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A b s t r a c t  

We present a simple approach in order to compute recursively the connection coefficients between two families of 
classical (discrete) orthogonal polynomials (Charlier, Meixner, Kravchuk, Hahn), i.e., the coefficients C,.(n) in the expres- 
sion P.(x) = ~"m=O C,n(n)Q.,(x), where {P.(x)) and {Q,.(x)} belong to the aforementioned class of polynomials. This is 
done by adapting a general and systematic algorithm, recently developed by the authors, to the discrete classical situation. 
Moreover, extensions of this method allow to give new addition formulae and to estimate Cm(n)-asymptotics in limit 
relations between some families. 
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I. Introduction 

The connection coefficients C,.(n) between two families of orthogonal polynomials {P,(x)} and 
{Qm(x)} are defined by 

n 

Pn(x) = E Crn(n)Qm(x). ( l )  
m=O 
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In recent papers [3, 10-12, 15] we have developed an algorithm building a recurrence relation in m 
only for Cm(n) when {P.(x)} and {Q,,(x)} belong to a large class of  orthogonal polynomials called 
semi-classical orthogonal polynomials [4, 7], which contains the classical as a particular case. This 
algorithm has been already applied to classical continuous (Jacobi, Bessel, Laguerre and Hermite) 
[3, 10, 15] and to classical discrete (Hahn, Meixner, Kravchuk and Charlier) [11, 12, 15]. The 
algorithm acting on classical discrete can be summarized in the following way (see [10, 11] for 
details). 

Let us assume that we know a linear difference operator ~ , .  of  order s with polynomial coefficients 
annihilating the polynomial P.(x)  in Eq. (1), giving 

n 

Z Cm(n)~s,n[Qm(x)] = O. 
m=O 

Using properties of  classical discrete polynomials the expression ~s,.[Qm(x)] can be expanded 
[10, 11] in a linear constant coefficient combination of the family {Q,.(x)} which generates a recur- 
rence relation in m for Cm(n). 

However, it is also possible to expand ~s,.[Q,n(X)] in other basis instead of  {Q,.(x)} (like 
{AQm(x)} or {AVQm(x)}),  by using a so-called "Difference representation" (see Section 2) sat- 
isfied by the classical discrete orthogonal polynomials. It turns out that the length of  the recurrence 
for C~(n) depends strongly on the choice inside these three bases and this property justify the name 
"MINIMAL" used in this article: The minimal recurrence relation is the shortest one in order given 
by the algorithm among these three bases. 

The structure of  the paper is as follows: in Section 2 we give the basic relations which will be 
useful in the rest of  the manuscript. Section 3 deals with the connection problem involving classical 
discrete orthogonal polynomials. In this section we adapt the method described in [3] in order to find 
the minimal recurrence relations for connection coefficients between two families of  classical discrete 
orthogonal polynomials. Moreover (see Section 3.3), particular examples are considered where the 
explicit recurrence relations for several connection coefficients are given. Finally, in Section 4 we 
present some related connection problems about addition formulae and limit relations which can be 
also treated with our algorithm. 

2. Notations and basic properties 

Given a polynomial p(x), the forward and backward difference operators are defined as 

Ap(x)  = p(x + 1 ) - p(x), Vp(x )  = p(x) - p(x - 1), 

respectively. Both operators satisfy the following basic properties: 

A V =   7A, A = V + A V ,  

Ap(x) = V p ( x  + 1), A[p(x)q(x)] = q(x)Ap(x) + p(x + 1)Aq(x), 

where p(x)  and q(x) are two arbitrary polynomials. 

(2) 
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Let {P.(x)} be a family of monic classical discrete orthogonal polynomials. Then, they satisfy 
the orthogonality relation [2, 8, 13] 

b-1 

Pl(xi )Pm (x i )p (x i )  = ~lmd2m, 
xi =a 

where the weight p(x) must be [2, 8] a solution of the Pearson-type difference equation: 

A [a(x)p(x)] = z(x)p(x), (3) 

a(x) and z(x) being polynomials of degree maximum two and one, respectively. The weight p(x) 
(defined on [ a , b -  1]) is characterized by (3) and the following two conditions: 
• p(xi)>O for a<<.xi<~b - 1 (xi+l =xi  + 1), 
• a(x)p(x)Xk]x=a~ = 0 (k>~O). 

