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Abstract

For a given classF of unit norm frames of fixed redundancy we define a Grassmannian frame as one that
minimizes the maximal correlatiofdfi, f;)| among all frameg fi}rcz € F. We first analyze finite-dimensional
Grassmannian frames. Using links to packings in Grassmannian spaces and antipodal spherical codes we derive
bounds on the minimal achievable correlation for Grassmannian frames. These bounds yield a simple condition
under which Grassmannian frames coincide with unit norm tight frames. We exploit connections to graph theory,
equiangular line sets, and coding theory in order to derive explicit constructions of Grassmannian frames. Our find-
ings extend recent results on unit norm tight frames. We then introduce infinite-dimensional Grassmannian frames
and analyze their connection to unit norm tight frames for frames which are generated by group-like unitary sys-
tems. We derive an example of a Grassmannian Gabor frame by using connections to sphere packing theory. Finally
we discuss the application of Grassmannian frames to wireless communication and to multiple description coding.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Orthonormal bases are an ubiquitous and eminently powerful tool that pervades all areas of
mathematics. Sometimes, however, we find ourselves in a situation where a representation of a function or
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an operator by an overcomplete spanning system is preferable over the use of an orthonormal basis. One
reason for this may be that an orthonormal basis with the desired properties does not exist. A classical
example occurs in Gabor analysis, where the Balian—Low theorem tells us that orthonormal Gabor
bases with good time—frequency localization cannot exist, while it is not difficult to find overcomplete
Gabor systems with excellent time—frequency localization. Another important reason is the deliberate
introduction of redundancy for the purpose of error correction in coding theory.

When dealing with overcomplete spanning systems one is naturally lead to the corfcepies{11].
Recall that a sequence of functiof }.<z (Z is a countable index set) belonging to a separable Hilbert
spaceH is said to be drame for H if there exist positive constantsér@me bounds) A and B such that

AIFIBS Y[ O < BILIG (1)
ke
forevery f € H.
Even when there are good reasons to trade orthonormal bases for frames we still want to preserve
as many properties of orthonormal bases as possible. There are many equivalent conditions to define an
orthonormal basige; };c7 for H, such as

f=) (frede, VfeH, and |l =1, VkeT, (2
ke
or
{er}rez IS complete i and (e, ¢;) = Sk, 3)

wheres, ; denotes the Kronecker delta.

These two definitions suggest two ways to construct frames that are “as close as possible” to
orthonormal bases. Focusing on condition (2) we are naturally lead to unit norm tight frames, which
satisfy

f=%2<f, fofio VieH, and |fill2=1, VkeZ, 4)
ke
where A = B are the frame bounds. This class of frames has been frequently studied and is fairly well
understood [7,11,21,24,29].

As an alternative, as proposed in this paper, we focus on condition (3), which essentially states that the
elements of an orthonormal basis are perfectly uncorrelated. This suggests to search fof fiaraes
such that the maximal correlatian f;, f;)| for all k,1 € Z with k # 1, is as small as possible. This
idea will lead us to so-calle@Grassmannian frames, which are characterized by the property that the
frame elements have minimal cross-correlation among a given class of frames. The name “Grassmannian
frames” is motivated by the fact that in finite dimensions Grassmannian frames coincide with optimal
packings in certain Grassmannian spaces as we will see in Section 2.

Recent literature on finite-dimensional frames [7,14,21] indicates that the connection between finite
frames and areas such as spherical codes, algebraic geometry, graph theory, and sphere packings is
not well known in the “frame community”. This has led to a number of rediscoveries of classical
constructions and duplicate results. The concept of Grassmannian frames will allow us to make many
of these connections transparent.

The paper is organized as follows. In the remainder of this section we introduce some notation
used throughout the paper. In Section 2 we focus on finite Grassmannian frames. By utilizing a link
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to spherical codes and algebraic geometry we derive lower bounds on the minimal achievable correlation
between frame elements depending on the redundancy of the frame. We further show that optimal finite
Grassmannian frames which achieve this bound are also tight and certain unit norm tight frames are
also Grassmannian frames. We discuss related concepts arising in graph theory, algebraic geometry, and
coding theory and provide explicit constructions of finite Grassmannian frames. In Section 3 we extend
the concept of Grassmannian frames to infinite-dimensional Hilbert spaces and analyze the connection to
unit norm tight frames. We give an example of a Grassmannian frame arising in Gabor analysis. Finally,

in Section 4 we discuss applications in multiple description coding theory.

1.1. Notation

We introduce some notation and definitions used throughout the papdrfilletr be a frame for a
finite- or infinite-dimensional Hilbert spac¥. HereZ is an index set such &, N or {0, ..., N — 1}.
Theframe operator S associated with the framigf; }.c7 is defined by

Sf = _{f. f fe- (5)
kel

S is a positive definite, invertible operator that satisfiels< S < BI, wherel is the identity operator
onH. Theframe analysis operator T : H — £,(7) is given by

Tf:{<fv fk>}kEI’ (6)
and theframe synthesis operator is
T* :€o(T) > H: T{cher = Y cifi- (7
keZ
Any f € H can be expressed as
F= Uf fdhe=Y (f ) fi ®)
keZ keZ

where{/; )7 is thecanonical dual frame given byh, = S~ f.. If A = B the frame is calledight, in
which caseS = AI andh; = 1/Af,. The tight frame canonically associated{{}c; is S~ fi.

