and its
Applications

Contents lists available at [SciVerse ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

Normally contracting Lie group actions

Takashi Inaba ^a*,*∗*,*1, Shigenori Matsumoto ^b*,*2, Yoshihiko Mitsumatsu ^c*,*³

^a *Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan*

^b *Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan*

^c *Department of Mathematics, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan*

article info abstract

We show that there are no normally contracting actions of unimodular Lie groups on closed manifolds.

© 2011 Elsevier B.V. All rights reserved.

Article history: Received 17 April 2011 Received in revised form 3 December 2011 Accepted 17 December 2011

MSC: 57R30 37C85

Keywords: Foliations Locally free Lie group actions Anosov actions

1. Introduction

Let $\varphi : M \times G \to M$ be a locally free right C^∞ action of a connected Lie group G of dimension *n* on a closed C^∞ manifold *M* of dimension $n+s+u$, with orbit foliation *F*. Endow *M* with a Riemannian metric. For a linear map $A: V \to W$ of normed linear spaces, we denote by $||A||$ the operator norm of *A*, and by $m(A)$ the conorm of *A*, i.e.

 $m(A) = \inf \{ ||Av|| \mid v \in V, ||v|| = 1 \}.$

Denote by $T\mathcal{F}$ the tangent bundle of \mathcal{F} .

According to [2], the action φ is called an *Anosov action* if there is an element $g \in G$, called an *Anosov element*, and continuous subbundles *E^s* and *E^u* of the tangent bundle *T M* of *M* such that

- (1) $E^s \oplus E^u \oplus T\mathcal{F} = TM$,
- (2) *E^s* and *E^u* are invariant by the tangent map *g*[∗] of the action of *g*, and

¹ The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 19540066, Japan Society for the Promotion of Science, Japan.

^{*} Corresponding author.

E-mail addresses: inaba@math.s.chiba-u.ac.jp (T. Inaba), matsumo@math.cst.nihon-u.ac.jp (S. Matsumoto), yoshi@math.chuo-u.ac.jp (Y. Mitsumatsu).

² The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096, Japan Society for the Promotion of Science, Japan.

³ The author is partially supported by Grant-in-Aid for Scientific Research (B) No. 22340015, and by Chuo University Grant for Special Research 2009– 2010.

(3) there exist $C > 0$ and $\lambda > 0$ such that for any $k > 0$ and $x \in M$, we have

$$
\|g_{*}^{k}\|_{E_{x}^{s}}\|, \|g_{*}^{-k}\|_{E_{x}^{u}}\| \leqslant C \exp(-k\lambda), \tag{1.1}
$$

$$
\frac{\|g_*^k|_{E_x^s}\|}{m(g_*^k|T_x\mathcal{F})}, \frac{\|g_*^{-k}|_{E_y^u}\|}{m(g_*^{-k}|T_x\mathcal{F})} \leqslant C \exp(-k\lambda). \tag{1.2}
$$

As is well known, conditions (1.1) and (1.2) do not depend upon a particular choice of the Riemannian metric. The case where $G = \mathbb{R}^n$ has drawn attention of many authors. In that case, condition (1.2) follows from (1.1) and is redundant. But for general *G*, (1.2) is natural and turns out to be useful for example to get the topological transitivity of the action under a suitable condition [2].

This paper arises from an effort of the authors to understand the proof of Corollary 7 in [2]. Instead we found an argument to show the following theorems, which improve Corollaries 7, 8 and Theorem 9 in [2]. An Anosov action φ is called a *normally contracting action* if the dimension *u* of the bundle E^u is 0 and $s > 0$. Examples of such actions are given in Section 2.

Theorem 1.1. *If there exists a normally contracting action of a Lie group G on a closed manifold, then G is not unimodular.*

In [2], a normally contracting action is called *central* if an Anosov element *g* is in the center of *G*, and the nonexistence for $s = 1$ and $n = 2$ and the minimality for $s = 1$ of such actions are shown. As a by-product of our argument we obtain:

Theorem 1.2. *There are no central normally contracting actions of any Lie groups on closed manifolds.*

In fact in these theorems we do not use condition (1.2).

Section 3 is devoted to the proof of these theorems. In Section 4, we raise a further problem.

The authors express their gratitude to the referee whose valuable comments were helpful in improving the paper.