Besides the second-order difference equation [8]: 

~2,n[ Pn(x  ) ] " =tT(x)A V'Pn(x ) -k- v(x )APn(x ) -k- ,~,nen(x ) = O, (4)  

(2. = - n ' r ' -  ½n(n - 1)a"), 

where a(x) and z(x) are the same polynomials as in Eq. (3), the classical discrete orthogonal 
polynomials {P.(x)} with respect to p(x) satisfy a number of properties which in turn provide 
characterizations of them (see e.g. [2, 8, 13]). We shall need here four of those properties. 

First, as any orthogonal polynomial sequence [1], the monic family {P.(x)} verifies a three-term 
recurrence relation 

xP.(x)-= Pn+l(X) + BnP.(x) + CnPn-](x) (n >~0), (5) 

P- l (X)=0;  Po(x)= l ( C . ¢ 0 ) .  

Second, one has the so-called forward or A-Structure relation (see, e.g., [2, 8, 13]) 

[a(x) + z(x)]AP.(x) = ct.P.+l(X) + fl.P.(x) + 7.P.-l(X) (n>~0), (6) 

P_a(X) = 0; Po(x) = 1. 

Third, the (monic) classical discrete orthogonal polynomials satisfy the corresponding backward or 
U-Structure relation (see, e.g., [8, 13]) 

ff(x)~TPn(X) = 5.P.+l(X) + fl.(x)P.(x) + ~.P.-l(x) (n>~O), (7) 

P - I ( X )  = 0; Po(x) = 1. 

And fourth, there exists the not so well-known A-Difference representation [8, 13] 

1 
Pn(x )  --  1APn+I(X) + FnAPn(x )  + G.AP._I(x) (n/> 0), (8) 

• n--b 

P-l (x)  = 0; Po(x) = 1. 

Remark 1. It is interesting to notice here that all the x-independent coefficients appearing of the 
above four structural properties (5)-(8) can be expressed [2, 8, 13] in terms of the polynomials 
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a(x) and z(x) which characterize the Pearson weight equation (3). For the sake of completeness, an 
appendix has been included at the end of the manuscript giving these expressions. Moreover, the 
appendix also includes two tables (see Tables 2 and 3) where the specific values of these coefficients 
are collected for each monic classical discrete orthogonal family. 

Concerning notations for the connection problem (1), the family (Pn(x)} will satisfy Eqs. (4) -  
(8), while for the family {Qm(x)) the upper bar notation will be used; i.e., this family will satisfy 
Eqs. (4)-(8),  with overlined coefficients (Y,~,~m), (Bm, Cm), ('~m,flm,~m) and (Fm, Gm), respectively. 

Remark 2. As we have already mentioned, throughout the paper the normalization for both {P,(x)} 
and {Qm(x)} families in (1) will be to consider monic polynomials. Notice that this can be done 
without loss of generality in what concems the connection problems. This is so because if other 
normalizations are considered, say Pn(X)= NnPn(x) and Qm(x)= M,,Q,,(x), it is easy to check that 
the new connection coefficients Cm(n) between the families {P,(x)} and {Qn(x)} are given by 
Cm(n) =N~'IMmCm(n). 

3. Minimal recurrence relations for connection coefficients between classical discrete orthogonal 
polynomials 

As in [11], the first step to obtain a recurrence relation for the connection coefficients consists in 
applying the difference operator ~2,,, defined in (4), to both sides of the connection problem (1). 
This gives 

~2,,[P,] = ~ Cm(n){a(x)A WQm(x) + z(x)AQm(x) + 2nQm(x)} = O. 
m=0 

(9) 

Then, the searched recurrence relation comes out (with a shift of indices) after expanding, in a linear 
constant coefficients combination of linearly independent polynomials, the expression: 

: =cr(x)A V'Q (x) + r(x)AQm(x) + (lO) 

As pointed out in the introduction, the algorithm developed in [10, 11] chooses the {Qm(x)} family 
as expanding basis for (10), giving a recurrence of maximum order eight (cf. [11, Table 2], where 
there is a misprint: the word "order" should be replaced by "number of terms"). 

As shown below (see Section 3.1), the minimal recurrence relation (i.e. the shortest one in order) 
for the connection coefficients in (1) is attached by using the {A ~7Qm(x)} basis and it is of maximum 
order four, which strongly decrease when Hahn polynomials are not present in the connection problem 
(see Table 1 below). Moreover, when the families {P,(x)} and {Qm(x)} in the connection problem 
(1) satisfy two difference equations (4) and (4) respectively, with a(x)= ~(x), then the order of 
the recurrence (see Section 3.2) is reduced to two using {AQm(x)} instead of the aforementioned 
{A V'Qm(x)}. All of these considerations are summarized in Table 1. Of course, further reductions 
in the order could appear for some specific values of the parameters. 