If || fc|l = 1 for all k then{ f; };cz is called aunit normframe. Here|| - | denotes thé,-norm of a vector
in the corresponding finite- or infinite-dimensional Hilbert spadeit normtight frames have many nice
properties which make them an important tool in theory [26,36] and in a variety of applications [15,21,
42 ,43]. Observe that {ff;}cc7 is a unit norm frame, thepS—%? f, )7 is a tight frame, but in general no
longer of unit norm type!

We call a unit norm framéf; }.cz equiangular if

[(fe. f)|=c forallk,lwithk #1, ©)
for some constant > 0. Obviously any orthonormal basis is equiangular.

2. Finite Grassmannian frames, spherical codes, and equiangular lines

In this section we concentrate on framigg}_; for E™ whereE = R or C. As mentioned in the
introduction we want to construct framég;}"_; such that the maximal correlatidrf;, f;)| for all
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k,l € T with k #1, is as small as possible. If we do not impose any other conditions on the frame we
can setV = m and take{ f;}1_, to be an orthonormal basis. But if we want to go beyond this trivial case
and assume that the frame is indeed overcomplete then the correlgiior;)| will strongly depend on

the redundancy of the frame, which can be thought of as a “measure of overcompleteness”. Clearly, the
smaller the redundancy the smaller we expéft, fi)| to be. INE™ the redundancy of a frame{ f;}1_,

is defined byp = N/m.

Definition 2.1. For a given unit norm framégf;}Y_, in E™ we define themaximal frame correlation
M fihily) by

M({fikela) = max{|(fe, fi)]}- (10)

kL kAl

The restriction to unit norm frames in the definition above is just for convenience, alternatively we
could consider general frames and normalize the inner product in (10) by the norm of the frame elements.
Hence without loss of generality we can assume throughout this section that all frames are unit norm.

Definition 2.2. A sequence of vectors, }»_, in E™ is called aGrassmannian frameif it is the solution to

min {M({fi}iZ1) }- (11)

where the minimum is taken over all unit norm franigg}y_, in E™.

In other words a Grassmannian frame minimizes the maximal correlation between frame elements
among all unit norm frames which have the same redundancy. Obviously the minimum in (11) depends
only on the parameter¥ andm.

A trivial example for Grassmannian framesH# is to take the:th roots of unity as frame elements.

All the frames generated in this way are unit norm tight, however, only:fer2 andn = 3 we get
equiangular frames. Far= 2 we obtain an orthonormal basis and foe 3 we obtain the well-known
tight frame appearing in [11, Chapter 3].

Two problems arise naturally when studying finite Grassmannian frames:

Problem 1. Can we derive bounds okt ({ fi}i_,) for given N andm?

Problem 2. How can we construct Grassmannian frames?

The following theorem provides an exhaustive answer to Problem 1. The theorem is new in frame
theory but actually it only unifies and summarizes results from various quite different research areas.

Theorem 2.3. Let { i}, be aframe for E™. Then

| N —
M({fk}ﬁ:1)> m(Ni—ml) (12)

Equality holdsin (12) if and only if

{fi}i_, isan equiangular tight frame. (13)
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Furthermore,
1
if E = R equality in (12) can only hold if N < % (14)
if E = C then equality in (12) can only hold if N < m?. (15)

Proof. A proof of the bound (12) can be found in [37,46]. It also follows from Lemma 6.1 in [44].
One way to derive (12) is to consider the nonzero eigenvalyes.., A, of the Gram matrixR =
{{fx, ﬁ)},’c",lzl. These eigenvalues satisyy;._, 1, = N and also

N N 5 N2
D=3 |t il > —. (16)

see [37,44]. The bound follows now by taking the maximum ovel @l f;)| in (16) and observing that
there areV (N — 1)/2 different pairs(f;, f;) fork,l1=1,..., N with k #1.

Equality in (12) implies\, = --- = A,, = N/m, which in turn implies tightness of the frame, and also
I fe, fi)]>= (N —m)/m(N — 1) for all k, [ with k # [ which yields the equiangularity (cf. also [8,37]).
Finally the bounds ow in (14), (15) follow from the bounds in Table Il of [12].0

As mentioned in passing in the proof unit norm tight frames meet the bound (16) with equality. We calll
unit norm frames that meet the bound (12) with equadittimal Grassmannian frames. The following
corollary will be instrumental in the construction of a variety of optimal Grassmannian frames.

Corollary 2.4. Let m, N € Nwith N > m. Assume R isa Hermitian N x N matrix with entries R; , =1
and

+/(N —m)/m(N —1), Iif E=R,
Ry = . (17)
' +i/(N —m)/m(N —1), ifE=C,
for k,i=1...,N, k#1. If theeigenvalues A1,...,Ay Of R aresuchthat Ay =---=4,, = N/m and

Ami1=---= Ay = 0, then there exists a frame {fk}{f:1 in [E™ that achieves the bound (12).

Proof. SinceR is Hermitian it has a spectral factorization of the foRm= W AW*, where the columns
of W are the eigenvectors and the diagonal mattixontains the eigenvalues &. Without loss of
generality we can assume that the nonzero eigenvalugsaoé contained in the firgt diagonal entries
of A. Set fy := /N/m{Wy,}j», for k =1,..., N. By construction we havéf, f;) = R, x, hence
{f}_, is equiangular. Obviouslff,}2_; is tight, since all nonzero eigenvaluesifre identical. Hence
by Theorem 2.3 fi}1_, achieves the bound (12).00

On the first glance Corollary 2.4 does not seem to make the problem of constructing optimal
Grassmannian frames much easier. However by using a link to graph theory and spherical designs we will
be able to derive many explicit constructions of matrices having the properties outlined in Corollary 2.4.