2. Examples

Example 2.1. Let *H* be either *PSL*(2, \mathbb{R}) or the 3-dimensional solvable Lie group Solv₃ which admits a cocompact lattice. Then *H* contains

$$
\mathrm{Aff}_+(\mathbb{R}) = \left\{ \begin{pmatrix} e^{-t/2} & x \\ 0 & e^{t/2} \end{pmatrix} \mid t, x \in \mathbb{R} \right\},\
$$

a closed subgroup isomorphic to the group of the orientation preserving affine transformations of the real line. For any cocompact lattice *Γ* of *H*, consider the right action φ of $G = Aff_+(\mathbb{R})$ on the quotient manifold $M = \Gamma \setminus H$. The flow given by the action of

$$
g^t = \begin{pmatrix} e^{-t/2} & 0 \\ 0 & e^{t/2} \end{pmatrix}
$$

is a classical example of Anosov flows, and the orbit foliation of the *G*-action *ϕ* is the weak stable foliation of the Anosov flow $\{g^t\}$. Therefore the *G*-action φ is normally contracting, with an Anosov element g .

Example 2.2. M. Asaoka [1] classified all the locally free actions of $G = Aff_+(\mathbb{R})$ on closed 3-manifolds up to C^∞ -conjugacy. Notably there are actions which do not preserve a smooth volume form. But they all have the same dynamical properties as in Example 2.1, and especially the *G*-actions are normally contracting.

Example 2.3. Let $A \in SL(n + s - 1, \mathbb{Z})$, $n \ge 2$, $s \ge 1$, be a matrix with $n - 1$ distinct simple eigenvalues bigger than 1 and all the others in (0, 1). We regard *A* as an automorphism of the torus T^{n+s-1} . Then the suspension of *A*, denoted by *M*, is an $(n + s)$ -dimensional manifold which admits an Anosov flow. The weak unstable foliation of the flow is the orbit foliation of an action of a metabelian Lie group *G* of dimension *n*. The action of *G* on *M* is normally contracting.

Example 2.4. Let *Γ* be a cocompact lattice of $H = PSL(2, \mathbb{C})$. The Lie group *H* contains a closed subgroup $G = Aff(\mathbb{C})$, isomorphic to the group of the complex affine transformations of the complex plane. The right action of *G* on the quotient space $M = \Gamma \setminus H$ is normally contracting.

Example 2.5. Suppose there is a normally contracting action of a Lie group G_1 on a closed manifold *N*, with an Anosov element *g*. Let *G*² be a Lie group which admits a cocompact lattice *Γ* . Then the product right action of *G* = *G*¹ × *G*² on $M = N \times (\Gamma \setminus G_2)$ is normally contracting, with an Anosov element (g, e_{G_2}) , where e_{G_2} denotes the unit element of G_2 .

Example 2.6. Let G_1 be any semisimple Lie group and let H_2 be either *PSL*(2, R) or *PSL*(2, C). Let G_2 be either Aff₊(R) or Aff*(*C*)* accordingly, and choose an irreducible cocompact lattice *Γ* of *G*¹ × *H*2. Then the right action of *G* = *G*¹ × *G*² on $M = \Gamma \setminus (G_1 \times H_2)$ is normally contracting.

3. Proofs of the main theorems

First let us outline the proof of Theorem 1.1. Let *ϕ* be a normally contracting action of a unimodular *n*-dimensional Lie group *G* on a closed manifold *M* of dimension $n + s$, where *s* is the dimension of the stable bundle E^s . Since *G* is unimodular, *G* admits a bi-invariant volume form *Ω*. Transmitting *Ω* by the action *ϕ*, one obtains a continuous *ϕ*-invariant *n*-form ω on *M* such that ω yields a volume form on *TF* and that $\iota_v \omega = 0$ for any $v \in E^s$. (Notice that this can be done only when *Ω* is bi-invariant.) Next we construct a continuous *s*-form *α* such that *ι*_{*ν*}α = 0 for any *ν* ∈ *T*F and that $α ∧ ω$ is nonvanishing. Then the *ϕ*-invariance of *ω* and the normally contracting property of *ϕ* imply that the volume form *α* ∧ *ω* is contracting by the action of an Anosov element *g*, contradicting the compactness of *M*.

For $h \in G$, denote by $L_h : G \to G$ (resp. $R_h : G \to G$) the left (resp. right) translation by *h*. Let X_1, \ldots, X_n be left invariant vector fields on *G* which form a linear basis of the tangent space at each point of *G*. Thus we have for any $h \in G$,

 $(L_h)_* X_i = X_i$.