Let us now describe the algorithms when {A WQ,,} and {AQ,,} are chosen as expanding basis for 
expression (10). 
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Table 1 
Order of the "minimal" recurrence relation satisfied by the connection coefficients between 
two families of classical discrete orthogonal polynomials and the corresponding expanding 
basis. The column represents the {Pn(x)} monic family in Eq. (1) and the row the {Qm(x)} 
monic family also with the notation of Eq. (1) 

{Qm} family ~ Charlier Meixner Kravchuk Hahn 
{Pn} family ]~ c(a)(x) M~6"V)(x) K~" ) ( x ;N)  H~'b)(x;N) 

Charlier Order 1 Order 2 Order 2 Order 4 
C~,")(x) {AOm} {A VOm} {A VQm} {A ~7Om} 
Meixner Order 2 Order 2 Order 2 Order 4 
M~'U)(x) {A~7Qm} {AQ,,} {A~TQ,.} {A~TOm } 
Kravchuk Order 2 Order 2 Order 2 Order 4 
K~U)(x;M) {A~TQm} {A~7Qm} {AQm} {AgrQ,,} 
Hahn Order 4 Order 4 Order 4 Order 4 
H(C'a)(x;L) {A~TQm} {A~Qm} {A~'Qm} {AQm} 

3.1. Using the {A~TQm} basis 

To consider the basis {A ~7Qm(x)} one can proceed as follows. First, applying ~7 to (8) and using 

(2)  one obtains 

1 
AQm(x) -- - -  A~TQm+a(x) + (Fro + 1)A~7Qm(x) + GmA~TQm_I(X). 

m + l  

Then, this expression together with (8) allows to write 

m+2 

am(x)= E am,jA~7aj(x), (11) 
j=m--2 

with 

- -  m 

1 F m +  Fm+l + 1 
am, m+2 = (m + 1)(m + 2 ) '  am, m+l = m + 1 ' 

Gm+l am,n=Fm(Fm + l ) +  __Gin + - - 1 '  
' m m +  

am, m--1 = Gin(Fro +Fro-1 -t- 1), am, m-2 = G~Gm_l. 

Second, f rom (5)  and (8) one has 

m+2 

z(x)AOm(X)= ~ a°,)A~TQj(x), 
j=m--2 

(12)  
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with 

a (1) _ mz ~ 
m,m+2 - -  (m + 1)(m + 2) '  

a (1 )  z'[m(ffm+l + 1 ) + B m  - -  f f  m - 1] -~  z ( 0 )  
m,m+l z m + 1 ' 

a (1) : ' t "  [mGm+l -Cm am 1 -- 
m,m [ m + 1 + m J + (F~ + 1 )[v'(B,n - ffm - 1) + z(0)], 

a(1)  = ,c t [ G m ( n m __ - ~  m __ -~rn _ l ) ._~ f m ( F m  _ l .q._ l ) ] _~ ,~ ( O ) - ~  m , m,m--I  

a(1) = z'(-Cm - Gm)Gm_l. ?n,m--2 

And third, (6) and (8) give 

m+2 

j = m - 2  

with 

(13) 

a(2) 
m(m -- 1 )err' 

re, m+2 = 2(m + 1)(m + 2) '  

m,(o' ) 
m , m + l - - m + l  - ~ - [ ( B m + l + B m - 2 ( l + F ~ + F m + l ) ] + a ' ( 0 )  , 

a"  [ m - 1  --  m - 2 ( - C m  ] a ( 2 )  _ _ _  
m,m-- 2 m ~ i  -(Cm+l - 2 G i n + l ) +  m - 2 G m ) + ( B m - Z F m -  1) 2 

+a'(0)(B,n - 2Fm - 1 ) + o-(0), 

a(2) = (Cm - 2Gin) r a "  _ _ _ ] [-~-[B,n + B i n - ,  - 2(Fm -]-Fm_ 1 -~- 1)] -q- ¢yt(0) m,m--I  

(2) ¢7tt - -  

am,  m _  2 = T ( C m  - 2 G m ) ( C m _ l  - 2Gin_l). 

Now, inserting ( 1 1 ) - ( 1 3 )  in Eq. (9) one obtains 

Cm(n)   m,An)A  'QAx) = o, 
m=O [, j = m - -  2 

Om,j( n ) . ~_ urn,J-(2) + a(1).m,g -k- }~nam,j. 