While the concept of Grassmannian frames is new in frame theory there are a number of related
concepts in other areas of mathematics. Thus it is time to take a quick journey through these areas which
will take us from Grassmannian spaces to spherical designs to coding theory.
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Packings in Grassmannian spaces

The Grassmannian space G(m, n) is the set of alk-dimensional subspaces of the sp&ce (usually
the Grassmannian space is definedRoonly, although many problems can be analogously formulated
for the complex space}i(m, n) is a homogeneous space isomorphicxon)/(O(n) x O(@m — n)), it
forms a compact Riemannian manifold of dimensigm — n).

The Grassmannian packing problem is the problem of finding the best packing 8fn-dimensional
subspaces ift”, such that the angle between any two of these subspaces becomes as large as possible
[6,8]. In other words, we want to fin@ points inG(m, n) so that the minimal distance between any
two of them is as large as possible. For our purposes we can concentrate on the=cas&hus the
subspaces are (real or complex) lines through the origitf'iand the goal is to arrange lines such that
the angle between any two of the lines becomes as large as possible. Since maximizing the angle between
lines is equivalent to minimizing the modulus of the inner product of the unit vectors generating these
lines, it is obvious that finding optimal packingsdtim, 1) is equivalent to finding finite Grassmannian
frames (which also motivated the name for this class of frames).

By embedding the Grassmannian sp&de:, n) into a sphere of radiug/n(m — n)/m in R with
d=m+ 1m/2 — 1, Conway, Hardin, and Sloane are able to apply bounds from spherical codes due
to Rankin [35] to derive bounds on the maximal angle betw¥esubspaces ig(n, m) (see the very
inspiring paper [8]). For the cage= 1 the bound coincides of course with (12).

Soherical codes
A spherical code S(m, N, s) is a set ofN points (code words) on the-dimensional unit sphere,,,
such that the inner product between any two code words is smalles tlthn9]. By placing the points
on the sphere as far as possible from each other one attempts to minimize the risk of decoding errors.
Antipodal spherical codes are spherical codes which contain with each code wordlso the code
word —w. Clearly, the construction of antipodal spherical codes whégaoints are as far from each
other as possible is closely related to constructing Grassmannian frames.
In coding theory the inequality at the right-hand side of (16) is knowv&sh bound, cf. [46]. Since
unit norm tight frames meet (16) with equality, i.e.,

N 2
Y P =2

N
k=1 1=1
unit norm tight frames are known asklch bound equality (WBE) sequences in coding thedry.
Inequality (16) and the fact that it is met by unit norm tight frames has recently been rediscovered in [3].
WBE sequences have gained new popularity in connection with the construction of spreading sequences
for Code-Division Multiple-Access (CDMA) systems [25,39,45]. WBE sequences that meet (12) with
equality are called maximum WBE (MWBE) sequences [39,46]. While Welch (among other authors)
derived the bound (12) he did not give an explicit construction of MWBE sequences.

2 The authors of [45] incorrectly call WBE sequences tight frames.
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Soherical designs
A spherical t-design® is a finite subseX of the unit sphere?,, in R”, such that

XYk = [ heodu ), (18)

xeX O

for all homogeneous polynomials € Hom,(R™) of total degreer in m variables, see, e.g., [41].

A spherical design measures certain regularity properties of&etsthe unit sphere2,,. Another way

to define a sphericaldesign is by requiring that, fdr=0, ..., t thekth moments o are constant with

respect to orthogonal transformationsisf. Here are a few characterizations of spheriedésigns that

make the connection to the aforementioned areas transparent. For details about the following examples
we refer to [13]. Let the cardinality of be N. X is a spherical 1-design if and only if the Gram matrix

R(X) of the vectors ofX has vanishing row sum« is a spherical 2-design if it is a spherical 1-design

and the Gram matrixR (X) has only two different eigenvalues, nameély m with multiplicity m, and O

with multiplicity N —m. An antipodal spherical code @B, is a 3-design if and only if the Gram matrix

of the corresponding set of vectors has two eigenvalues.

Equiangular line sets and equilateral point sets

In [12,33] Seidel et al. consider sets of linesiifi and inC™ having a prescribed number of angles.
They derive upper bounds on the number of lines in the case of one, two, and three prescribed angles (in
the latter case, one of the angles is assumed to be zero). Most interesting are those line sets that actually
meet the upper bound. In [44] van Lint and Seidel consider a similar problem in elliptic geometry. Since
the unit sphere ilR” serves as model for th@: — 1)-dimensional elliptic spacE™~* where any elliptic
point is represented by a pair of antipodal point®&#h the construction of equilateral point sets in elliptic
geometry is of course equivalent to the construction of equiangular lines sets in Euclidean geometry.
Recall that optimal Grassmannian frames are equiangular, hence the search for equiangular line sets is
closely related to the search for optimal Grassmannian frames.

Characterization of strongly regular graphs
Graphs with a lot of structure and symmetry play a central role in graph theory. Different kinds of
matrices are used to represent a graph, such as the Laplace matrix or adjacency matrices [4]. What
structural properties can be derived from the eigenvalues depends on the specific matrix that is used. The
Seidel adjacency matrik of a graphI” is given by
—1 ifthe verticesy, y € I" are adjacent,
A,,=1{1 ifthe verticest, y € I' are nonadjacent, (29)
0 ifx=y.
If A has only very few different eigenvalues then the graph is (strongly) regular, cf. [4]. The connection
to Grassmannian frameg;}?’_, that achieve the bound (12) is as follows. Assume that the associated
Gram matrixR = {{ fz, f,)}{lel has entrieste and 1 at the diagonal. Then

A= E(R ) (20)
o

is the adjacency matrix of a regular two-graph [40]. We will make use of this relation in the next section.

