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Abstract

For a given classF of unit norm frames of fixed redundancy we define a Grassmannian frame as on
minimizes the maximal correlation|〈fk, fl〉| among all frames{fk}k∈I ∈ F . We first analyze finite-dimension
Grassmannian frames. Using links to packings in Grassmannian spaces and antipodal spherical codes
bounds on the minimal achievable correlation for Grassmannian frames. These bounds yield a simple c
under which Grassmannian frames coincide with unit norm tight frames. We exploit connections to graph
equiangular line sets, and coding theory in order to derive explicit constructions of Grassmannian frames. O
ings extend recent results on unit norm tight frames. We then introduce infinite-dimensional Grassmannia
and analyze their connection to unit norm tight frames for frames which are generated by group-like unita
tems. We derive an example of a Grassmannian Gabor frame by using connections to sphere packing theo
we discuss the application of Grassmannian frames to wireless communication and to multiple description
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Orthonormal bases are an ubiquitous and eminently powerful tool that pervades all ar
mathematics. Sometimes, however, we find ourselves in a situation where a representation of a fu
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an operator by an overcomplete spanning system is preferable over the use of an orthonormal ba
reason for this may be that an orthonormal basis with the desired properties does not exist. A c
example occurs in Gabor analysis, where the Balian–Low theorem tells us that orthonormal
bases with good time–frequency localization cannot exist, while it is not difficult to find overcom
Gabor systems with excellent time–frequency localization. Another important reason is the de
introduction of redundancy for the purpose of error correction in coding theory.

When dealing with overcomplete spanning systems one is naturally lead to the concept offrames [11].
Recall that a sequence of functions{fk}k∈I (I is a countable index set) belonging to a separable Hil
spaceH is said to be aframe for H if there exist positive constants (frame bounds) A andB such that

A‖f ‖2
2 �

∑
k∈I

∣∣〈f,fk〉∣∣2 �B‖f ‖2
2 (1)

for everyf ∈H.
Even when there are good reasons to trade orthonormal bases for frames we still want to p

as many properties of orthonormal bases as possible. There are many equivalent conditions to d
orthonormal basis{ek}k∈I for H, such as

f =
∑
k∈I

〈f, ek〉ek, ∀f ∈H, and ‖ek‖ = 1, ∀k ∈ I, (2)

or

{ek}k∈I is complete inH and〈ek, el〉 = δk,l, (3)

whereδk,l denotes the Kronecker delta.
These two definitions suggest two ways to construct frames that are “as close as poss

orthonormal bases. Focusing on condition (2) we are naturally lead to unit norm tight frames,
satisfy

f = 1

A

∑
k∈I

〈f,fk〉fk, ∀f ∈H, and ‖fk‖2 = 1, ∀k ∈ I, (4)

whereA = B are the frame bounds. This class of frames has been frequently studied and is fair
understood [7,11,21,24,29].

As an alternative, as proposed in this paper, we focus on condition (3), which essentially states
elements of an orthonormal basis are perfectly uncorrelated. This suggests to search for frames{fk}k∈I
such that the maximal correlation|〈fk, fl〉| for all k, l ∈ I with k �= l, is as small as possible. Th
idea will lead us to so-calledGrassmannian frames, which are characterized by the property that
frame elements have minimal cross-correlation among a given class of frames. The name “Grass
frames” is motivated by the fact that in finite dimensions Grassmannian frames coincide with o
packings in certain Grassmannian spaces as we will see in Section 2.

Recent literature on finite-dimensional frames [7,14,21] indicates that the connection betwee
frames and areas such as spherical codes, algebraic geometry, graph theory, and sphere pa
not well known in the “frame community”. This has led to a number of rediscoveries of clas
constructions and duplicate results. The concept of Grassmannian frames will allow us to mak
of these connections transparent.

The paper is organized as follows. In the remainder of this section we introduce some n
used throughout the paper. In Section 2 we focus on finite Grassmannian frames. By utilizing
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to spherical codes and algebraic geometry we derive lower bounds on the minimal achievable co
between frame elements depending on the redundancy of the frame. We further show that optim
Grassmannian frames which achieve this bound are also tight and certain unit norm tight fram
also Grassmannian frames. We discuss related concepts arising in graph theory, algebraic geom
coding theory and provide explicit constructions of finite Grassmannian frames. In Section 3 we
the concept of Grassmannian frames to infinite-dimensional Hilbert spaces and analyze the conn
unit norm tight frames. We give an example of a Grassmannian frame arising in Gabor analysis.
in Section 4 we discuss applications in multiple description coding theory.

1.1. Notation

We introduce some notation and definitions used throughout the paper. Let{fk}k∈I be a frame for a
finite- or infinite-dimensional Hilbert spaceH. HereI is an index set such asZ, N or {0, . . . ,N − 1}.
The frame operator S associated with the frame{fk}k∈I is defined by

Sf =
∑
k∈I

〈f,fk〉fk. (5)

S is a positive definite, invertible operator that satisfiesAI � S � BI , whereI is the identity operato
onH. Theframe analysis operator T :H → �2(I) is given by

Tf = {〈f,fk〉}k∈I, (6)

and theframe synthesis operator is

T ∗ :�2(I)→ H: T {ck}k∈I =
∑
k∈I

ckfk. (7)

Any f ∈H can be expressed as

f =
∑
k∈I

〈f,fk〉hk =
∑
k∈I

〈f,hk〉fk, (8)

where{hk}k∈I is thecanonical dual frame given byhk = S−1fk. If A = B the frame is calledtight, in
which caseS =AI andhk = 1/Afk . The tight frame canonically associated to{fk}k∈I is S−1/2fk.

If ‖fk‖ = 1 for all k then{fk}k∈I is called aunit norm frame. Here‖ ·‖ denotes the�2-norm of a vector
in the corresponding finite- or infinite-dimensional Hilbert space.Unit norm tight frames have many nice
properties which make them an important tool in theory [26,36] and in a variety of applications [
42,43]. Observe that if{fk}k∈I is a unit norm frame, then{S−1/2fk}k∈I is a tight frame, but in general n
longer of unit norm type!

We call a unit norm frame{fk}k∈I equiangular if∣∣〈fk, fl〉∣∣= c for all k, l with k �= l, (9)

for some constantc� 0. Obviously any orthonormal basis is equiangular.