Finally, after an appropriate shift of  indices, this latter expression provides the backward "minimal"  
recurrence relation of  order four which can be written as 

4 

Z~-~m+s,m+2(n)Cm+s(n) = 0, O<<.m<<.n -- 1, (14) 
s=0  

being the initial conditions given by C,+, (n )=  0 (s = 1,2, 3) and C , ( n ) =  1, since monic  polynomials  
have been considered. 
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3.2. Using the {AQm(x)} basis 

When the difference equations (4) and (4) satisfied by the polynomials P,(x) and Qm(x) in (1), 
respectively, are such that a ( x ) :  ~(x), then the minimal recurrence relation for the connection 
coefficients appears when {AQm(x)} is the expanding basis for expression (10). For this reason, 
this basis should be used when dealing with the Charlier-Charlier, Meixner-Meixner, Kravchuk- 
Kra-wtchouck and Hahn-Hahn connnection problems (see Table 1). 

The algorithm in this case is as follows. First, the difference equation (4) gives 

¢7(x )A ~7 Qm(x ) = ~(x )A ~7 Qm(x ) : - ' z (x  )AQm(x ) - ~mQm(x ). 

So, Eq. (10) can be rewritten as 

~-'~ Cm(n)[(z,(x) - "f(x))AQm(x) + (2. - -~m)Qm(x)] = 0.  (15) 
m = 0  

To expand this expression in the {AQm(x)} basis one has: first, from the difference representation 
(8), 

m + l  

(2, - -2m)Qm(x) = Y~ bmjAQm(x), (16) 
j=m--1 

with 

2n-- m 
bm m + l  - -  bm m ~- (2n  - -  2m)Fm,  

' m + l  ' ' 

And second, use of (5) and (5) gives 

m + l  

[z(x) - ~(x)]AQm(x) = Z b(lm,) AQm(x), 
j=m--1 

with 

b(1) m 
m,m+a - -  m + ~ ( z '  - -  ~'), 

bin, m-1 = (2n -- 2m)Gm. 

(17) 

= ( -c '  - - 7 m  - 1 )  + - 

b( l )  m,m--1 : ( T t  - -  "~t)(-'Cm - -  G m ) .  

Then, inserting (16) and (17) into (15) we obtain 

Cm(n) = O, Amj(n) = bm,j + #1). m,J ° 
m=O j 

Finally, after an appropriate shift of indices, this latter expression provides the backward "minimal" 
recurrence relation of order two which can be written as 

1 

Am+s,m(n)Cm+s(n):O, l ~m<<,n, ( 1 8 )  
s = - - I  
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Table 2 
Data for monic Charlier, Meixner and Kravchuk polynomials 

Charlier Meixner Kravchuk 

C~U)(x) M~'~) (x )  K~a)(x; N ) ,  n <~ N 

(#>0)  (7>0, /~E(0,1)) (a E (0,1), N E 77 +) 

~(x) x x x 
Na - x  

z(x)  # - x  7 # - x ( 1  - #)  1 - a 
n 

2n n n(1 -- # )  1 -- a 

7# + n( l  + # )  
Bn n + It n + a ( N  - 2n) 

#n(~l+-n ~- 1) 
Cn #n (1 -- #)2 an(1 -- a ) ( N  - n + 1) 

C~n 0 0 0 
an 

fin 0 #n 
a - - 1  

pn(7 + n - 1) 
?n #n an(1 -- n + N )  

1--# 
F~ 0 ,u --a  

1 - - /~  
Gn 0 0 0 

being the initial conditions given by Cn+l(n)= 0 and Cn(n)= 1, since monic polynomials have been 
considered. 

3.3. Examples 

As illustration of  the recurrences which these algorithms provide, we consider now several 
examples giving for each of  them, the concrete connection problem, the minimal recurrence relation 
for the corresponding connection coefficients (together with the initial conditions) and, sometimes, 
the solution of  this recurrence. The expanding basis for expression (10) used in each example is 
the one listed in Table 1. Notations for discrete classical orthogonal polynomials are described in 
Tables 2 and 3 (see the appendix). 

For a different approach (also recursive) to compute these connection coefficients see [6]. 
1. Charlier-Charlier 
• Connection problem: C(na)(x) = ~ = 0  Cm(n)C(mb)(x) • 
• Minimal recurrence relation (of  order one) 

(a - b)mCm(n) + (n - m + 1)Cm_l(n) --- 0 (1 <~m<~n). 

