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1. Introduction

Let ϕ : M × G → M be a locally free right C∞ action of a connected Lie group G of dimension n on a closed C∞
manifold M of dimension n + s +u, with orbit foliation F . Endow M with a Riemannian metric. For a linear map A : V → W
of normed linear spaces, we denote by ‖A‖ the operator norm of A, and by m(A) the conorm of A, i.e.

m(A) = inf
{‖Av‖ ∣∣ v ∈ V , ‖v‖ = 1

}
.

Denote by T F the tangent bundle of F .
According to [2], the action ϕ is called an Anosov action if there is an element g ∈ G , called an Anosov element, and

continuous subbundles Es and Eu of the tangent bundle T M of M such that

(1) Es ⊕ Eu ⊕ T F = T M ,
(2) Es and Eu are invariant by the tangent map g∗ of the action of g , and
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(3) there exist C > 0 and λ > 0 such that for any k > 0 and x ∈ M , we have∥∥gk∗
∣∣

Es
x

∥∥,
∥∥g−k∗

∣∣
Eu

x

∥∥ � C exp(−kλ), (1.1)

‖gk∗|Es
x
‖

m(gk∗|Tx F )
,

‖g−k∗ |Eu
s
‖

m(g−k∗ |Tx F )
� C exp(−kλ). (1.2)

As is well known, conditions (1.1) and (1.2) do not depend upon a particular choice of the Riemannian metric. The case
where G = R

n has drawn attention of many authors. In that case, condition (1.2) follows from (1.1) and is redundant. But
for general G , (1.2) is natural and turns out to be useful for example to get the topological transitivity of the action under
a suitable condition [2].

This paper arises from an effort of the authors to understand the proof of Corollary 7 in [2]. Instead we found an
argument to show the following theorems, which improve Corollaries 7, 8 and Theorem 9 in [2]. An Anosov action ϕ is
called a normally contracting action if the dimension u of the bundle Eu is 0 and s > 0. Examples of such actions are given
in Section 2.

Theorem 1.1. If there exists a normally contracting action of a Lie group G on a closed manifold, then G is not unimodular.

In [2], a normally contracting action is called central if an Anosov element g is in the center of G , and the nonexistence
for s = 1 and n = 2 and the minimality for s = 1 of such actions are shown. As a by-product of our argument we obtain:

Theorem 1.2. There are no central normally contracting actions of any Lie groups on closed manifolds.

In fact in these theorems we do not use condition (1.2).
Section 3 is devoted to the proof of these theorems. In Section 4, we raise a further problem.
The authors express their gratitude to the referee whose valuable comments were helpful in improving the paper.

2. Examples

Example 2.1. Let H be either PSL(2,R) or the 3-dimensional solvable Lie group Solv3 which admits a cocompact lattice.
Then H contains

Aff+(R) =
{(

e−t/2 x
0 et/2

) ∣∣ t, x ∈ R

}
,

a closed subgroup isomorphic to the group of the orientation preserving affine transformations of the real line. For any
cocompact lattice Γ of H , consider the right action ϕ of G = Aff+(R) on the quotient manifold M = Γ \ H . The flow given
by the action of

gt =
(

e−t/2 0
0 et/2

)

is a classical example of Anosov flows, and the orbit foliation of the G-action ϕ is the weak stable foliation of the Anosov
flow {gt}. Therefore the G-action ϕ is normally contracting, with an Anosov element g .

Example 2.2. M. Asaoka [1] classified all the locally free actions of G = Aff+(R) on closed 3-manifolds up to C∞-conjugacy.
Notably there are actions which do not preserve a smooth volume form. But they all have the same dynamical properties
as in Example 2.1, and especially the G-actions are normally contracting.

Example 2.3. Let A ∈ SL(n + s − 1,Z), n � 2, s � 1, be a matrix with n − 1 distinct simple eigenvalues bigger than 1 and all
the others in (0,1). We regard A as an automorphism of the torus T n+s−1. Then the suspension of A, denoted by M , is an
(n + s)-dimensional manifold which admits an Anosov flow. The weak unstable foliation of the flow is the orbit foliation of
an action of a metabelian Lie group G of dimension n. The action of G on M is normally contracting.

Example 2.4. Let Γ be a cocompact lattice of H = PSL(2,C). The Lie group H contains a closed subgroup G = Aff(C),
isomorphic to the group of the complex affine transformations of the complex plane. The right action of G on the quotient
space M = Γ \ H is normally contracting.