3 A spherical ¢-design should not be confused with an “ordinarydesign.
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2.1. Construction of Grassmannian frames

In this section we present explicit constructions for optimal finite Grassmannian frames. Note that
optimal Grassmannian frames do not exist for all choices and N (assuming of course thaf does
not exceedm + 1)m/2 or m?, respectively). For instance, there are no 5 vectorR3with maximal
correlation ¥+/6. In fact, although the 5 vectors &® that minimize (11) are equiangular, the maximal
inner product is 1./5 (but not 7/6), see [8]. However, there exists an optimal Grassmannian frame
consisting of six vectors. The frame elements correspond to the (antipodal) vertices of the ico$ahedron
and the maximal correlation achieves indeed the optimal valués1We refer to [8] for details about
some of these and other examples. On the other hand the 7 vecRitshat minimize (11) yield a unit
norm tight frame, but not an equiangular one (which should not come as a surprise since th&/chdice
exceeds the bounty < m(m + 1)/2). Note that forC® we can indeed construct 7 lines that achieve the
bound (12), see Section 2.1.2.

2.1.1. Grassmannian frames and conference matrices
In this section we present explicit constructions of Grassmannian frames with low redundancy. We
begin with a simple corollary of Theorem 2.3.

Corollary 25. LeeE=Ror Cand N =m + 1. Then { f;})_; isan optimal Grassmannian frame for E™
if and only if it isa unit norm tight frame.

Proof. An optimal Grassmannian frang}y_; with N =m + 1 can be easily constructed by taking
the vectors to be the vertices of a regular simpleiih cf. [8]. Thus by Theorem 2.8f,}%_; is a unit
norm tight frame. On the other hand it was shown in [21] that all unit norm tight framesNvithm + 1
are equivalent under multiplication of, by o,U, whereU is a unitary matrix andr, = +1. Since
this equivalence relation preserves inner products it follows that any unit norm tight fraie, with

N =m + 1 achieves the bound (12).0

A unit norm tight frame{ f;}_, with N = m + 1 also provides a spherical 1-design, which can be seen
as follows. WhenV = m + 1 we can always multiply the elements{gf})_, by &1 such that the Gram
matrix R has 1 as its main diagonal entries antl/m elsewhere. Hence the row sumspfanish and
therefore{ f;}1_, constitutes a spherical 1-design. It is obvious that the Seidel adjacency matfia
graph which is constructed from a regular simplex Ags= 0 andA;, = —1 for k # [, which illustrates
nicely the relationship betweeftandR as stated in (19).

The following construction has been proposed in [8,32].7AR n conference matrix C has zeros
along its main diagonal antt1 as its other entries, and satisf@€™ = (n — 1)1, see [32]. Conference
matrices play an important role in graph theory [40IC}, is a symmetric conference matrix, then there
exist 2n vectors inR™ such that the bound (12) holds with(({ f;}2",). If Ca, is a skew-symmetric
conference matrix (i.e = —CT), then there exist/2 vectors inC” such that the bound (12) holds
with M({ fi}2",), see [12, Example 5.8]. The link between the existence of a (real or complex) optimal
Grassmannian frame and the existence of a corresponding conference @gatdan be easily as seen

4 The Grassmannian frame consisting of five vectors is constructed by removing an arbitrary element of the optimal
Grassmannian frame consisting of six vectors.
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as follows. Assume thdtf;}_, achieves (12) and denote:= 1/./2m — 1. We first consider the case
E = R. Clearly the entries of then2 x 2m Gram matrixR = {{ f, f,)},’(‘f,:l areR;; =+« for k #1 and
Rk,k =1. Hence

1
C:==(R-1) (21)
o
is a symmetric conference matrix. HBr= C we assume thaR; ; = ti« for k A2/ andR; , = 1. Then
1
C:=—(R-1 (22)
140%

is a skew-symmetric conference matrix.
The derivations above lead to the following.

Corollary 2.6. (a)Let N = 2m, with N = p* + 1 where p isan odd prime number and « € N. Then there
exists an optimal Grassmannian frame in R” which can be constructed explicitly.

(b) Let N = 2m, with m = 2* with « € N. Then there exists an optimal Grassmannian frame in C™
which can be constructed explicitly.

Proof. Paley has shown that ¥ = p* + 1 with p anda as stated above, then there exists a symmetric

N x N conference matrix. Moreover, this matrix can be constructed explicitly, see [18,34]. For the case
N = 2m = 2**1 a skew-symmetric conference matrix can be constructed by the following recursion:
Initialize

0 -1
Co= [ 1 0 } , (23)
and compute recursively
C'm C'm - Im
Com = [ C,+1, —C, ] ; (24)

then it is easy to see théy,, is a skew-symmetric conference matrix.
An application of Corollary 2.4 to both, the symmetric and the skew-symmetric conference matrix,
respectively, completes the proofO

Hence, for instance, there exist 50 equiangular lineR%A with angle arccodl/+/49) and 128
equiangular lines irC% with angle arccod/+/127). The construction in (23), (24) is reminiscent of
the construction of Hadamard matrices. Inde@g+ I,, is a skew-symmetric Hadamard matrix.