• Initial condition: Cn(n)= 1. 
• Solution: Cm(n)= ( n ) ( b - a ) n - m  (O<~m<<.n). 
This expression coincide with the one obtained in [11, Section 5.1], where the family {Qm(x)} was 
used as expanding basis for expression (10). On the other hand, notice that these Cm(n)-coefficients 
are always positive when n -  m is an even number. However, if n -  m is odd, the additional condition 
b > a must hold. 



I. Area et al./ Journal of  Computational and Applied Mathematics 87 (1997) 321-337 

Table 3 
Data for monic Hahn polynomials 

329 

Hahn 
H~a'b~(x;N), n < N 
a , b >  - 1 ,  N E Z  + 

a(x) 

~(x) 

2. 

B. 

c .  

O~n 

Y. 

F. 

G. 

x(N + a - x) 

(b + 1 ) ( N -  1 ) -  (a + b + 2)x 

n ( a + b + n +  1) 

a -  b + 2N - 2 (b 2 - a2)(a + b + 2N) 
+ 

4 4(a + b + 2n)(a + b + 2n + 2) 
n(N - n)(a + n)(b + n)(a + b + n)(a + b + N + n) 

( a + b + 2 n - 1 ) ( a + b + 2 n ) Z ( a + b + 2 n + l )  

- - n  

n(1 + a + b + n ) ( N ( a - b ) - 2 n ( a + b + n +  1 ) - ( a + b + a b + b 2 ) )  

(a + b +  2n)(2 + a + b +  2n) 
n ( a + n ) ( b + n ) ( N - n ) ( a + b + n + N ) ( a + b + n ) ( a + b + n +  1) 

( - l + a + b + 2 n ) ( a + b + 2 n ) Z ( l + a + b + 2 n )  

N ( a -  b ) -  a -  b -  a b -  b 2 - 2n(1 + a + b + n) 

(a + b + 2n)(2 + a + b + 2n) 
n(a + n)(b + n ) ( - N  + n)(a + b + N + n) 

( - 1  + a + b +  2n) (a+b+2n)2(1  + a + b + 2 n )  

2. M e i x n e r - C h a r l i e r  

• Connection problem: M(~r,")(x) = ~ = 0  Cm(n)C(.,~)(x) • 

• Minimal recurrence relation (of  order t w o )  

(1 - #)(1 - m + n)C,n_l (n)  + m(l~(a + ~ + m - 1) - a)C,, ,(n) 

+aml~(m + 1)C ,~+ l (n )  = 0 (1 <<.m<n). 

• Initial conditions: Cn+l(n)= 0 and C n ( n ) =  1. 
3. K r a v c h u k - C h a r l i e r  

• Connection problem: K.(a)(x; N)  = ~ = 0  C,n(n)C(mU)(x) • 
• Minimal recurrence relation (of  order t w o )  

(m - n - 1 ) C m - l ( n )  + m ( #  + a (m  - N - 1) )Cm(n)  

+ a m # ( m  + 1)Cm+l(n)  = 0 (1 <~m<~n). 

• Initial conditions: C . + l ( n ) =  0 and C n ( n ) =  1. 
4. C h a r l i e r - M e i x n e r  

• Connection problem: C(~a)(x) = ~ = 0  C,.(n)M(m~'U~(x) • 

(19) 

(20) 
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• Minimal recurrence relation (o f  order two) 

m(m + 1)( 7 + m)p2Cm+1(n) 

+m(1 - # ) (# (2m - n + 7 + a - 1) - a)Cm(n) 

+(1 - #)2(m - n - 1)Cm_l(n) = 0 ( l < . m < . n ) .  

• Initial conditions: C , + l ( n ) - - 0  and Cn(n)= 1. 
5. Me ixner -Meixner  
• Connection problem: Mff'U)(x) = ~n=0 Cm(n)M(~'O(x). 
• Minimal recurrence relation (o f  order two) 

( 1  - #)(n  - m 4- 1)(v - 1)2Cm_l(n) 

+m(v - 1)((2m - n + 6 - 1)v 

+#(1  - ~, - m + (7 - 6 - m + n)v))Cm(n) 

+m(m + 1)(6 + m)(#  - v)vC,,+l(n) = 0 (1 <~m<<.n). (21) 

• Initial conditions: C , + l ( n ) =  0 and C , ( n ) =  1. 
I f  # = v, Eq. (21 ) reduces to a first-order recurrence relation, whose solution is 

Cm(n) = \ ~ _ ~ j  (7 - 6)n--m (0 <~ m <. n). 

