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ReviewThicker Than Blood:
Conserved Mechanisms in Drosophila
and Vertebrate Hematopoiesis

cell types found in the mature organism (Dzierzak, 1999).
The myeloid lineage gives rise to multiple cell types
including erythrocytes, megakaryocytes (from which
platelets are derived), and macrophages, which primar-
ily function as professional phagocytes in the context
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of both development and innate immunity (Akashi et al.,3 Molecular Biology Institute
2000). The lymphoid lineage primarily mediates adaptiveUniversity of California, Los Angeles
immunity through the production of B and T cells andLos Angeles, California 90095
natural killer cells (Kondo et al., 1997).

Before we continue with a description of Drosophila
hematopoiesis, a short description of its developmentBlood development in Drosophila melanogaster
is warranted (for a review, see Bate and Martinez Arias,shares several interesting features with hematopoie-
1993). First there is an embryonic phase, which has beensis in vertebrates, including spatiotemporal regulation
divided into 17 distinct stages, that establishes the basicas well as the use of similar transcriptional regulators
structures of the subsequent larval stage (Campos-and signaling pathways. In this review, we describe
Ortega and Hartenstein, 1997). Larvae are developmentallywhat is known about hematopoietic development in
chimeric in that they contain tissues specific to the larvalDrosophila and the various cell types generated and
stage as well as separate cell populations, collectivelytheir functions. Additionally, the molecular genetic
termed imaginal discs, which will eventually give rise tomechanisms of hematopoietic cell fate determination
the adult fly. Essentially, the larval stage, which is di-and commitment within Drosophila blood cell lineages
vided into three successive intervals or instars (first,are discussed and compared to vertebrate mecha-
second, and third), represents a period of growth andnisms.
maturation of the imaginal discs. At the end of the third
larval instar, pupariation ensues—the larval cuticle hard-Similarities between hematopoietic development in Dro-
ens and metamorphosis begins, during which obsoletesophila melanogaster and vertebrates have recently
larval tissues histolyze and are removed while the imagi-been demonstrated by several investigations illuminat-
nal discs further develop into the adult form. At the ending the conserved function of signaling pathways and
of metamorphosis, the adult fly emerges from the pupaltranscription factors regulating proliferation, differentia-
case and begins searching for food and mate.tion, and lineage commitment. The repertoire of Dro-

As in vertebrates, hematopoiesis in Drosophila cansophila blood cell types and functions are less varied
be described as a biphasic developmental process thatthan in vertebrates, but several key components regulat-
serves to populate the embryo, larva, and adult withing hematopoietic development have been conserved
mature blood cells (Lebestky et al., 2000). Drosophilathrough roughly 550 million years of evolution. Because
blood cells, or hemocytes, have at least two significantof these relationships, Drosophila has been and contin-
roles in development and immunity. Developmentally,ues to be a powerful system to describe basic molecular
hemocytes seek out and remove dead cells and debrisgenetic mechanisms regulating these processes.
as well as secrete and remodel extracellular matrixVertebrate blood consists of multiple cell types that
(ECM) components critical to morphogenesis (Fesslerperform varied and specific functions. Though distinct,
et al., 1994; Murray et al., 1995; Franc et al., 1996).all blood cell types are derived from a common, pluripo-
Hemocytes also mediate innate, humoral immune re-

tent precursor or hematopoietic stem cell (Kondo et al.,
sponses, where they act as sentinels by monitoring the

2003). Drosophila blood consists of only a few terminally
environment for pathogens and signaling to the larval

differentiated types whose functions resemble those of fat body, which is the major source of antimicrobial
the cells of the vertebrate myeloid lineage. Although no peptide production (Tzou et al., 2002; Agaisse et al.,
hematopoietic stem cells have been identified, Drosoph- 2003; Hetru et al., 2003). Hemocytes also contribute to
ila blood cells are thought to be derived from a common both humoral and cellular immune responses by secre-
set of hematopoietic precursors. ting antimicrobial peptides and engulfing and encapsu-