Now assume for contradiction that *G* is unimodular. Consider the volume form *Ω* on *G* uniquely defined by

 $Q(X_1, \ldots, X_n) = 1.$

Since *G* is unimodular, the form Ω is not only left invariant, but also right invariant. That is, for any element $h \in G$,

 $\Omega((R_h) * X_1, \ldots, (R_h) * X_n) = 1.$

Let $\varphi : M \times G \to M$ be a normally contracting action. Thus we have

 $TM = E^s \oplus T \mathcal{F}.$

For any point $x \in M$, consider a map $\psi_x : G \to M$ defined by

$$
\psi_x(h) = xh,
$$

where *xh* is a customary abbreviation of $\varphi(x, h)$. Define vector fields X_1^*, \ldots, X_n^* of M tangent to the orbit foliation $\mathcal F$ by

 (X_i^*) _{*x*} = $(\psi_x)_*(X_i)_e$ *,*

where *e* denotes the identity element of *G*.

Define a continuous *n*-form *ω* of *M* so as to satisfy

 $\omega(X_1^*, \ldots, X_n^*) = 1$ and $\iota_v \omega = 0$, $\forall v \in E^s$.

Notice that ω is uniquely defined and that ω_x ($x \in M$) satisfies

 $\omega_x((\psi_x)_* Y_1, \ldots, (\psi_x)_* Y_n) = \Omega_e(Y_1, \ldots, Y_n)$

for any $x \in M$ and vector fields Y_i on *G*. Still denote by $g : M \to M$ the right action of an Anosov element $g \in G$. The derivative g_* preserves the subbundles E^s and $T\mathcal{F}$. Notice also that

 $g\psi_x = \psi_{xg}R_gL_g^{-1}.$

Lemma 3.1. *The n-form ω is invariant by the action of an Anosov element g.*

Proof. Since *g*[∗]*ω* satisfies

 $\iota_v(g^*\omega) = \iota_{g_*v}\omega = 0, \quad \forall v \in E^s,$

it suffices to show

$$
(g^*\omega)(X_1^*,\ldots,X_n^*)=1.
$$

But we have

$$
(g^*\omega)_x(X_1^*,...,X_n^*) = \omega_{xg}(g_*X_1^*,...,g_*X_n^*)
$$

\n
$$
= \omega_{xg}(g_*(\psi_x)_*X_1,...,g_*(\psi_x)_*X_n)
$$

\n
$$
= \omega_{xg}((\psi_{xg})_*(R_g)_*(L_g)^{-1}_*X_1,...,(\psi_{xg})_*(R_g)_*(L_g)^{-1}_*X_n)
$$

\n
$$
= \Omega_e((R_g)_*(L_g)^{-1}_*X_1,..., (R_g)_*(L_g)^{-1}_*X_n)
$$

\n
$$
= \Omega_e((R_g)_*X_1,..., (R_g)_*X_n)
$$

\n
$$
= \Omega_e(X_1,...,X_n) = 1,
$$

as is required. \Box

Assume the bundle E^s is nonoriented. There is a double covering of *M* such that the lift of E^s is oriented. The action φ can also be lifted to the double covering, and it is again a normally contracting action. Since we are going to deduce a contradiction from the hypothesis that *G* is unimodular, we can very well assume that the bundle *E^s* is oriented. Thus *M* is oriented as well. Then one can choose a nonvanishing *s*-form *α* of *M* which satisfies

$$
\iota_{X_1^*}\alpha=\cdots=\iota_{X_n^*}\alpha=0\quad\text{and}\quad\alpha\wedge\omega>0.
$$

Notice that α is unique up to a multiple of positive function. For any $x \in M$ define $\|\alpha_x\|$ by

$$
\|\alpha_x\|=\sup\big\{\big|\alpha_x(v_1,\ldots,v_s)\big|\big|v_i\in T_xM,\; \|v_i\|=1,\; 1\leqslant\forall i\leqslant s\big\}.
$$