Example 2.5. Suppose there is a normally contracting action of a Lie group G1 on a closed manifold N , with an Anosov
element g . Let G2 be a Lie group which admits a cocompact lattice Γ . Then the product right action of G = G1 × G2 on
M = N × (Γ \ G2) is normally contracting, with an Anosov element (g, eG2), where eG2 denotes the unit element of G2.

Example 2.6. Let G1 be any semisimple Lie group and let H2 be either PSL(2,R) or PSL(2,C). Let G2 be either Aff+(R) or
Aff(C) accordingly, and choose an irreducible cocompact lattice Γ of G1 × H2. Then the right action of G = G1 × G2 on
M = Γ \ (G1 × H2) is normally contracting.
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3. Proofs of the main theorems

First let us outline the proof of Theorem 1.1. Let ϕ be a normally contracting action of a unimodular n-dimensional
Lie group G on a closed manifold M of dimension n + s, where s is the dimension of the stable bundle Es . Since G is
unimodular, G admits a bi-invariant volume form Ω . Transmitting Ω by the action ϕ , one obtains a continuous ϕ-invariant
n-form ω on M such that ω yields a volume form on T F and that ιvω = 0 for any v ∈ Es . (Notice that this can be done
only when Ω is bi-invariant.) Next we construct a continuous s-form α such that ιvα = 0 for any v ∈ T F and that α ∧ω is
nonvanishing. Then the ϕ-invariance of ω and the normally contracting property of ϕ imply that the volume form α ∧ ω is
contracting by the action of an Anosov element g , contradicting the compactness of M .

For h ∈ G , denote by Lh : G → G (resp. Rh : G → G) the left (resp. right) translation by h. Let X1, . . . , Xn be left invariant
vector fields on G which form a linear basis of the tangent space at each point of G . Thus we have for any h ∈ G ,

(Lh)∗ Xi = Xi .

Now assume for contradiction that G is unimodular. Consider the volume form Ω on G uniquely defined by

Ω(X1, . . . , Xn) = 1.

Since G is unimodular, the form Ω is not only left invariant, but also right invariant. That is, for any element h ∈ G ,

Ω
(
(Rh)∗ X1, . . . , (Rh)∗ Xn

) = 1.

Let ϕ : M × G → M be a normally contracting action. Thus we have

T M = Es ⊕ T F .

For any point x ∈ M , consider a map ψx : G → M defined by

ψx(h) = xh,

where xh is a customary abbreviation of ϕ(x,h). Define vector fields X∗
1, . . . , X∗

n of M tangent to the orbit foliation F by(
X∗

i

)
x = (ψx)∗(Xi)e,

where e denotes the identity element of G .
Define a continuous n-form ω of M so as to satisfy

ω
(

X∗
1, . . . , X∗

n

) = 1 and ιvω = 0, ∀v ∈ Es.

Notice that ω is uniquely defined and that ωx (x ∈ M) satisfies

ωx
(
(ψx)∗Y1, . . . , (ψx)∗Yn

) = Ωe(Y1, . . . , Yn)

for any x ∈ M and vector fields Yi on G . Still denote by g : M → M the right action of an Anosov element g ∈ G . The
derivative g∗ preserves the subbundles Es and T F . Notice also that

gψx = ψxg R g L−1
g .

Lemma 3.1. The n-form ω is invariant by the action of an Anosov element g.

Proof. Since g∗ω satisfies

ιv
(

g∗ω
) = ιg∗vω = 0, ∀v ∈ Es,

it suffices to show(
g∗ω

)(
X∗

1, . . . , X∗
n

) = 1.

But we have
(

g∗ω
)

x

(
X∗

1, . . . , X∗
n

) = ωxg
(

g∗ X∗
1, . . . , g∗ X∗

n

)
= ωxg

(
g∗(ψx)∗ X1, . . . , g∗(ψx)∗ Xn

)
= ωxg

(
(ψxg)∗(R g)∗(Lg)

−1∗ X1, . . . , (ψxg)∗(R g)∗(Lg)
−1∗ Xn

)
= Ωe

(
(R g)∗(Lg)

−1∗ X1, . . . , (R g)∗(Lg)
−1∗ Xn

)
= Ωe

(
(R g)∗ X1, . . . , (R g)∗ Xn

)
= Ωe(X1, . . . , Xn) = 1,

as is required. �
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Assume the bundle Es is nonoriented. There is a double covering of M such that the lift of Es is oriented. The action ϕ
can also be lifted to the double covering, and it is again a normally contracting action. Since we are going to deduce
a contradiction from the hypothesis that G is unimodular, we can very well assume that the bundle Es is oriented. Thus M
is oriented as well. Then one can choose a nonvanishing s-form α of M which satisfies

ιX∗
1
α = · · · = ιX∗

n
α = 0 and α ∧ ω > 0.