The onset of vertebrate hematopoietic development, lating foreign invaders (Nappi, 1975; Samakovlis et al.,
generally termed primitive hematopoiesis, occurs during 1990; Franc et al., 1996; Elrod-Erickson et al., 2000).
embryogenesis when the extraembryonic yolk sac (or Many mutations have been discovered in Drosophila
an equivalent site) gives rise to blood precursors, which that cause aberrant proliferation and differentiation phe-
are primarily erythroid in nature (Godin and Cumano, notypes reminiscent of vertebrate blood disorders
2002). A second round of de novo hematopoietic devel- (Dearolf, 1998). Additionally, these defects are often as-
opment, termed definitive hematopoiesis, occurs in the sociated with the production of cellular masses, referred
mesodermal aorta/gonad/mesonephros (AGM) region of to as melanotic tumors, which blacken due to melaniza-
the embryo proper and gives rise to cells that will seed tion (Ghelelovitch, 1969; Gateff, 1994).
subsequent hematopoietic sites, such as the fetal liver Drosophila hematopoiesis (Figure 1) first occurs dur-
and the bone marrow in mammals, as well as to all blood ing embryonic development when hemocytes are de-

rived from the head (procephalic) mesoderm and subse-
quently migrate throughout the embryo (Tepass et al.,*Correspondence: banerjee@mbi.ucla.edu
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Figure 1. Principal Cell Types and Sites of
Hematopoiesis in Drosophila

(A) Hemocytes in the developing embryonic
head mesoderm (viewed from above, anterior
to the left). Merged confocal image of plas-
matocytes (green, PM) and crystal cells
(red, CC).
(B) The larval lymph gland. Confocal section
through a dissected lymph gland (LG, anterior
to the left). The bilateral primary and second-
ary LG lobes, the pericardial cells (nephro-
cytes), and the dorsal vessel (DV, heart/aorta)
bisecting the LG lobes are indicated. Nuclei
are marked with TO-PRO-3 (Molecular
Probes).
(C) Hemocytes within the primary LG lobe.
Confocal section through dissected primary
LG lobe in which hemocytes express GFP
(green; nuclei are blue). Crystals can be seen
in mature crystal cells, which are consider-
ably larger than the plasmatocytes. The scale
bar represents 10 �m.
(D) The lamellocyte. Confocal image of a cir-
culating lamellocyte (LM) expressing GFP
(green; nuclei are blue). Note the difference
in its size with that of a plasmatocyte. The
scale bar represents 10 �m.
(E) Plasmatocytes are adhesive and can ex-
hibit filamentous projections. Confocal image
of GFP-expressing live larval PMs on a cul-
ture slide. Note the flattening of some cells
and the cytoplasmic projections.
(F) A mature crystal cell expressing Lz. Confo-

cal image of a circulating crystal cell expressing GFP (green) and an Lz reporter (red). DNA is blue.
(G) The posterior signaling center (PSC) of the lymph gland. Flattened confocal series through the posterior of the primary lymph gland lobes.
Cells of the PSC express Serrate (green), which overlaps (yellow) with Srp expression (red) throughout the lymph gland.
(H) Various cell types populate the lymph gland. Plastic section (2 �m) through the LG. PSC cells are indicated in blue. Other cells are
differentially counterstained with basic fuchsin. Note different morphologies of blood cells. The densely staining cells in the secondary lobe,
and some in the first lobe, are likely to represent prohemocytes. PC, pericardial cell.

1994). A second wave of hematopoiesis is initiated dur- Furthermore, we discuss the various molecular mecha-
nisms, including transcription factors and signal trans-ing the larval stage in a specialized organ, termed the

lymph gland, which is formed during embryogenesis duction pathways, known to influence blood develop-
ment. Last, we compare Drosophila hematopoiesis withand persists through the onset of metamorphosis (Ru-
that of vertebrates in an effort to draw out both similari-gendorff et al., 1994). During pupariation, the lymph
ties and differences.gland degenerates and releases the hemocytes into cir-

culation (Robertson, 1936), in likely anticipation of nu-
merous roles during metamorphosis, including the The Origins of Drosophila Hemocytes
phagocytic removal of the apoptotic cells generated Head (Procephalic) Mesoderm
during the histolysis and remodeling of larval tissues. In the embryo, hemocytes differentiate from the head
Although hemocytes are present in the adult fly, no he- mesoderm and are first identifiable during embryonic
matopoietic site has been described for this develop- stage 5 by their expression of Serpent (Srp), a GATA
mental stage. transcription factor required for hematopoietic develop-

In Drosophila, there are at least three terminally differ- ment (Tepass et al., 1994; Rehorn et al., 1996; Lebestky
entiated hemocyte types (Figure 2; Rizki, 1956): plas- et al., 2000). The expression of Srp and their relative
matocytes, crystal cells, and lamellocytes. Plasmato- position within the embryo define these cells as hemo-
cytes are the predominant cell type found at all cyte precursors or prohemocytes, which will eventually
developmental stages and represent 90%–95% of all differentiate into either plasmatocytes or crystal cells
hemocytes in circulation, with crystal cells making up (Lebestky et al., 2000). The last cell division within the
the majority of the remainder (Rizki, 1978). Very few head mesoderm that gives rise to prohemocytes occurs
lamellocytes are produced under normal conditions; no later than stage 12, and by the end of embryogenesis
however, large numbers can be induced under specific all prohemocytes have differentiated (Tepass et al.,
conditions of immune challenge (Rizki and Rizki, 1992; 1994). Upon maturation, the majority of plasmatocytes
Lanot et al., 2001; Sorrentino et al., 2002). migrate out of the head region to populate the embryo