Lemma 3.2. *We have*

 $\|(g^k)^*(\alpha_x)\| \leq C_1 \exp(-s\lambda k) \|\alpha_x\|,$

for some $C_1 > 0$ *.*

Proof. Of course the validity of the lemma does not depend upon a choice of a Riemannian metric. So let us choose a Riemannian metric for which the two subbundles $T\mathcal{F}$ and E^s are orthogonal at each point of *M*. Then since

$$
\iota_w\big(\big(g^k\big)^*\alpha_x\big)=0\quad\text{and}\quad\|v+w\|\geqslant\|v\|,\quad\forall\,v\in E^s_{xg^{-k}},\ \forall\,w\in T_{xg^{-k}}\mathcal{F},
$$

there are nonzero vectors $v_1, \ldots, v_s \in E_{xg^{-k}}^s$ such that

$$
\left| \left(\left(g^k \right)^* \alpha_x \right) (v_1, \ldots, v_s) \right| = \left| \left(g^k \right)^* \alpha_x \right| \cdot \|\nu_1\| \cdots \|\nu_s\|.
$$

On the other hand we have

$$
\begin{aligned} \left| \left(\left(g^k \right)^* \alpha_x \right) (v_1, \ldots, v_s) \right| &= \left| \alpha_x \left(\left(g^k \right)_* v_1, \ldots, \left(g^k \right)_* v_s \right) \right| \\ &\leqslant \left\| \alpha_x \right\| \cdot \left\| \left(g^k \right)_* v_1 \right\| \cdots \left\| \left(g^k \right)_* v_s \right\| \\ &\leqslant C^s \exp(-s k \lambda) \left\| \alpha_x \right\| \cdot \left\| v_1 \right\| \cdots \left\| v_s \right\|, \end{aligned}
$$

showing the lemma. \square

Now Lemmata 3.1 and 3.2 imply that the volume form *α* ∧ *ω* is everywhere contracting by *(g^k)*[∗] for large *k*. The contradiction shows Theorem 1.1.

Even if the Lie group is not unimodular, the above argument works without any change if an Anosov element *g* belongs to the kernel of the modular function, that is, if $(R_g)^* \Omega = \Omega$. Therefore we have:

Theorem 3.3. *An Anosov element of a normally contracting action does not belong to the kernel of the modular function.*

Theorem 1.2 follows from this.

4. A further problem

Among examples in Section 2, genuine vanillas are only Examples 2.1–2.4, in which the Lie group *G* is not a product of two Lie groups. If *G* is not a product, it must be either solvable or simple by a theorem of Levi. If further there is a normally contracting action of *G*, then by Theorem 1.1, *G* must be solvable.

In Examples 2.1–2.3, the one parameter subgroup {*g^t* } of *G* which contains an Anosov element *g* defines an Anosov flow on the ambient manifold *M*. This is not the case with Example 2.4 since there is a compact subgroup *K*, isomorphic to *U(*1*)*, which commutes with g^t . However if one takes a quotient M/K of M by the action of K , then $\{g^t\}$ defines an Anosov flow on *M/K*. These examples lead us to the following question.

Question 4.1. Let *G* be a Lie group which is not a product of two Lie groups. Assume there is a normally contracting *G*-action on a closed manifold *M*. Does there exist a compact subgroup *K* of *G* commuting with an Anosov element *g* such that the one parameter subgroup {*g^t* } defines an Anosov flow on the quotient space *M/K*?

In fact this is the case with the Lie group $Aff_{+}(\mathbb{R})$. For, any element which does not belong to the kernel of the modular function is conjugate to

$$
\begin{pmatrix} e^{-t_0/2} & 0 \\ 0 & e^{t_0/2} \end{pmatrix},
$$

for some $t_0 \neq 0$. Now the flow given by the action of the one parameter subgroup

$$
\left\{ \begin{pmatrix} e^{-t/2} & 0 \\ 0 & e^{t/2} \end{pmatrix} \mid t \in \mathbb{R} \right\}
$$

is Anosov since it is "normally expanding" along the orbit foliation.

Likewise for *G* = Aff*(*C*)*, Question 4.1 is affirmative. To mention one more example, let *G* be a simply connected Lie group whose Lie algebra is generated by *X* and U_1, \ldots, U_{n-1} such that for any $1 \leqslant i \leqslant j \leqslant n-1$,

 $[X, U_i] = -\alpha_i U_i$ $(\alpha_i > 0)$ and $[U_i, U_j] = 0$.

Then Question 4.1 is in the affirmative for any normally contracting action of *G*.

The Lie group *G* in Question 4.1 is solvable and does not admit a lattice. Question 4.1 is more about the structure of the Lie group than about the dynamics of the action.

References

[1] M. Asaoka, Non-homogeneous locally free actions of the affine group, Ann. Math. 175 (2012) 1–21.

[2] A. Arbieto, C. Morales, A *λ* lemma for foliations, Topology Appl. 156 (2009) 1491–1495.