contains the single 
element: the gradient. The local supergradient is a generalisation of the well- 
known concept of supergradient (subgradient) used in convex analysis. Penot 
[ 13 ] has developed a similar concept. The requirement of quasi-concavity 
guarantees existence of the directional derivative if we allow values to be 
taken over the extended real line. 
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THEOREM 1. The direct&a/ derivative of a quasi-concave function 
ui(xi) at xi E Ui exists. 

Proof: Consider ui(xi) and a feasible direction Ax’. Suppose 

Ui(XI' + LAX') - Uf(Xi) f lim inf Ui(Xi + LAX’) - Ui(Xi) 
1iT ;up - -. 

/I Al0 1 

Then there exist a finite number of points zk on the line segment from 
xi + Ax’ to xi such that 

ui(zk) > ui(zk+l) < ui(zk+Z) for k = 1, 3, 5, etc. 

This contradicts the quasi-concavity of ui(xi). 
However, the local supergradient set may be null. For example, the local 

supergradient for the function 

f(x) = 42, x ,< 0, 

= x, x > 0, 

is 

PI-(x) = 1; 1, x < 0, 

ZZ 42 x = 0, 

= (11, x > 0. 

The natural definition for a generalisation of the gradient at x = 0 is the 
interval [i, 11. The generalised gradient of Clarke [3] yields this result. 
However it is defined for Lipschitz functions and does not allow for the 
possibility of jumps. To capture the properties of closed quasi-concave 
functions we extend the concept of local supergradient to the gradient set. 

DEFINITION. The gradient set of a function ui(x’) at a point xi is the set 
defined by 

&di(Xi) 4 PCUi(Xf), if Pcui(xi) # 0, 

42 CO v !g 8’*‘Ui(Xi + AZ), otherwise, 

where co denotes the convex hull of the set. 
The gradient set captures the properties of the generalised gradient while 

being able to handle jumps by means of the local supergradient. 
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THEOREM 2. Let [ui, Vi] have the following properties: 

(9 ui is closed strictly concave. 

(ii) [ L’~, Vi] is the utility transform of [u;, U,]. 

(iii) zi E lJi is the optimal point of SU~~J~~~~(U~(X~)) if it exists. 

For Xi E Ui, p’ E Vi, (pi, Xi) < 0 and (zi, pi) > 0, we have that 

u&2) + v,(p’) = 0 

iff either 

or 

lipi E &4,(X’), ?Li > Oy 

(a) viXi E &J~($), Vi > 03 

(b) Ui(xi) = 3:~. {Ui(Y’)I (Pi, Yi > < 0). 

(1) 

(11) 

Proof: See [S]. 

From Theorem 2, we may determine a primal solution in terms of the 
variable xi from the dual variable pi and vice versa. In the next section we 
develop this relationship as part of a duality theory for games. The theory is 
applied to an economic example in the final section. We conclude this 
introduction with a theorem that gives the properties of the dual function 2ri. 

THEOREM 3. vi(pi) is quasi-concave and positively homogeneous of 
degree zero. Vi is a convex cone. ui(pi) is closed if ui(xi) is closed. 

Proof. See [8]. 

2. DUALITY 

In this section we consider n-person games in which each player i seeks to 
maximize his utility ui(xi) over his convex strategy set Ui. ui(xi) are closed 
strictly quasi-concave functions and the players interact linearly in their 
strategies. Thus a primal game is of the following form. 

Game G. The payoff vector for the game is u(x) = (ui(x’), u,(x*),..., 
u,(x”)) with constraints 

and 

xi E: ui, i = l,..., n, 

x = (xl, x2 )..., x”) E x, 

where x is a convex cone. 
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The corresponding dual game to G is given as 

Game H. The payoff vector is v(p) = (v,(p’), u2(p2),..., v,(p”)) with 
constraints 

piE vi, i = l,..., n 

and 

p = ($3 P2,.... P”) E x*, 
where [ ui, Vi] is the utility transform of [ui, Ui] and x* is the dual cone of x, 
i.e., 

x*4 {PJ(P,X)<O, XEXJ. 