In case 7 = 6 the result is 

(:) / / F(n + 6) v - # (0 <~ m <<. n). 
f r o ( n )  = r ( m  + (1 - - v )  

For 7 = 6 =  1 (discrete Laguerre polynomials),  this expression is also given in [11, Section 5.2] 
where there is a missprint: the first factor (n - m )  should be (n - m ) ! .  
6. Kravchuk-Meixner  
• Connection problem: K(~a)(x;N)= ~,~=0 Cm(n)M(m~'U)(x) . 
• Minimal recurrence relation (o f  order two) 

( # -  1 ) 2 ( m -  n -  1)C,n_l(n) 

+ m ( #  - 1)(#(1 - ~ - 2m + n) + a( N - m + 1)(1 - p ) )Cm(n ) 

+ m(m + 1)(7 + m)#(a + #(1 - a))Cm+a(n) = 0 (1 ~< m ~< n). (22) 

• Initial conditions: C , + l ( n ) = 0  and C , ( n ) =  1. 

Rema rk  3. The well-known relation between Kravchuk and Meixner polynomials can be written as 

K(,~)(x; N )  = m (-N'a/(a- 1))(X). (23) 
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This choice of  Meixner parameters reduces the recurrence relation (22) to a first-order one, now 
independent on N: 

am(n - m)Cm(n) + (m - n - 1)Cm_l(n) = 0, 

which gives C ~ ( n ) =  0 for all 0 ~< m ~< n -  1 in accordance with Eq. (23). 

7. Charl ier-Kravchuk 

• Connection problem: C(f)(x)  = E~=0 C,,(n)K(ma~(x; N ) .  
• Minimal recurrence relation (of  order two) 

(n - m + 1)Cm-l(n)  + m(p  + a(2m - n - N - 1))Cm(n) 

+ a2m(m + 1)(N - m)Cm+l(n) = 0 (1 ~< m ~< n). 

• Initial conditions: Cn+l(n)=0 and C , ( n ) =  1. 
• Solution: 

j=o J 

~t J an-m-J 

( N - n +  1)j" 

8. Me ixner - Kravchuk  

• Connection problem: M(~r'~)(x) = E~,=0 Cm(n)K(ma)(x; N ) .  

• Minimal recurrence relation (of  order two) 

( 1  - #)(n - m + 1)Cm-l(n) 

+ m ( # ( m  + ~ - 1) + a(# - 1)(1 - 2m + n + N) )Cm(n)  

+ am(m + 1)(a + #(1 - a ) ) ( N  - rn)C,,+l(n) = 0 (1 ~< m ~< n). (24) 

• Initial conditions: C , + l ( n ) = 0  and C , ( n ) =  1. 

Remark 4. Now, the relation between Kravchuk and Meixner polynomials can be written in the 
form 

) = KU( -O ). (25) 

This choice of  Kravchuk parameters reduces Eq. (24) to a first-order recurrence relation independent 
of  7: 

m#(n  -- m)Cm(n) + (#  - 1)(m - n - 1)Cm-l(n)  = 0  

and gives again C~(n)=  0 for 0 ~< m ~ n -  1, in accordance with (25). 
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9. Kravchuk-Kravchuk 
• Connection problem: K~a)(x;N)= ~,~=0 Cm(n)K~mb)(x;M) . 
• Minimal recurrence relation (of order two) 

(m -- n - 1)Cm-~(n) 

+m(b(1 - 2m + M + n) + a(m - N - 1 ))Cm(n) 

+ b ( b - a ) m ( m +  l)(m-M)Cm+l(n)=O (l<<.m<~n). (26) 

• Initial conditions: C,+l(n)= 0 and Cn(n)= 1. 
In case N = M  the solution of (26) is 

C m ( n ) = ( n ) ( b - a ) " - m ( N - n +  l)._m, O<.m<.n. 

This formula agrees with the one obtained in [11], where the family {Qm(x)} was used as expanding 
basis for (10) giving rise to a third-order recurrence relation for the connection coefficients (see [11, 
Section 5.3]). 

In case a = b the solution of (26) gives the (new) result 

Cm(n)=(~ )a" -m(M-N) ._m  ( O ~ m ~ n ) .  