These constructions yield Grassmannian frames with modest redundancy, in the next two subsections
we consider Grassmannian frames with considerably larger redundancy.

2.1.2. Harmonic Grassmannian frames
The elements of a harmonic tight frarhg }1_; for C™ are given by

m

fe= {w;(}lzl’ (25)

where thew, are distinct Nth roots of unity. Since harmonic tight frames have a number of nice
properties [7,21], it is natural to ask if there exist harmonic Grassmannian frames (beyond the trivial
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casesNV =m andN = m+1). The following example derived by Kdnig [30] in connection with spherical
designs provides an affirmative and constructive answer to this question.

Let p be a prime number and sat= p' + 1 for/ € N andN =m? — m + 1. Then there exist integers
0<di <---<d, < N such that all numbers,1.., N — 1 occur as residues mad of then(n — 1)
differencesd; —d;,i # j. Fork =1,..., N we define

e i rrikd,-/N}m
fe ._{ ﬁez = (26)

It follows immediately from Proposition 4 in [30] that the functiofig}?_, form a harmonic tight
Grassmannian frame witht({ fi }_,) = v/m — 1/m.

2.1.3. Nearly optimal Grassmannian frames

Theorem 2.3 gives an upper bound on the cardinality of optimal Grassmannian frames. If the
redundancy of a frame is too large then equality in (12) cannot be achieved. But it is possible to design
Grassmannian frames whose cardinality slightly exceeds the bounds in Theorem 2.3, while their maximal
correlation is close to the optimal value. For instance, forrary p* wherep is a prime and € N there
exist frames{fk},’{":l in C™ where N = m? + 1, with maximal correlationM = 1//m. In fact, these
nearly optimal Grassmannian frames are unions of orthonormal bases (and thus form a unit norm tight
frame). The modulus of the inner products between frame elements takes on only the valueg@and 1
We refer to [5,47] for details about these amazing constructions. They find an important application in
quantum physics [47] as well as in the design of spreading sequences for CDMA [25].

Example. Here is an example of a finite Gabor frame that is a nearly optimal Grassmannian frame in
H = C™ (see [15,22] for generalities about finite and infinite Gabor frames)mlLié a prime number
>5and seg(n) = € /m forn =0, ...,m — 1. Then the frame{zgk,,}ij:lo, where

gei(n) =gn —k)emmm  k1=0,...,m-1, (27)

satisfies|(g.;, gw.r)| € {0, 1//m} for all g;; # g, which follows from basic properties of Gaussian
sums (cf. [31] and [1, Theorem 2]). Hend‘el({gk,l};’f;:lo) = 1//m while (12) yields ¥+v/m + 1 as
theoretically optimal value. It can be shown that we can add the standard orthonormal basis to the frame
{gk,,};’f;:lo without changing the maximal frame correlatiof\m.

3. Infinite-dimensional Grassmannian frames

In this section we extend the concept of Grassmannian frames to f{gi)gs, in separable infinite-
dimensional Hilbert spaces. As already pointed out in Section 2 the maximal correlgiion)| of the
frame elements will depend crucially on the redundancy of the frame. While it is clear how to define
redundancy for finite frames, it is less obvious for infinite-dimensional frames.

The following appealing definition is due to Balan and Landau [2].
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Definition 3.1. Let { fi}72, be a frame fofH. The redundancy of the frame{ f;}72 ; is defined as

K -1
p = <K|Im i Z(‘fk’ N fk>> , (28)

k=1

provided that the limit exists.

Using the concept of ultrafilters Balan and Landau have derived a more general definition of
redundancy of frames, which coincides of course with the definition above whenever the limit in (28)
exists [2]. In this paper we will restrict ourselves to the definition of redundancy as stated in (28) since it
is sufficiently general for our purposes.

Remark. We briefly verify that the definition of frame redundancy by Balan and Landau coincides with
our usual understanding of redundancy in some important special cases:

(i) Let{fi}¥_, be afinite frame for am-dimensional Hilbert spack™. Let P : H" — H™ denote the
associated projection matrix with entri®s; = ( fi, S~ f;). We compute

N 1
N N N
( ; fi S° fk) ~ tracgP) rankP) m’ (29)

which coincides with the usual definition of redundancy in finite dimensions.
(i)) Let {gm.nlmnecz, Whereg, ,(x) = g(x — ma)e 2"">* be a Gabor frame foL.?(R) with time- and
frequency-shift parametets b > 0. We have from [28] that

(gm,n, Silg,,,,n) = (g, S*lg> =ab, foralm,ncZ, (30)

hencep = 1/(ab) as expected.

(i) Assume{ fi}iez is @ unit norm tight frame. Thenf;, S~ fi) = 1/A and thereforeo = A, which
agrees with the intuitive expectation that for unit norm tight frames the frame bound measures the
redundancy of the frame [11].

We need two more definitions before we can introduce the concept of Grassmannian frames in infinite
dimensions. In this sectioK denotes a separable infinite-dimensional Hilbert space.

Definition 3.2 [10]. A unitary system I/ is a countable set of unitary operators containing the identity
operator and acting oH.

Definition 3.3. Let/ be a unitary system andl be a class of functions fdt with || f|| =1 for f € @.
We denote byF(H, U, @) the family of frameq f; }ez for H of fixed redundancy, such that

fe=Ukfo, foe®@, Ucel, kel. (31)
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We say that{g, ez € F(H, U, @) is a Grassmannian frame with respect&dH, U, @) if it is the
solution of°

min ( max {\(fk,f,)|}) (32)

{(fidlkez€F(HU, @) \k,I€T; k#l

for given p.