2. Finite Grassmannian frames, spherical codes, and equiangular lines

In this section we concentrate on frames{fk}Nk=1 for E
m whereE = R or C. As mentioned in the

introduction we want to construct frames{fk}N such that the maximal correlation|〈fk, fl〉| for all
k=1
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k, l ∈ I with k �= l, is as small as possible. If we do not impose any other conditions on the fram
can setN =m and take{fk}Nk=1 to be an orthonormal basis. But if we want to go beyond this trivial c
and assume that the frame is indeed overcomplete then the correlation|〈fk, fl〉| will strongly depend on
the redundancy of the frame, which can be thought of as a “measure of overcompleteness”. Cle
smaller the redundancy the smaller we expect|〈fk, fl〉| to be. InE

m the redundancyρ of a frame{fk}Nk=1
is defined byρ =N/m.

Definition 2.1. For a given unit norm frame{fk}Nk=1 in E
m we define themaximal frame correlation

M({fk}Nk=1) by

M
({fk}Nk=1

)= max
k,l,k �=l

{∣∣〈fk, fl〉∣∣}. (10)

The restriction to unit norm frames in the definition above is just for convenience, alternative
could consider general frames and normalize the inner product in (10) by the norm of the frame el
Hence without loss of generality we can assume throughout this section that all frames are unit n

Definition 2.2. A sequence of vectors{uk}Nk=1 in E
m is called aGrassmannian frame if it is the solution to

min
{
M
({fk}Nk=1

)}
, (11)

where the minimum is taken over all unit norm frames{fk}Nk=1 in E
m.

In other words a Grassmannian frame minimizes the maximal correlation between frame el
among all unit norm frames which have the same redundancy. Obviously the minimum in (11) d
only on the parametersN andm.

A trivial example for Grassmannian frames inE
2 is to take thenth roots of unity as frame element

All the frames generated in this way are unit norm tight, however, only forn = 2 andn = 3 we get
equiangular frames. Forn= 2 we obtain an orthonormal basis and forn= 3 we obtain the well-known
tight frame appearing in [11, Chapter 3].

Two problems arise naturally when studying finite Grassmannian frames:
Problem 1. Can we derive bounds onM({fk}Nk=1) for givenN andm?
Problem 2. How can we construct Grassmannian frames?
The following theorem provides an exhaustive answer to Problem 1. The theorem is new in

theory but actually it only unifies and summarizes results from various quite different research ar

Theorem 2.3. Let {fk}Nk=1 be a frame for E
m. Then

M
({fk}Nk=1

)
�
√

N −m
m(N − 1)

. (12)

Equality holds in (12) if and only if

{fk}Nk=1 is an equiangular tight frame. (13)
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if E = R equality in (12) can only hold if N � m(m+ 1)

2
, (14)

if E = C then equality in (12) can only hold if N �m2. (15)

Proof. A proof of the bound (12) can be found in [37,46]. It also follows from Lemma 6.1 in [
One way to derive (12) is to consider the nonzero eigenvaluesλ1, . . . , λm of the Gram matrixR =
{〈fk, fl〉}Nk,l=1. These eigenvalues satisfy

∑m
k=1λk =N and also

m∑
k=1

λ2
k =

N∑
k=1

N∑
l=1

∣∣〈fk, fl〉∣∣2 � N2

m
, (16)

see [37,44]. The bound follows now by taking the maximum over all|〈fk, fl〉| in (16) and observing tha
there areN(N − 1)/2 different pairs〈fk, fl〉 for k, l = 1, . . . ,N with k �= l.

Equality in (12) impliesλ1 = · · · = λm =N/m, which in turn implies tightness of the frame, and a
|〈fk, fl〉|2 = (N −m)/m(N − 1) for all k, l with k �= l which yields the equiangularity (cf. also [8,37
Finally the bounds onN in (14), (15) follow from the bounds in Table II of [12].✷

As mentioned in passing in the proof unit norm tight frames meet the bound (16) with equality. W
unit norm frames that meet the bound (12) with equalityoptimal Grassmannian frames. The following
corollary will be instrumental in the construction of a variety of optimal Grassmannian frames.

Corollary 2.4. Let m,N ∈ N with N �m. Assume R is a Hermitian N ×N matrix with entries Rk,k = 1
and

Rk,l =
{±√

(N −m)/m(N − 1), if E = R,

±i√(N −m)/m(N − 1), if E = C,
(17)

for k, l = 1, . . . ,N , k �= l. If the eigenvalues λ1, . . . , λN of R are such that λ1 = · · · = λm = N/m and
λm+1 = · · · = λN = 0, then there exists a frame {fk}Nk=1 in E

m that achieves the bound (12).

Proof. SinceR is Hermitian it has a spectral factorization of the formR =WΛW ∗, where the columns
of W are the eigenvectors and the diagonal matrixΛ contains the eigenvalues ofR. Without loss of
generality we can assume that the nonzero eigenvalues ofR are contained in the firstm diagonal entries
of Λ. Set fk := √

N/m {Wk,l}ml=1 for k = 1, . . . ,N . By construction we have〈fk, fl〉 = Rl,k, hence
{fk}Nk=1 is equiangular. Obviously{fk}Nk=1 is tight, since all nonzero eigenvalues ofR are identical. Hence
by Theorem 2.3{fk}Nk=1 achieves the bound (12).✷

On the first glance Corollary 2.4 does not seem to make the problem of constructing o
Grassmannian frames much easier. However by using a link to graph theory and spherical design
be able to derive many explicit constructions of matrices having the properties outlined in Corolla

While the concept of Grassmannian frames is new in frame theory there are a number of
concepts in other areas of mathematics. Thus it is time to take a quick journey through these area
will take us from Grassmannian spaces to spherical designs to coding theory.
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Packings in Grassmannian spaces
TheGrassmannian space G(m,n) is the set of alln-dimensional subspaces of the spaceR

m (usually
the Grassmannian space is defined forR only, although many problems can be analogously formul
for the complex space).G(m,n) is a homogeneous space isomorphic toO(m)/(O(n)× O(m− n)), it
forms a compact Riemannian manifold of dimensionn(m− n).