Remark 5. Connection problems involving Hahn (or Hahn-Eberlein) discrete polynomials could 
be also considered in a similar way as in the above examples. In fact, the corresponding minimal 
recurrences for the connection coefficients can be obtained by inserting the data of Hahn polynomials 
(see Appendix, Table 3) in Eqs. (14) or (18). However, these recurrences are (in general) lengthy. 
In spite of this, they can be handled and solved in some simple cases (see e.g. [11, 15]) by using 
Mathematica [ 14] computer algebra system. More results in this direction are now under investigation. 

4. Two related connection problems 

As pointed out in the introduction, this section deals with two kinds of problems close related with 
connection problems, namely, the computation of addition formulas and the obtention of asymptotics 
for connection coefficients in limit relations between classical discrete orthogonal polynomials. 

4.1. Addition formulas 

Let us consider an addition formula, i.e. an expression of type 

P.(x + y) = ~ Cm(n; y)Pm(X), (27) 
m=O 
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where y is a x-independent parameter and {P,(x)} is a classical discrete orthogonal polynomial 
family. Hence, its members are solutions of  (4) and then, the polynomial Pn(X + y) satisfy the 
corresponding difference equation, i.e. 

~2,n,y[en(X "~- y)] : = ¢7(X "~- y ) A  ~7en(x -~- y) + z(x + y)AP,(x + y) 

+ ~,nPn(x q- y) = O. 

On applying this ~2,.,y-operator to (27) one obtains 

~ Cm(n; y)[cr(x + y)A ~7Pm(x ) q- T(X "q- y )APm(x  ) q- 2nPm(x)] = O, 
m=0 

which, taking into account that a(x + y)  = a(x) + ya'(x) + ~za" and v(x + y)  = z(x) + y'c', can be 
written as follows: 

~_Cm(n;y) ya 'xA~Pm(x)+ y~'(O)+ ~-a" A~Pm(x) 
m~O 

q- YT:'APm(x) q- ()~n -- ).m)Pm(X)] = O. 

So, we are now able to expand this latter expression in a linear constant coefficients combination 
of  one of  the three families {Pro(x)}, {APm(x)} or {A ~TP, n(X)} giving three different recurrences for 
the connection coefficients. Since in Eq. (27) one always has a(x + y ) ~  a(x), the minimal one is 
reached by using the {A ~7Pm(x)} a s  the expanding basis. 

As illustration let us consider some examples. 
1. Charlier polynomials 
• Addition formula: C(U)(x + y)  : ~ . : 0  Cm(n; y)C(f)(x). 
• Minimal recurrence relation (of  first order) 

(m -- 1)(n - m - y + 1)Cm_l(n; y) + (n - m + 2)Cm_2(n; y)  = O, 

(1 ~<m~<n). 

• Initial conditions: Cn(n; y )=  1. 
• Solution: Cm(n; y)  = (~)(--1)"-m(--y),-m (0 ~< m ~< n). 
The same expression was given in [11] from a second-order recurrence obtained by using {Pro(x)} 
as expanding basis. 
2. Meixner polynomials 
• Addition formula: Mff'U)(x + y)  = ~ = 0  Cm(n; y)M(mr'U)(x). 
• Minimal recurrence relation (of  second order) 

p(m - 1 )m(m - n)Cm(n; y) 

+ ( # -  1 ) ( m -  1)((l  + / ~ ) ( n -  m + y ÷ 1) - 2y)Cm_l(n;y) 

+ ( # -  1 ) 2 ( m - n - 2 ) C m _ z ( n ; y ) = O  (1 ~ m ~ n ) .  
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• Initial conditions: Cn+l(n; y ) = 0  and C,(n; y ) :  1. 
Notice that the recurrence and the initial conditions being independent of 7 the connection coefficients 
Cm(n; y) too. 
3. Kravchuk polynomials 
• Addition formula: K~f)(x + y; N)  = E"m=0 Cm(n; y)K~m')(x; N). 
• Minimal recurrence relation (of second order) 

# ( , u -  1 ) m ( m -  1 ) ( m -  n)Cm(n;y) 

+ (m - 1 )((m - n - 1 )(1 - 2p) + y)Cm-l(n; y)  

+ ( m - n - 2 ) C m _ 2 ( n ; y ) = O  ( l~<m~<n).  

• Initial conditions: Cn+l(n; y)  = 0 and C,(n; y)  = 1. 
Similarly to what happens in Meixner case, the connection coefficients do not depend on the 
parameter N. 