In the definition above we have deliberately chogesuch that it does not necessarily have to coincide
with all functions inL2(H). The reason is that in many applications one is interested in designing frames
using only a specific class of functions.

In finite dimensions we derived conditions under which Grassmannian frames are also unit norm tight
frames. Such a nice and simple relationship does not exist in infinite dimensions. However, in many cases
it is possible to construct a unit norm tight frame whose maximal frame correlation is close to that of a
Grassmannian frame as we will see in the next theorem.

The following definition is due to Gabardo and Han [17].

Definition 3.4. Let T denote the circle group. A unitary systéiris calledgroup-like if

groupf) CTU :={tU: teT, U elU}, (33)
and if differentU, V e U are always linearly independent, where gr@épdenotes the group generated
by U.

Theorem 3.5. Let F(H, U, ®) be given, where U/ is a group-like unitary system. For given redundancy
o assume that {¢; }iez is a Grassmannian frame for F(H, U, @) with frame bounds A, B. Then there
exists a unit normtight frame {h; }rez With by = U hg, U, € U, such that

- 2] - 2] -
A B
Proof. Let S be the frame operator associated with the Grassmannian {kaher. We define the tight

frame {hy iz Via by := /pS~2p,. Sinceld is a group-like unitary system it follows from (31) above
and Theorem 1.2 in [24] that

(0. S™ o) = (Urgo, S~ Ureo) = (Uro, Uk S~ 00) = (w0, S~ ¢00), (35)

’

max_ [t )| < | max . 1) | +2max
kIeT; karéll< ¢ l>‘ = kel k;éz“(pk 901>| {

and

h = /0 S Y20 = /b STV2Urpo = /P Ur S~ g0 (36)
Using Definition 3.1 and (35), we gép:, S~1¢i) = 1/p and therefore

hill? = p(S™ 21, ST 20) = plow, S i) =1, VkeT. (37)

Hence{h,}rez is a unit norm tight frame.

S For a frame{ fi } <7 there always exists mas; {|( k. fi)

}, otherwise the upper frame bound could not be finite.
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We compute

(o, @) | = [(hies ) || < (e 1) — (B, )| (38)
<o, @1 — h)| + |(ox — e, i) (39)
< il e — Al + 17l T — heell, (40)

where we have used the triangle inequality and the Cauchy—Schwarz inequality. Note that
lor = hill = o — /o S0 (41)
<|(1-vp S‘l/z) [el (42)
< max{ \/7 ‘} (43)

Hence
P P

||<<pk,<pz>|—|<hk,hl>||<2max{1— < 1—\/; } (44)

and therefore

pEE e

Remark. (i) Although the canonical tight frame functioly, does not have to belong @, it is “as
close as possible” to the functigm € @. Indeed, under the assumptions of Theorem 3.5 the (scaled)
canonical tight frameh, } .z generated byto = /o S~2¢po minimizes|| fo — ol @among all tight frames
{fileez In F(H, U, Lo(H)) (in fact among all possible tight frames), cf. [24] and for the case of Gabor
frames [29]. However it is in general not true that }..7 also minimizes the maximal frame correlation
max.; |{ fx, f1)] among all tight frames f; },cz. For instance, numerical inspection shows that the tight
Gabor frame constructed from the function proposed in [23] (a particular linear combination of Hermite
functions) yields a smaller maximal frame correlation than the tight frame canonically associated to the
Gaussian.

(ii) If the Grassmannian framgf; }c<z is already tight, then the frame bounds satigfy=- B = p and
the second term in the right-hand side of (34) vanishes, as expected.

(iif) Frames that satisfy the assumptions of Theorem 3.5 include shift-invariant frames, Gabor frames,
and so-called geometrically uniform frames (see [14] for the latter).

max |[(he, h)| < max [{gr, ¢1) |+2max{
k,leZ; k#l kleZ; k#l

3.1. Anexample: Grassmannian Gabor frames

In this section we derive Grassmannian framesLf(R). We consider Gabor frames ih%(R)
generated by general lattices.

Before we proceed we need some preparation. A5or € R we define the unitary operators of
translation and modulation by, f(t) = f(t — x), and M,, f (t) = €™ £(¢), respectively. Given a
function f € L?(R) we denote the time—frequency shifted functign, by

frw(t) =€ f(t —x). (46)
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A lattice A of R? is a discrete subgroup with compact quotient. Any lattice is determined by its (non-
unique) generator matrik € GL(2, R) via A = LZ?. The volume of the latticet is vol(A) = det(L).

For a function (window)g € L2(R) and a latticeA in the time—frequency plane R? we define the
corresponding Gabor systefiig, A) by

G(g. A ={M,Tg. (x,w) € A}. (47)

Settings = (x, w) we denoteg, = M, T.g. If G(g, A) is a frame forL?(R) we call it a Gabor frame.

As in remark (ii) below Definition 3.1 we conclude that the redundancg @f, A) is p = 1/vol(A).

A necessary but by no means sufficient conditiongdgg, A) to be a frame is vald) < 1, cf. [22]. It

is clear that max, [(g,, g»)| will depend on the volume of the lattice, i.e., on the redundancy of the
frame. The smaller the vatt) the larger the max., (g, gx)| is.