The Grassmannian packing problem is the problem of finding the best packing ofN n-dimensional
subspaces inEm, such that the angle between any two of these subspaces becomes as large as
[6,8]. In other words, we want to findN points inG(m,n) so that the minimal distance between a
two of them is as large as possible. For our purposes we can concentrate on the casen = 1. Thus the
subspaces are (real or complex) lines through the origin inE

m and the goal is to arrangeN lines such tha
the angle between any two of the lines becomes as large as possible. Since maximizing the angle
lines is equivalent to minimizing the modulus of the inner product of the unit vectors generating
lines, it is obvious that finding optimal packings inG(m,1) is equivalent to finding finite Grassmanni
frames (which also motivated the name for this class of frames).

By embedding the Grassmannian spaceG(m,n) into a sphere of radius
√
n(m− n)/m in R

d with
d = (m+ 1)m/2 − 1, Conway, Hardin, and Sloane are able to apply bounds from spherical code
to Rankin [35] to derive bounds on the maximal angle betweenN subspaces inG(n,m) (see the very
inspiring paper [8]). For the casen= 1 the bound coincides of course with (12).

Spherical codes
A spherical code S(m,N, s) is a set ofN points (code words) on them-dimensional unit sphereΩm,

such that the inner product between any two code words is smaller thans, cf. [9]. By placing the points
on the sphere as far as possible from each other one attempts to minimize the risk of decoding
Antipodal spherical codes are spherical codes which contain with each code wordw also the code
word −w. Clearly, the construction of antipodal spherical codes whoseN points are as far from eac
other as possible is closely related to constructing Grassmannian frames.

In coding theory the inequality at the right-hand side of (16) is known asWelch bound, cf. [46]. Since
unit norm tight frames meet (16) with equality, i.e.,

N∑
k=1

N∑
l=1

∣∣〈fk, fl〉∣∣2 = N2

m
,

unit norm tight frames are known asWelch bound equality (WBE) sequences in coding theory2

Inequality (16) and the fact that it is met by unit norm tight frames has recently been rediscovered
WBE sequences have gained new popularity in connection with the construction of spreading se
for Code-Division Multiple-Access (CDMA) systems [25,39,45]. WBE sequences that meet (12
equality are called maximum WBE (MWBE) sequences [39,46]. While Welch (among other au
derived the bound (12) he did not give an explicit construction of MWBE sequences.

2 The authors of [45] incorrectly call WBE sequences tight frames.
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Spherical designs
A spherical t-design3 is a finite subsetX of the unit sphereΩm in R

m, such that

|X|−1
∑
x∈X

h(x)=
∫
Ωm

h(x)dw(x), (18)

for all homogeneous polynomialsh ∈ Homt (R
m) of total degreet in m variables, see, e.g., [41

A spherical design measures certain regularity properties of setsX on the unit sphereΩm. Another way
to define a sphericalt-design is by requiring that, fork = 0, . . . , t thekth moments ofX are constant with
respect to orthogonal transformations ofR

m. Here are a few characterizations of sphericalt-designs tha
make the connection to the aforementioned areas transparent. For details about the following e
we refer to [13]. Let the cardinality ofX beN . X is a spherical 1-design if and only if the Gram mat
R(X) of the vectors ofX has vanishing row sums.X is a spherical 2-design if it is a spherical 1-des
and the Gram matrixR(X) has only two different eigenvalues, namelyN/m with multiplicity m, and 0
with multiplicity N −m. An antipodal spherical code onΩm is a 3-design if and only if the Gram matr
of the corresponding set of vectors has two eigenvalues.

Equiangular line sets and equilateral point sets
In [12,33] Seidel et al. consider sets of lines inR

m and inC
m having a prescribed number of angle

They derive upper bounds on the number of lines in the case of one, two, and three prescribed a
the latter case, one of the angles is assumed to be zero). Most interesting are those line sets tha
meet the upper bound. In [44] van Lint and Seidel consider a similar problem in elliptic geometry.
the unit sphere inRm serves as model for the(m− 1)-dimensional elliptic spaceEm−1 where any elliptic
point is represented by a pair of antipodal points inR

m, the construction of equilateral point sets in ellip
geometry is of course equivalent to the construction of equiangular lines sets in Euclidean ge
Recall that optimal Grassmannian frames are equiangular, hence the search for equiangular lin
closely related to the search for optimal Grassmannian frames.

Characterization of strongly regular graphs
Graphs with a lot of structure and symmetry play a central role in graph theory. Different kin

matrices are used to represent a graph, such as the Laplace matrix or adjacency matrices [
structural properties can be derived from the eigenvalues depends on the specific matrix that is u
Seidel adjacency matrixA of a graphΓ is given by

Axy =
{−1 if the verticesx, y ∈ Γ are adjacent,

1 if the verticesx, y ∈ Γ are nonadjacent,
0 if x = y.

(19)

If A has only very few different eigenvalues then the graph is (strongly) regular, cf. [4]. The conn
to Grassmannian frames{fk}Nk=1 that achieve the bound (12) is as follows. Assume that the assoc
Gram matrixR = {〈fk, fl〉}Nk,l=1 has entries±α and 1 at the diagonal. Then

A= 1

α
(R− I ) (20)

is the adjacency matrix of a regular two-graph [40]. We will make use of this relation in the next se

3 A spherical t -design should not be confused with an “ordinary”t -design.
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2.1. Construction of Grassmannian frames

In this section we present explicit constructions for optimal finite Grassmannian frames. No
optimal Grassmannian frames do not exist for all choices ofm andN (assuming of course thatN does
not exceed(m+ 1)m/2 orm2, respectively). For instance, there are no 5 vectors inR

3 with maximal
correlation 1/

√
6. In fact, although the 5 vectors inR3 that minimize (11) are equiangular, the maxim

inner product is 1/
√

5 (but not 1/
√

6), see [8]. However, there exists an optimal Grassmannian f
consisting of six vectors. The frame elements correspond to the (antipodal) vertices of the icosa4

and the maximal correlation achieves indeed the optimal value 1/
√

5. We refer to [8] for details abou
some of these and other examples. On the other hand the 7 vectors inR

3 that minimize (11) yield a uni
norm tight frame, but not an equiangular one (which should not come as a surprise since the choicN = 7
exceeds the boundN �m(m+ 1)/2). Note that forC3 we can indeed construct 7 lines that achieve
bound (12), see Section 2.1.2.