4.2. Cm(n)-asymptotics in limit relations 

In some situations a polynomial family P,(x, pi) tends to another family Qm(x, qj) when the 
parameters pi and qj tends to particular limiting values (p~ and qj being related). From the 
recurrence relation for coefficients in the connection problem: 

n 

P,(x, Pi) = Y~ Cm(n, Pi, qj) Qm(x, qj), 
m = O  

it is possible to estimate the asymptotic behaviour of  Cm(n, pi, qj ) in the limiting parameter. 
The algorithmic part is the same as in Section 3. The asymptotic behaviour is afterward computed 

from the recurrence relation given by the algorithm. This is illustrated by means of  the following 
two examples. 

4.2.1. Kravchuk to Charlier 
The limit property between these two discrete polynomial families is [5] 

lim K~am)(x;N) = c~,a)(x). 
N---* cx~ 

This suggests to consider the connection problem 

n 

K~ a/N)(x;N) : Z Cm(n) c~a)(x). 
m = 0  

Then, Eq. (20) with the appropriate parameters gives 

a2m(m + 1)Cm+l(n) + a(m - 1)reCto(n) 

+(m - n - 1)NCm_l(n)=O, 

(28) 

(29) 

with initial conditions C ,+ l (n )=0  and C,(n)= 1. 
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Of course, when N goes to infinity C,_l (n)=an(n  - 1)IN goes to zero and from Eq. (29) all 
Cm(n) (0 <<. m <<.n- 1) go also to zero. The interest of  this development is to give explicitly the 
behaviour in ( l /N)  k in limit property (28). The expression of  the first few connection coefficients is 

a 2 n ( n -  1 ) ( ( n -  1 ) ( n - 2 ) + N )  
C~_2(n) ---- 2 N 2 ' 

a3n(n 1)(n 
2 ) ( (n - -  1)(n -- 2 ) (n - -  3) + N ( 3 n  - 5)), 

I 

Cn-3(n) = 6 N 3 

and the behaviour in the general case is 

Crn(n) r,~(n)an_m 1 Nt(.-~+t)/2] B x_c( n, m ), 

where BK_c(n, m) can be computed recursively, and the symbol ~ is used in the sense of [9, p.4]. 

4.2.2. Meixner to Charlier 
The limit property [5] is n o w  limr~ooM(nr'a/(a+~))(x)= c(na)(x), and for the connection problem 

n 

M(nY'a/(a+Y))(X) = E Cm(n) c(~a)(x), 
m = 0  

the recurrence relation (19) reduces to 

a2m(1 + m)C~+l(n) + am(m - 1)Cm(n) + 7(1 - m + n)C,n_l(n)=O, 

with C , + l ( n ) = 0  and C , ( n ) =  1. The general behaviour is now 

C m ( n ) ~ ( ~ ) a n _  m 1 ;~[(,_m+ l )/21B~_c( n, m ), 

where BM_c(n,m) can be computed recursively. 

Remark 6. As already mentioned in Remark 5 for connection problems of  the form (1), addition 
formulas and asymptotics for Cm(n) in limit relations including Hahn (or Hatm-Eberlein) discrete 
polynomials involve lengthy computations. Nevertheless, they could be also handled with our algo- 
rithm and the help of  Mathematica [14]. Results in this direction are in progress. 

Appendix. Data for monie classical discrete orthogonal polynomials 

With the notation 

"r(O) + na'(O) -- n2~r"/2 
T l + n f f "  
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the expressions of  the coefficients appearing in Eqs. (5 ) - (8 )  in terms of the polynomials a and z 
characterizing the Pearson weight equation (see Remark 1) are as follows: 
• Coefficients of  the three-term recurrence relation (5). 

-z (0) (z '  - a")  + n(z' -- 2o"(0) -- 2z')(z' + a " ( n  - 1)/2) 
Bn ~ 

( a " ( n  -- 1) + z ' )(a"n + z') 

(T I I n('c' + -T(n - 2)) 
Cn 

( z '  + a " ( Z n  - 3)/2)(z'  + a " ( Z n  - 1 ) / 2 )  [ a ( q " - a )  
+ qT(~n--1 )]. 

• Coefficients of  the A-structure relation (6). 

no- 'I )1 e ' =  2 ' f i n = - 5  z ( B , ) - n  ¢ + - ~ - ( n - 1 )  , 

O-tt 

• Coefficients of  the ~7-structure relation (7). 

being 2, the difference equation coefficient given in (4). 
• Coefficients of the A-difference representation (8). 

"c( Bn ) 1 C,  (r 't 
F.= Gn= 

2n(T' + a " ( n  - 1 )/2) 2'  2z' + a " ( n  - 2)" 
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