Notice that α is unique up to a multiple of positive function. For any x ∈ M define ‖αx‖ by

‖αx‖ = sup
{∣∣αx(v1, . . . , vs)

∣∣ ∣∣ vi ∈ TxM, ‖vi‖ = 1, 1 � ∀i � s
}
.

Lemma 3.2. We have∥∥(
gk)∗

(αx)
∥∥ � C1 exp(−sλk)‖αx‖,

for some C1 > 0.

Proof. Of course the validity of the lemma does not depend upon a choice of a Riemannian metric. So let us choose a
Riemannian metric for which the two subbundles T F and Es are orthogonal at each point of M . Then since

ιw
((

gk)∗
αx

) = 0 and ‖v + w‖ � ‖v‖, ∀v ∈ Es
xg−k , ∀w ∈ Txg−k F ,

there are nonzero vectors v1, . . . , vs ∈ Es
xg−k such that

∣∣((gk)∗
αx

)
(v1, . . . , vs)

∣∣ = ∥∥(
gk)∗

αx
∥∥ · ‖v1‖ · · · ‖vs‖.

On the other hand we have

∣∣((gk)∗
αx

)
(v1, . . . , vs)

∣∣ = ∣∣αx
((

gk)
∗v1, . . . ,

(
gk)

∗vs
)∣∣

� ‖αx‖ · ∥∥(
gk)

∗v1
∥∥ · · ·∥∥(

gk)
∗vs

∥∥
� C s exp(−skλ)‖αx‖ · ‖v1‖ · · · ‖vs‖,

showing the lemma. �
Now Lemmata 3.1 and 3.2 imply that the volume form α ∧ ω is everywhere contracting by (gk)∗ for large k. The

contradiction shows Theorem 1.1.
Even if the Lie group is not unimodular, the above argument works without any change if an Anosov element g belongs

to the kernel of the modular function, that is, if (R g)
∗Ω = Ω . Therefore we have:

Theorem 3.3. An Anosov element of a normally contracting action does not belong to the kernel of the modular function.

Theorem 1.2 follows from this.

4. A further problem

Among examples in Section 2, genuine vanillas are only Examples 2.1–2.4, in which the Lie group G is not a product of
two Lie groups. If G is not a product, it must be either solvable or simple by a theorem of Levi. If further there is a normally
contracting action of G , then by Theorem 1.1, G must be solvable.

In Examples 2.1–2.3, the one parameter subgroup {gt} of G which contains an Anosov element g defines an Anosov flow
on the ambient manifold M . This is not the case with Example 2.4 since there is a compact subgroup K , isomorphic to U (1),
which commutes with gt . However if one takes a quotient M/K of M by the action of K , then {gt} defines an Anosov flow
on M/K . These examples lead us to the following question.

Question 4.1. Let G be a Lie group which is not a product of two Lie groups. Assume there is a normally contracting G-action
on a closed manifold M . Does there exist a compact subgroup K of G commuting with an Anosov element g such that the
one parameter subgroup {gt} defines an Anosov flow on the quotient space M/K ?

In fact this is the case with the Lie group Aff+(R). For, any element which does not belong to the kernel of the modular
function is conjugate to(

e−t0/2 0
0 et0/2

)
,
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for some t0 
= 0. Now the flow given by the action of the one parameter subgroup{(
e−t/2 0

0 et/2

) ∣∣ t ∈ R

}

is Anosov since it is “normally expanding” along the orbit foliation.
Likewise for G = Aff(C), Question 4.1 is affirmative. To mention one more example, let G be a simply connected Lie

group whose Lie algebra is generated by X and U1, . . . , Un−1 such that for any 1 � i � j � n − 1,

[X, Ui] = −αi U i (αi > 0) and [Ui, U j] = 0.

Then Question 4.1 is in the affirmative for any normally contracting action of G .
The Lie group G in Question 4.1 is solvable and does not admit a lattice. Question 4.1 is more about the structure of the

Lie group than about the dynamics of the action.
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