2.1.1. Grassmannian frames and conference matrices
In this section we present explicit constructions of Grassmannian frames with low redundan

begin with a simple corollary of Theorem 2.3.

Corollary 2.5. Let E = R or C and N =m+ 1. Then {fk}Nk=1 is an optimal Grassmannian frame for E
m

if and only if it is a unit norm tight frame.

Proof. An optimal Grassmannian frame{fk}Nk=1 with N = m + 1 can be easily constructed by taki
the vectors to be the vertices of a regular simplex inE

m, cf. [8]. Thus by Theorem 2.3{fk}Nk=1 is a unit
norm tight frame. On the other hand it was shown in [21] that all unit norm tight frames withN =m+ 1
are equivalent under multiplication offk by σkU , whereU is a unitary matrix andσk = ±1. Since
this equivalence relation preserves inner products it follows that any unit norm tight frame{fk}Nk=1 with
N =m+ 1 achieves the bound (12).✷

A unit norm tight frame{fk}Nk=1 with N =m+1 also provides a spherical 1-design, which can be s
as follows. WhenN =m+ 1 we can always multiply the elements of{fk}Nk=1 by ±1 such that the Gram
matrixR has 1 as its main diagonal entries and−1/m elsewhere. Hence the row sums ofR vanish and
therefore{fk}Nk=1 constitutes a spherical 1-design. It is obvious that the Seidel adjacency matrixA of a
graph which is constructed from a regular simplex hasAkk = 0 andAkl = −1 for k �= l, which illustrates
nicely the relationship betweenA andR as stated in (19).

The following construction has been proposed in [8,32]. Ann × n conference matrix C has zeros
along its main diagonal and±1 as its other entries, and satisfiesCCT = (n− 1)In, see [32]. Conferenc
matrices play an important role in graph theory [40]. IfC2m is a symmetric conference matrix, then the
exist 2m vectors inR

m such that the bound (12) holds withM({fk}2m
k=1). If C2m is a skew-symmetric

conference matrix (i.e.,C = −CT), then there exist 2m vectors inC
m such that the bound (12) hold

with M({fk}2m
k=1), see [12, Example 5.8]. The link between the existence of a (real or complex) op

Grassmannian frame and the existence of a corresponding conference matrixC2m can be easily as see

4 The Grassmannian frame consisting of five vectors is constructed by removing an arbitrary element of the
Grassmannian frame consisting of six vectors.
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as follows. Assume that{fk}Nk=1 achieves (12) and denoteα := 1/
√

2m− 1. We first consider the cas
E = R. Clearly the entries of the 2m× 2m Gram matrixR = {〈fk, fl〉}Nk,l=1 areRk,l = ±α for k �= l and
Rk,k = 1. Hence

C := 1

α
(R− I ) (21)

is a symmetric conference matrix. ForE = C we assume thatRk,l = ±iα for k �= l andRk,k = 1. Then

C := 1

iα
(R− I ) (22)

is a skew-symmetric conference matrix.
The derivations above lead to the following.

Corollary 2.6. (a)Let N = 2m, with N = pα+1 where p is an odd prime number and α ∈ N. Then there
exists an optimal Grassmannian frame in R

m which can be constructed explicitly.
(b) Let N = 2m, with m = 2α with α ∈ N. Then there exists an optimal Grassmannian frame in C

m

which can be constructed explicitly.

Proof. Paley has shown that ifN = pα + 1 with p andα as stated above, then there exists a symm
N ×N conference matrix. Moreover, this matrix can be constructed explicitly, see [18,34]. For th
N = 2m = 2α+1 a skew-symmetric conference matrix can be constructed by the following recu
Initialize

C2 =
[

0 −1
1 0

]
, (23)

and compute recursively

C2m =
[

Cm Cm − Im
Cm + Im −Cm

]
, (24)

then it is easy to see thatC2m is a skew-symmetric conference matrix.
An application of Corollary 2.4 to both, the symmetric and the skew-symmetric conference m

respectively, completes the proof.✷
Hence, for instance, there exist 50 equiangular lines inR

25 with angle arccos(1/
√

49) and 128
equiangular lines inC64 with angle arccos(1/

√
127). The construction in (23), (24) is reminiscent

the construction of Hadamard matrices. Indeed,Cm + Im is a skew-symmetric Hadamard matrix.
These constructions yield Grassmannian frames with modest redundancy, in the next two sub

we consider Grassmannian frames with considerably larger redundancy.

2.1.2. Harmonic Grassmannian frames
The elements of a harmonic tight frame{fk}Nk=1 for C

m are given by

fk = {
ωkl
}m
l=1, (25)

where theωl are distinctN th roots of unity. Since harmonic tight frames have a number of
properties [7,21], it is natural to ask if there exist harmonic Grassmannian frames (beyond the
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casesN =m andN =m+1). The following example derived by König [30] in connection with spher
designs provides an affirmative and constructive answer to this question.

Let p be a prime number and setm= pl + 1 for l ∈ N andN =m2 −m+ 1. Then there exist intege
0 � d1 < · · · < dm < N such that all numbers 1, . . . ,N − 1 occur as residues modN of the n(n − 1)
differencesdi − dj , i �= j . Fork = 1, . . . ,N we define

fk :=
{

1√
m

e2πikdj /N

}m
j=1

. (26)

It follows immediately from Proposition 4 in [30] that the functions{fk}Nk=1 form a harmonic tight
Grassmannian frame withM({fk}Nk=1)=

√
m− 1/m.

2.1.3. Nearly optimal Grassmannian frames
Theorem 2.3 gives an upper bound on the cardinality of optimal Grassmannian frames.

redundancy of a frame is too large then equality in (12) cannot be achieved. But it is possible to
Grassmannian frames whose cardinality slightly exceeds the bounds in Theorem 2.3, while their m
correlation is close to the optimal value. For instance, for anym= pk wherep is a prime andk ∈ N there
exist frames{fk}Nk=1 in C

m whereN = m2 + 1, with maximal correlationM = 1/
√
m. In fact, these

nearly optimal Grassmannian frames are unions of orthonormal bases (and thus form a unit no
frame). The modulus of the inner products between frame elements takes on only the values 0 an/

√
m.

We refer to [5,47] for details about these amazing constructions. They find an important applica
quantum physics [47] as well as in the design of spreading sequences for CDMA [25].