One of the main purposes of Gabor frames is to analyze the time—frequency behavior of functions [15].
To that end one employs windows that are well localized in time and frequency. The Gaussian
0o (x) = (2/0)V4e 0% 5 = 0, is optimally localized in the sense that it minimizes the Heisenberg
Uncertainty Principle. Therefore Gabor frames using Gaussian windows are of major importance in
theory and applications. Our goal is to construct Grassmannian Gabor frames generated by Gaussians.
Recall thatG (¢, , A) is a Gabor frame foL?(R) whenever valA) < 1, see [22]. Thus in the notation of
Definition 3.3 we considet! = L*(R), U = {T. M,, x, y € A with vol(A) = p}, and® = {g, | @, (x) =
(20)V4e™%0 5 > 0}. That means for fixed redundangywe want to findA° among all latticesA with
vol(A) = p andg? among all Gaussiang, such that

@?ﬁ((@g)x, (¢U)A/>| (48)

is minimized.

Since ¢, = ¢1/,, We can restrict our analysis to Gaussians with= 1, as all other cases can be
obtained by a proper dilation of the lattice. To simplify notation we wpite= ¢;.

Since T, and M,, are unitary operators there holdi&;, g./)| = |(g, gv_;)| for any g € L%(R).
Furthermore|(g, ¢, )| is monotonically decreasing with increasii]| (where||A|| = /|x|%2 + |w|?) due
to the unimodality, symmetry, and Fourier invariancepofThese observations imply that our problem
reduces to finding the lattica® of redundancy such that make, ¢; )| is minimized where

re{Le, Ley, with ey =[1,0]", e =[0,1]"}. (49)
The ambiguity function off € L2(R) is defined as

+oo -
Af(t, ) = / f(x + %)f(x - %)ezﬂiwx dr. (50)
There holds|(f, g)|> = |(Af, Ag)| for f, g € L?(R). It follows from Proposition 4.76 in [16] thatip
is rotation-invariant. Furthermorég; is rotation-invariant with respect to its “centet”= (x, w) which
follows from (4.7) and (4.20) in [22] and the rotation-invarianceAgf.
Next we need a result from sphere packing theory. Recall that in the classical sphere packing problem
in R one tries to find the latticel® among all latticesA in R that solves

{ Volume of a spherT
max
A vol(A)

(51)
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For a given latticeA the radius- of such a sphere is

1 /7
r=5( max fia—21}). (52)
AN

Hence solving (51) is equivalent to solving

min{ max {||A — )J||}} subject to volA) = p (53)
A A,}\A;ée}\A

for some arbitrary, but fixeg > 0. Obviously the minimum has to be taken only over adjacent lattice
points.
Due to the rotation-invariance ofp and Ag, and sinced¢(x, w) is monotonically decreasing with
increasing(x, w) we see that the solution of
min ma subject to volA) = 54

i Aasmg;g){l(wxm)l} ubj volA) = p (54)
is identical to the solution of (53). It is well known that the sphere packing problem (33} is solved
by the hexagonal latticd ey, See [9]. Thus for given redundangy> 1 the Gabor fram€ (¢, Aney) iS a
Grassmannian frame, where the generator matrixf is given by

4«/z 4l

Liex=| Y07 V52| (55)
0 3
V2p

Remark. (i) The above result can be generalized to higher dimensions, since the ambiguity function
of a d-dimensional Gaussian is also rotation-invariant. Hence a Grassmannian Gabor frame with
Gaussian window is always associated with the optimal lattice sphere packiig.idowever in higher
dimensions explicit solutions to the sphere packing problem are in general not known [9].

(i) If we define the Gaussian with complex exponent u + iv with u > 0 (i.e., chirped Gaussians
in engineering terminology) then it is not hard to show that a properly chirped Gaussian associated with
a rectangular lattice also yields a Grassmannian Gabor frame.

The Grassmannian Gabor frame constructed above has found application in wireless communications
in connection with so-called lattice orthogonal frequency division multiplex (OFDM) systems, see [43]. It
has been shown in [43] that Grassmannian Gabor frames can reduce the effect of interchannel interference
and intersymbol interference for time—frequency dispersive wireless channels.

4, Erasures, coding, and Grassmannian frames

Recently finite frames have been proposed for multiple description coding for erasure channels, see [7,
20,21]. We consider the following setup. Lgh}Y_, be a frame ifE™. As in (6) and (7) we denote the
associated analysis and synthesis operatdfF land 7*, respectively. Letf € E” represent the data to
be transmitted. We compute= T f € EY and sendy over the erasure channel. We denote the index set
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that corresponds to the erased coefficient€ land the surviving coefficients are indexed by the7get
Furthermore we define thg x N erasure matrix Q via
0 ifk#l,
Qu=10 ifk=landkeé, (56)
1 ifk=IlandkeR.

Let ¢ represent additive white Gaussian noise (AWGN) with zero mean and power spectral eéénsity
The data vector arriving at the receiver can be writtefi as Qy + «.

The frame{fk} "_, is robust against erasures, iff fi}rer is still a frame forE” for any index set
Rc{0,...,N—1}with |R| > N — e. In this case standard linear algebra implies thaan be exactly
reconstructed fron§ in the absence of noige.