The equilibrium conditions are 
(a) ui(xi) + ui(pi) = 0, 

(x’, p’) = 0, 

i = i,..., n, 

i = l,..., n, 

and 

(b) 1,~’ E &‘(x’), ii > 0, i = l,..., n, 

ViXi E au,(p’), Vi > 0, i = l,..., n, 

ui(xi) = ,“izc, {“i(Yi>I (Pi5 Yi> G ‘I? i = l,..., n. 

The inequality (xi, pi) < 0 appearing in the utility transform is called the 
linking inequality; Izi is the primal linking variable and vi is the dual linking 
variable. By construction, we have that ui(pi) < -ui(0) where 0 is the do- 
nothing strategy. 

THEOREM 4. If games G and H are well defined, the equilibrium 
conditions (a) and (b) are both necessary and suflcient for an equilibrium 
for games G and H. 

Proof: Let I be an equilibrium solution for game G. For any player i, 
there exists pi such that Aipi E &,(XJ, li > 0 and (xi-Xi, pi) < 0 for 
feasible X E x. In particular, let x = aYE x and thus, (z?, pi) = 0. By 
Theorem 1, 

Ui(Xi) + Ui(Pi) = 0, 

ViXi E au,(p’), Vi > 0, i = l,..., m 

ui(Xi) = S,UE l"i(Yi)I (Pi3 Y') < ‘1, i = l,..., m. 
Y’E , 
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Let p be an equilibrium solution to game H. Let x satisfy condition (II) of 
Theorem 2. Since p is an equilibrium solution @, xi) = 0 by a similar 
argument as previously. 

By Theorem 2, 

Ui(Xi) + vi(g) = 0 

and we have the equilibrium conditions. 
We now assume that the equilibrium conditions (a) and (b) are satisfied - - for x, p. Suppose X is not an equilibrium for game G. In this case there exists 

a player i such that Lipi E 3ui(fi) and an equilibrium point x for game G 
such that (xi -xi, pi) > 0 for some player. By assumption (~8, pi) = 0 and 
(xi, pi) = 0 from the first part of the proof. Hence we have a contradiction. 
Thus X must be an equilibrium solution to game G. 

The fact that p is an equilibrium solution to the game H is proved 
similarly. 

COROLLARY. If the vi’s are dlflerentiable, a dual equilibrium may be 
found by solving: 

where 

p = (P’, PZ,..., P”)‘, x = (xl, x2 )...) X”)‘, 

and 

x; = l/v,(p’) av,(p’)/ap;. 

3. EXAMPLE 

Consider the following primal game. 

Game I. The payoff vector is U(X) = (u,(x’), +(x2),..., u,(x”)), where 
ui(xi) = Cj yj log(xj + ej) and yj > 0, ej are given parameters, subject to 

Vi,j 

and 

x = (xl, x2 )...) x”) E x. 
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Let ui(pi) be the utility transform of ui(xi). Hence 

The infimum is attained when 

&pj = $/(xi + ej), 

or 

x; = -69; + $/&pj). 
From the orthogonality of pi and xi, we obtain 

and hence 

The utility transform is then 

and 

pi > 0. 

The dual game to I is 

Game J. The payoff vector is v(p) = (u,(p’), uz(p2),..., v,(p”)), where 
ui(pi) is defined as above, subject to 

p’>O, Vi 

and 

p = (P’, p*,..., P”) E x*. 

It is straightforward to show that 
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By the corollary to Theorem 5, a dual equilibrium may be found by 
solving 

In the particular case that x = {xl xi xi = 0}, we have that x* = (p Ipi = pk, 
Vi, k} and the duality equations reduce to 

which is a set of linear equations in the pj =pj, Vi. We may set any one 
variable to 1 and solve the remaining M - 1 linear equations. Therefore we 
can solve an exchange problem involving m x n (the number of commodities 
times the number of consumers) by solving m - 1 linear equations: a 
significant reduction. 
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