Example. Here is an example of a finite Gabor frame that is a nearly optimal Grassmannian fra
H = C

m (see [15,22] for generalities about finite and infinite Gabor frames). Letm be a prime numbe
� 5 and setg(n)= e2πin3/m for n= 0, . . . ,m− 1. Then the frame{gk,l}m−1

k,l=0, where

gk,l(n)= g(n− k)e2πiln/m, k, l = 0, . . . ,m− 1, (27)

satisfies|〈gk,l, gk′,l′ 〉| ∈ {0,1/√m} for all gk,l �= gk′,l′ , which follows from basic properties of Gaussi
sums (cf. [31] and [1, Theorem 2]). HenceM({gk,l}m−1

k,l=0) = 1/
√
m while (12) yields 1/

√
m+ 1 as

theoretically optimal value. It can be shown that we can add the standard orthonormal basis to th
{gk,l}m−1

k,l=0 without changing the maximal frame correlation 1/
√
m.

3. Infinite-dimensional Grassmannian frames

In this section we extend the concept of Grassmannian frames to frames{fk}∞
k=1 in separable infinite

dimensional Hilbert spaces. As already pointed out in Section 2 the maximal correlation|〈fk, fl〉| of the
frame elements will depend crucially on the redundancy of the frame. While it is clear how to
redundancy for finite frames, it is less obvious for infinite-dimensional frames.

The following appealing definition is due to Balan and Landau [2].
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Definition 3.1. Let {fk}∞
k=1 be a frame forH. The redundancyρ of the frame{fk}∞

k=1 is defined as

ρ :=
(

lim
K→∞

1

K

K∑
k=1

〈
fk, S

−1fk
〉)−1

, (28)

provided that the limit exists.

Using the concept of ultrafilters Balan and Landau have derived a more general definit
redundancy of frames, which coincides of course with the definition above whenever the limit i
exists [2]. In this paper we will restrict ourselves to the definition of redundancy as stated in (28) s
is sufficiently general for our purposes.

Remark. We briefly verify that the definition of frame redundancy by Balan and Landau coincides
our usual understanding of redundancy in some important special cases:

(i) Let {fk}Nk=1 be a finite frame for anm-dimensional Hilbert spaceHm. LetP :Hn → Hm denote the
associated projection matrix with entriesPk,l = 〈fk, S−1fl〉. We compute

ρ =
(

1

N

N∑
k=1

〈
fk, S

−1fk
〉)−1

= N

trace(P )
= N

rank(P )
= N

m
, (29)

which coincides with the usual definition of redundancy in finite dimensions.
(ii) Let {gm,n}m,n∈Z, wheregm,n(x) = g(x −ma)e−2πinbx be a Gabor frame forL2(R) with time- and

frequency-shift parametersa, b > 0. We have from [28] that〈
gm,n, S

−1gm,n
〉= 〈

g,S−1g
〉= ab, for all m,n ∈ Z, (30)

henceρ = 1/(ab) as expected.
(iii) Assume {fk}k∈I is a unit norm tight frame. Then〈fk, S−1fk〉 = 1/A and thereforeρ = A, which

agrees with the intuitive expectation that for unit norm tight frames the frame bound measu
redundancy of the frame [11].

We need two more definitions before we can introduce the concept of Grassmannian frames in
dimensions. In this sectionH denotes a separable infinite-dimensional Hilbert space.

Definition 3.2 [10]. A unitary system U is a countable set of unitary operators containing the iden
operator and acting onH.

Definition 3.3. Let U be a unitary system andΦ be a class of functions forH with ‖f ‖2 = 1 for f ∈Φ.
We denote byF(H,U ,Φ) the family of frames{fk}k∈I for H of fixed redundancyρ, such that

fk =Ukf0, f0 ∈Φ, Uk ∈ U , k ∈ I. (31)
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We say that{ϕk}k∈I ∈ F(H,U ,Φ) is a Grassmannian frame with respect toF(H,U ,Φ) if it is the
solution of5

min
{fk}k∈I∈F(H,U ,Φ)

(
max

k,l∈I; k �=l
{∣∣〈fk, fl〉∣∣}) (32)

for givenρ.

In the definition above we have deliberately chosenΦ such that it does not necessarily have to coinc
with all functions inL2(H). The reason is that in many applications one is interested in designing fr
using only a specific class of functions.

In finite dimensions we derived conditions under which Grassmannian frames are also unit nor
frames. Such a nice and simple relationship does not exist in infinite dimensions. However, in man
it is possible to construct a unit norm tight frame whose maximal frame correlation is close to th
Grassmannian frame as we will see in the next theorem.

The following definition is due to Gabardo and Han [17].

Definition 3.4. Let T denote the circle group. A unitary systemU is calledgroup-like if

group(U)⊂ TU := {tU : t ∈ T, U ∈ U}, (33)

and if differentU,V ∈ U are always linearly independent, where group(U) denotes the group generat
by U .

Theorem 3.5. Let F(H,U ,Φ) be given, where U is a group-like unitary system. For given redundancy
ρ assume that {ϕk}k∈I is a Grassmannian frame for F(H,U ,Φ) with frame bounds A,B . Then there
exists a unit norm tight frame {hk}k∈I with hk =Ukh0,Uk ∈ U , such that

max
k,l∈I; k �=l

∣∣〈hk, hl〉∣∣� max
k,l∈I; k �=l

∣∣〈ϕk,ϕl〉∣∣+ 2max

{∣∣∣∣1−
√
ρ

A

∣∣∣∣,
∣∣∣∣1−

√
ρ

B

∣∣∣∣
}
. (34)

Proof. Let S be the frame operator associated with the Grassmannian frame{ϕk}k∈I . We define the tigh
frame{hk}k∈I via hk := √

ρS−1/2ϕk . SinceU is a group-like unitary system it follows from (31) abo
and Theorem 1.2 in [24] that〈

ϕk, S
−1ϕk

〉= 〈
Ukϕ0, S

−1Ukϕ0
〉= 〈

Ukϕ0,UkS
−1ϕ0

〉= 〈
ϕ0, S

−1ϕ0
〉
, (35)

and

hk = √
ρ S−1/2ϕk = √

ρ S−1/2Ukϕ0 = √
ρ UkS

−1/2ϕ0. (36)

Using Definition 3.1 and (35), we get〈ϕk, S−1ϕk〉 = 1/ρ and therefore

‖hk‖2 = ρ〈S−1/2ϕk, S
−1/2ϕk

〉= ρ〈ϕk, S−1ϕk
〉= 1, ∀k ∈ I. (37)

Hence{hk}k∈I is a unit norm tight frame.