In general, when we employ a minimum mean squared (MMSE) receiver we compute the (soft)
estimate

= " .
f=(TRTr +0%L,)  Tx7, (57)

where Ty is the analysis operator of the framig }.cr. This involves the inversion of a possibly large

matrix (no matter if noise is present or not) that can differ from one transmission to the next one. The

costs of an MMSE receiver may be prohibitive in time-critical applications. Therefore one often resorts
to a matched filter receiver which computes the estimate

f=cT*3, (58)
where T is the analysis operator of the original frarfi};_, andc > O is a scaling constant. The
advantage of an MMSE receiver is the better error performance while a matched filter receiver can be
implemented at lower computational cost.

Robustness against the maximal number of erasures is not the only performance criterion when
designing frames for coding. Since any transmission channel is subject to AWGN, it is important
that the noise does not get amplified during the transmission process. Yet another criterion is ease of
implementation of the receiver. It is therefore natural to ass{fng’_; to be a unit norm tight frame,
since in case of no erasures (i) the MMSE receiver coincides with the matched filter receiver, and
(ii) AWGN does not get amplified during transmission. See [38] for an analysis of MMSE receivers
and unit norm tight frames (i.e., WBE sequences).

Our goal in this section is to design a unit norm tight frame such that the performance of a matched
filter receiver is maximized in presence of an erasure channel. In other words the approximation error
If — fI is minimized, wheref is computed via a matched filter receiver, i.€.= m/NT*5 with

y=0y+e.
We estimate the reconstruction error via

I1f = fi= “f—%T*(QTfH) (59)
m * * ﬂ *

SylTTf -1 0rf | + [T (60)

<SITPT[,1f 1 +o. (61)

6 For instance, the so-called harmonic frames are robust againsiup to erasures [21], which does not come as a surprise
to those researchers who are familiar with Reed—Solomon codes or with the fundamental theorem of algebra.
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where we used the notatioR = I — Q. Since P is an orthogonal projection and therefore satisfies
P P* = P there holds

|7*PT|,=|(PT)*PT|,=|PT(PT)*||,=|PTT*P|,. (62)

Hence we should design our tight unit norm frafn@},cz such that| PTT*P||, is minimized, where
the minimum is taken over all matricds= I — Q, with Q as defined in (56).
Recall thatl' T* = {( fi, fi)}k.iez, hencePTT*P = {(f, f)}k.ie1,- FUrthermore

|PTT*P|, < VIPTT*Plloo| PTT*P|ly = ?;%xz [(fe, 1) (63)

0 ZGIO

This suggests to look for frames for which maX..; [( fi, fi)| is minimized. In other words we should
look for Grassmannian frames.

Remark. (i) In case of one erasure it has been shown in [21] (in case of unkadwmat unit norm tight
frames are optimal with respect to minimizing the influence of AWGN when using the MMSE receiver,
cf. also [14]. In case of one erasure unit norm tight frames also minimize the reconstruction error when
using a matched filter receiver.

(i) Holmes and Paulsen have shown that Grassmannian frames are optimal with respect to up to two
erasures [27]. This can be easily seen by minimizing the operator norm of the m&¥ix P, which in
this case reducesxactly to the problem of minimizing maX f;, f;)| for all k, I with k #1.

(i) There is strong numerical evidence that the optimal Grassmannian frames of part (b) in
Corollary 2.6 are even optimal for three erasures (however this is not the case for the frames constructed
in part (a)).

(iv) Grassmannian frames are in general not robust againstn erasures itV > m + 2.

Example. We elaborate further an example given in [21], where the authors consider the design of
multiple description coding framefsf;}?_, in E™ with m =3 and N = 7. As in [21, Examples 4.2
and 4.3] we consider an erasure channel with AWGN, but unknown noise level. Without knowlegge of
the reconstruction formula of the MMSE receiver simplifiesfte- (T;Tr) 1T} y. Standard numerical
analysis tells us that the smaller the condition numbéi;df; the smaller the amplification of the noise
in the reconstruction [19]. We therefore compare the condition number of different unit norm tight frames
for m = 3, N =7 after up to four frame elements have been randomly removed.

We consider three types of unit norm tight frames. The first frame is an optimal complex-valued
Grassmannian frame. Its vectofs ..., f7 are given by

_ 1
V3

whered; € {0, 1, 5}, see also Section 2.1.2. The second frame is constructed by taking the first three
rows of a 7x 7 DFT matrix and using the columns of the resulting (normalizeg) Bmatrix as frame
elements (this is also called a harmonic frame in [21]). The last frame is a randomly generated unit norm
tight frame. Since all three frames are unit norm tight, they show identical performance for one random
erasure, the condition number of the frame operator in this case is constant 1.322. Since the frames are of
small size, we can easily compute the condition number for all possible combinations of two, three, and
four erasures. We then calculate the maximal and mean average condition number for each frame. As can

{ezmkd_,/7}3 k=1,...,7, .

j=1

S
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Table 1

Comparison of mean average and maximal condition number of frame operator in case of two, three, and four random erasures.
We compare an optimal Grassmannian frame, a DFT-based unit norm tight frame, and a random unit norm tight frame. The
Grassmannian frame shows the best overall performance

2 erasures 3 erasures 4 erasures
Condition number mean max mean max mean max
Grassmannian frame 1.645 1.645 2.045 2.189 3.056 3.635
DFT-submatrix frame 1.634 1.998 2.199 3.602 4.020 8.589
Random unit norm tight 1.638 1.861 2.095 3.792 3.570 12.710

be seen from the results in Table 1 the optimal Grassmannian frame outperforms the other two frames
in all cases, except for the average condition number for two erasures, where its condition number is
slightly larger. This example demonstrates the potential of Grassmannian frames for multiple description
coding.
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