5 For a frame{fk}k∈I there always exists maxk �=l{|〈fk,fl〉|}, otherwise the upper frame bound could not be finite.
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We compute∣∣∣∣〈ϕk,ϕl〉∣∣− ∣∣〈hk, hl〉∣∣∣∣� ∣∣〈ϕk,ϕl〉 − 〈hk, hl〉
∣∣ (38)

�
∣∣〈ϕk,ϕl − hl〉∣∣+ ∣∣〈ϕk − hk, hl〉

∣∣ (39)

� ‖ϕk‖‖ϕl − hl‖ + ‖hl‖‖ϕk − hk‖, (40)

where we have used the triangle inequality and the Cauchy–Schwarz inequality. Note that

‖ϕl − hl‖ = ∥∥ϕl − √
ρ S−1/2ϕl

∥∥ (41)

�
∥∥(I − √

ρ S−1/2
)∥∥‖ϕl‖ (42)

� max

{∣∣∣∣1−
√
ρ

A

∣∣∣∣,
∣∣∣∣1−

√
ρ

B

∣∣∣∣
}
. (43)

Hence∣∣∣∣〈ϕk,ϕl〉∣∣− ∣∣〈hk, hl〉∣∣∣∣� 2max

{∣∣∣∣1−
√
ρ

A

∣∣∣∣,
∣∣∣∣1−

√
ρ

B

∣∣∣∣
}
, (44)

and therefore

max
k,l∈I; k �=l

∣∣〈hk, hl〉∣∣� max
k,l∈I; k �=l

∣∣〈ϕk,ϕl〉∣∣+ 2max

{∣∣∣∣1−
√
ρ

A

∣∣∣∣,
∣∣∣∣1−

√
ρ

B

∣∣∣∣
}
. (45)

Remark. (i) Although the canonical tight frame functionh0 does not have to belong toΦ, it is “as
close as possible” to the functionϕ0 ∈ Φ. Indeed, under the assumptions of Theorem 3.5 the (sc
canonical tight frame{hk}k∈I generated byh0 = √

ρS−1/2ϕ0 minimizes‖f0 −ϕ0‖ among all tight frames
{fk}k∈I in F(H,U ,L2(H)) (in fact among all possible tight frames), cf. [24] and for the case of G
frames [29]. However it is in general not true that{hk}k∈I also minimizes the maximal frame correlati
maxk,l |〈fk, fl〉| among all tight frames{fk}k∈I . For instance, numerical inspection shows that the t
Gabor frame constructed from the function proposed in [23] (a particular linear combination of H
functions) yields a smaller maximal frame correlation than the tight frame canonically associated
Gaussian.

(ii) If the Grassmannian frame{fk}k∈I is already tight, then the frame bounds satisfyA= B = ρ and
the second term in the right-hand side of (34) vanishes, as expected.

(iii) Frames that satisfy the assumptions of Theorem 3.5 include shift-invariant frames, Gabor f
and so-called geometrically uniform frames (see [14] for the latter).

3.1. An example: Grassmannian Gabor frames

In this section we derive Grassmannian frames inL2(R). We consider Gabor frames inL2(R)

generated by general lattices.
Before we proceed we need some preparation. Forx, y ∈ R we define the unitary operators

translation and modulation byTxf (t) = f (t − x), andMωf (t) = e2πiωtf (t), respectively. Given a
functionf ∈ L2(R) we denote the time–frequency shifted functionfx,ω by

fx,ω(t)= e2πiωt f (t − x). (46)
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A latticeΛ of R
2 is a discrete subgroup with compact quotient. Any lattice is determined by its

unique) generator matrixL ∈ GL(2,R) viaΛ= LZ
2. The volume of the latticeΛ is vol(Λ)= det(L).

For a function (window)g ∈ L2(R) and a latticeΛ in the time–frequency plane R
2 we define the

corresponding Gabor systemG(g,Λ) by

G(g,Λ)= {
MωTxg, (x,ω) ∈Λ

}
. (47)

Settingλ = (x,ω) we denotegλ =MωTxg. If G(g,Λ) is a frame forL2(R) we call it a Gabor frame
As in remark (ii) below Definition 3.1 we conclude that the redundancy ofG(g,Λ) is ρ = 1/vol(Λ).
A necessary but by no means sufficient condition forG(g,Λ) to be a frame is vol(Λ) � 1, cf. [22]. It
is clear that maxλ �=λ′ |〈gλ, gλ′ 〉| will depend on the volume of the lattice, i.e., on the redundancy o
frame. The smaller the vol(Λ) the larger the maxλ �=λ′ |〈gλ, gλ′ 〉| is.

One of the main purposes of Gabor frames is to analyze the time–frequency behavior of functio
To that end one employs windowsg that are well localized in time and frequency. The Gaus
ϕσ (x) = (2/σ )1/4e−πσx2

, σ > 0, is optimally localized in the sense that it minimizes the Heisen
Uncertainty Principle. Therefore Gabor frames using Gaussian windows are of major importa
theory and applications. Our goal is to construct Grassmannian Gabor frames generated by Ga
Recall thatG(ϕσ ,Λ) is a Gabor frame forL2(R) whenever vol(Λ) < 1, see [22]. Thus in the notation o
Definition 3.3 we considerH = L2(R), U = {TxMy , x, y ∈Λ with vol(Λ)= ρ}, andΦ = {ϕσ | ϕσ (x)=
(2σ )1/4e−πx2/σ , σ > 0}. That means for fixed redundancyρ we want to findΛo among all latticesΛ with
vol(Λ)= ρ andϕoσ among all Gaussiansϕσ such that

max
λ �=λ′

∣∣〈(ϕσ )λ, (ϕσ )λ′
〉∣∣ (48)

is minimized.
Since ϕ̂σ = ϕ1/σ , we can restrict our analysis to Gaussians withσ = 1, as all other cases can

obtained by a proper dilation of the lattice. To simplify notation we writeϕ := ϕ1.
Since Tx and Mω are unitary operators there holds|〈gλ, gλ′ 〉| = |〈g, gλ′−λ〉| for any g ∈ L2(R).

Furthermore,|〈ϕ,ϕλ〉| is monotonically decreasing with increasing‖λ‖ (where‖λ‖ =√|x|2 + |ω|2 ) due
to the unimodality, symmetry, and Fourier invariance ofϕ. These observations imply that our proble
reduces to finding the latticeΛo of redundancyρ such that max|〈ϕ,ϕλ〉| is minimized where

λ ∈ {Le1,Le2, with e1 = [1,0]T , e2 = [0,1]T }. (49)

The ambiguity function off ∈ L2(R) is defined as

Af (t,ω)=
+∞∫

−∞
f

(
x + t

2

)
f

(
x − t

2

)
e−2πiωx dx. (50)

There holds|〈f,g〉|2 = |〈Af,Ag〉| for f,g ∈ L2(R). It follows from Proposition 4.76 in [16] thatAϕ
is rotation-invariant. FurthermoreAϕλ is rotation-invariant with respect to its “center”λ= (x,ω) which
follows from (4.7) and (4.20) in [22] and the rotation-invariance ofAϕ.

Next we need a result from sphere packing theory. Recall that in the classical sphere packing p
in R

d one tries to find the latticeΛo among all latticesΛ in R
d that solves

max

{
Volume of a sphere

}
. (51)
Λ vol(Λ)
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For a given latticeΛ the radiusr of such a sphere is

r = 1

2

(
max
λ,λ′∈Λ
λ �=λ′

{‖λ− λ′‖}). (52)

Hence solving (51) is equivalent to solving

min
Λ

{
max
λ,λ′∈Λ
λ �=λ

{‖λ− λ′‖}} subject to vol(Λ)= ρ (53)

for some arbitrary, but fixedρ > 0. Obviously the minimum has to be taken only over adjacent la
points.

Due to the rotation-invariance ofAϕ andAϕλ and sinceAϕ(x,ω) is monotonically decreasing wit
increasing(x,ω) we see that the solution of

min
Λ

max
λ as in (49)

{∣∣〈ϕ,ϕλ〉∣∣} subject to vol(Λ)= ρ (54)

is identical to the solution of (53). It is well known that the sphere packing problem (53) inR
2 is solved

by the hexagonal latticeΛhex, see [9]. Thus for given redundancyρ > 1 the Gabor frameG(ϕ,Λhex) is a
Grassmannian frame, where the generator matrix ofΛhex is given by

Lhex=



√
2

4√3
√
ρ

1
4√3

√
2ρ

0
4√3√
2ρ


 . (55)

Remark. (i) The above result can be generalized to higher dimensions, since the ambiguity fu
of a d-dimensional Gaussian is also rotation-invariant. Hence a Grassmannian Gabor fram
Gaussian window is always associated with the optimal lattice sphere packing inR

2d . However in higher
dimensions explicit solutions to the sphere packing problem are in general not known [9].

(ii) If we define the Gaussian with complex exponentσ = u+ iv with u > 0 (i.e., chirped Gaussian
in engineering terminology) then it is not hard to show that a properly chirped Gaussian associat
a rectangular lattice also yields a Grassmannian Gabor frame.

The Grassmannian Gabor frame constructed above has found application in wireless commun
in connection with so-called lattice orthogonal frequency division multiplex (OFDM) systems, see [
has been shown in [43] that Grassmannian Gabor frames can reduce the effect of interchannel inte
and intersymbol interference for time–frequency dispersive wireless channels.

4. Erasures, coding, and Grassmannian frames

Recently finite frames have been proposed for multiple description coding for erasure channels
20,21]. We consider the following setup. Let{fk}Nk=1 be a frame inEm. As in (6) and (7) we denote th
associated analysis and synthesis operator byT andT ∗, respectively. Letf ∈ E

m represent the data t
be transmitted. We computey = Tf ∈ E

N and sendy over the erasure channel. We denote the index
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that corresponds to the erased coefficients byE and the surviving coefficients are indexed by the setR.
Furthermore we define theN ×N erasure matrix Q via

Qkl =
{

0 if k �= l,
0 if k = l andk ∈ E ,
1 if k = l andk ∈R.

(56)

Let ε represent additive white Gaussian noise (AWGN) with zero mean and power spectral densσ 2.
The data vector arriving at the receiver can be written asỹ :=Qy + ε.

The frame{fk}Nk=1 is robust againste erasures, if{fk}k∈R is still a frame forEm for any index set
R⊂ {0, . . . ,N − 1} with |R| �N − e. In this case standard linear algebra implies thatf can be exactly
reconstructed from̃y in the absence of noise.6

In general, when we employ a minimum mean squared (MMSE) receiver we compute the
estimate

f̃ = (
T ∗
RTR + σ 2Im

)−1
T ∗
Rỹ, (57)

whereTR is the analysis operator of the frame{fk}k∈R. This involves the inversion of a possibly lar
matrix (no matter if noise is present or not) that can differ from one transmission to the next on
costs of an MMSE receiver may be prohibitive in time-critical applications. Therefore one often r
to a matched filter receiver which computes the estimate

f̃ = cT ∗ỹ, (58)

whereT is the analysis operator of the original frame{fk}Nk=1 and c > 0 is a scaling constant. Th
advantage of an MMSE receiver is the better error performance while a matched filter receiver
implemented at lower computational cost.

Robustness against the maximal number of erasures is not the only performance criterio
designing frames for coding. Since any transmission channel is subject to AWGN, it is imp
that the noise does not get amplified during the transmission process. Yet another criterion is
implementation of the receiver. It is therefore natural to assume{fk}Nk=1 to be a unit norm tight frame
since in case of no erasures (i) the MMSE receiver coincides with the matched filter receive
(ii) AWGN does not get amplified during transmission. See [38] for an analysis of MMSE rece
and unit norm tight frames (i.e., WBE sequences).

Our goal in this section is to design a unit norm tight frame such that the performance of a m
filter receiver is maximized in presence of an erasure channel. In other words the approximatio
‖f − f̃ ‖ is minimized, wheref̃ is computed via a matched filter receiver, i.e.,f̃ = m/NT ∗ỹ with
ỹ =Qy + ε.

We estimate the reconstruction error via

‖f − f̃ ‖ =
∥∥∥∥f − m

N
T ∗(QTf + ε)

∥∥∥∥ (59)

� m

N

∥∥T ∗Tf − T ∗QTf
∥∥+ m

N

∥∥T ∗ε
∥∥ (60)

� m

N

∥∥T ∗PT
∥∥

2‖f ‖ + σ, (61)

6 For instance, the so-called harmonic frames are robust against up toN −m erasures [21], which does not come as a surp
to those researchers who are familiar with Reed–Solomon codes or with the fundamental theorem of algebra.
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where we used the notationP = I − Q. SinceP is an orthogonal projection and therefore satis
PP ∗ = P there holds∥∥T ∗PT

∥∥
2 = ∥∥(PT )∗PT ∥∥2 = ∥∥PT (PT )∗∥∥2 = ∥∥PT T ∗P

∥∥
2. (62)

Hence we should design our tight unit norm frame{fk}k∈I such that‖PT T ∗P ‖2 is minimized, where
the minimum is taken over all matricesP = I −Q, withQ as defined in (56).

Recall thatT T ∗ = {〈fl, fk〉}k,l∈I , hencePT T ∗P = {〈fl, fk〉}k,l∈I0. Furthermore∥∥PT T ∗P
∥∥

2 �
√‖PT T ∗P ‖∞‖PT T ∗P ‖1 = max

k∈I0

∑
l∈I0

∣∣〈fk, fl〉∣∣. (63)

This suggests to look for frames for which maxk,l, k �=l |〈fk, fl〉| is minimized. In other words we shou
look for Grassmannian frames.

Remark. (i) In case of one erasure it has been shown in [21] (in case of unknownσ ) that unit norm tight
frames are optimal with respect to minimizing the influence of AWGN when using the MMSE rec
cf. also [14]. In case of one erasure unit norm tight frames also minimize the reconstruction erro
using a matched filter receiver.

(ii) Holmes and Paulsen have shown that Grassmannian frames are optimal with respect to u
erasures [27]. This can be easily seen by minimizing the operator norm of the matrixPT T ∗P , which in
this case reducesexactly to the problem of minimizing max|〈fk, fl〉| for all k, l with k �= l.

(iii) There is strong numerical evidence that the optimal Grassmannian frames of part
Corollary 2.6 are even optimal for three erasures (however this is not the case for the frames con
in part (a)).

(iv) Grassmannian frames are in general not robust againstN −m erasures ifN >m+ 2.

Example. We elaborate further an example given in [21], where the authors consider the des
multiple description coding frames{fk}Nk=1 in E

m with m = 3 andN = 7. As in [21, Examples 4.2
and 4.3] we consider an erasure channel with AWGN, but unknown noise level. Without knowledgσ
the reconstruction formula of the MMSE receiver simplifies tof̃ = (T ∗

RTR)
−1T ∗

Rỹ. Standard numerica
analysis tells us that the smaller the condition number ofT ∗

RTR the smaller the amplification of the nois
in the reconstruction [19]. We therefore compare the condition number of different unit norm tight f
for m= 3,N = 7 after up to four frame elements have been randomly removed.

We consider three types of unit norm tight frames. The first frame is an optimal complex-v
Grassmannian frame. Its vectorsf1, . . . , f7 are given by

fk := 1√
3

{
e2πikdj /7

}3
j=1, k = 1, . . . ,7, (64)

wheredj ∈ {0,1,5}, see also Section 2.1.2. The second frame is constructed by taking the firs
rows of a 7× 7 DFT matrix and using the columns of the resulting (normalized) 3× 7 matrix as frame
elements (this is also called a harmonic frame in [21]). The last frame is a randomly generated un
tight frame. Since all three frames are unit norm tight, they show identical performance for one r
erasure, the condition number of the frame operator in this case is constant 1.322. Since the fram
small size, we can easily compute the condition number for all possible combinations of two, thre
four erasures. We then calculate the maximal and mean average condition number for each frame
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Table 1
Comparison of mean average and maximal condition number of frame operator in case of two, three, and four random
We compare an optimal Grassmannian frame, a DFT-based unit norm tight frame, and a random unit norm tight fra
Grassmannian frame shows the best overall performance

2 erasures 3 erasures 4 erasures
Condition number mean max mean max mean m

Grassmannian frame 1.645 1.645 2.045 2.189 3.056 3.
DFT-submatrix frame 1.634 1.998 2.199 3.602 4.020 8.5
Random unit norm tight 1.638 1.861 2.095 3.792 3.570 12.

be seen from the results in Table 1 the optimal Grassmannian frame outperforms the other two
in all cases, except for the average condition number for two erasures, where its condition nu
slightly larger. This example demonstrates the potential of Grassmannian frames for multiple des
coding.
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[38] M. Rupf, J.L. Massey, Optimum sequence multisets for synchronous code-division multiple-access channels, IEE

Inform. Theory 40 (4) (1994) 1261–1266.
[39] D.V. Sarwate, Meeting the Welch bound with equality, in: Sequences and their Applications (Singapore, 1998), S

London, 1999, pp. 79–102.
[40] J.J. Seidel, A survey of two-graphs, in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I,

dei Convegni Lincei, Vol. 17, Accad. Naz. Lincei, Rome, 1976, pp. 481–511.
[41] J.J. Seidel, Definitions for spherical designs, J. Statist. Plann. Inference 95 (1–2) (2001) 307–313; special issue

combinatorics in honor of S.S. Shrikhande.
[42] T. Strohmer, Approximation of dual Gabor frames, window decay, and wireless communications, Appl. Comput

Anal. 11 (2) (2001) 243–262.
[43] T. Strohmer, S. Beaver, Optimal OFDM system design for time–frequency dispersive channels, IEEE Trans. Com

submitted.
[44] J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry, Nederl. Akad. Wetensch. Proc. Ser. A 69

335–348; Indag. Math. 28.
[45] P. Viswanath, V. Anantharam, D.N.C. Tse, Optimal sequences, power control, and user capacity of synchronou

systems with linear MMSE multiuser receivers, IEEE Trans. Inform. Theory 45 (6) (1999) 1968–1983.
[46] L.R. Welch, Lower bounds on the maximum cross-correlation of signals, IEEE Trans. Inform. Theory 20 (1974) 39
[47] W.K. Wootters, B.D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (2

363–381.