In this review, we shall describe the hematopoietic in response to specific cues (Tepass et al., 1994). In
development of Drosophila blood cells. Specifically, we contrast, crystal cells generally remain localized near
attempt to depict the hematopoietic environments as their point of origin in the embryo (Figure 1A; Lebestky

et al., 2000), although they do subsequently dispersewell as the various derived hemocyte types in detail.
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Figure 2. Hematopoietic Development in Drosophila

(A) A summary of events during head mesoderm and lymph gland hematopoiesis in Drosophila. In the early embryo, expression of the
hematopoietic GATA factor Serpent (Srp) within the mesoderm is established by maternal components and the mesoderm-specifying transcrip-
tion factors Twist (Twi) and Snail (Sna). In midstage embryos, hemocytes are derived from Srp-expressing prohemocytes of the head mesoderm
through the function of various factors including Notch (N), the Glial-cells-missing (Gcm) transcription factors 1 and 2, and the Runx factor
Lozenge (Lz). During this phase, the cardiogenic mesoderm is specified from the trunk mesoderm by the Heartless (Htl), Decapentaplegic
(Dpp), Wingless (Wg), and N signaling pathways. In the late embryo/early larva, mature hemocytes from the head mesoderm have dispersed
within the embryo, a process that requires the vascular endothelial growth factor (VEGF) pathway. By this stage, the cardiogenic mesoderm
has given rise to the lymph gland, which contains Srp� prohemocytes, the cardioblasts of the dorsal vessel, and the pericardial nephrocytes.
By the late larval stage, the lymph gland has expanded through proliferation of Srp� prohemocytes, which likely involves N, Toll (Tl), and
Hopscotch (Hop) signaling. Furthermore, lymph gland hemocytes have begun differentiating using N, Gcm, and Lz, as in the head mesoderm.
Upon metamorphosis, the lymph gland degenerates through the release of hemocytes into the hemolymph. Subsets of hemocytes derived
from both the embryonic head mesoderm and the larval lymph gland will persist through metamorphosis to populate the adult fly.
(B and C) Comparative lineage diagrams of hematopoietic development. A subset of conserved proteins and pathways regulating definitive
hematopoiesis in mice (B) are compared with similar cell types, proteins, and pathways in Drosophila (C). Lymphoid and ME cells in mice are
presented in gray to emphasize that cells of functional similarity are not present in Drosophila.

during larval stages. In total, the head mesoderm gives third larval instar, the total number of hemocytes has
significantly expanded to greater than 5,000 cells (Lanotrise to approximately 700 plasmatocytes (Tepass et al.,

1994) and 36 crystal cells (A. Milchanowski and U.B., et al., 2001).
Lymph Glandunpublished) by the end of embryogenesis. Interest-

ingly, the number of circulating hemocytes found in the Besides the head mesoderm, the lateral mesoderm de-
rived from the anterior trunk segments will also eventu-first instar larva was estimated to be significantly less

(fewer than 200 per animal); however, by the end of the ally give rise to hemocytes (Holz et al., 2003). A small



Developmental Cell
676

population of cells called the lymph gland appears in plasmatocytes, primarily as sessile cells that tend to
the lateral mesoderm during midembryogenesis and at- accumulate in various locations including the legs, hal-
taches itself to the sides of the dorsal vessel (heart/ teres, and near or within the dorsal vessel (Elrod-Erick-
aorta) after dorsal closure (Rugendorff et al., 1994). As son et al., 2000; Lanot et al., 2001).
with prohemocytes of the head mesoderm, all lymph
gland prohemocytes, including early cells of the lymph Structural and Functional Characterization
gland primordium, express Srp (Lebestky et al., 2000). of Drosophila Hemocytes
In contrast to the prohemocytes of the head mesoderm, Attempts to classify insect hemocytes date back to the
cells of the lymph gland do not differentiate in the em- nineteenth century and have generally been based on
bryo but rather proliferate dramatically during the first morphological characteristics (Cuenot, 1896; Hollande,
half of larval development, forming three to six bilaterally 1909; Wigglesworth, 1939; Yeager, 1945; Gupta, 1979).
paired cell clusters, or lobes, near the anterior boundary The specific nomenclature for mature Drosophila hemo-
of the abdominal segments (Stark and Marshall, 1930;

cytes was first put forth almost 50 years ago by T.M.
el Shatoury, 1955). These lymph gland lobes are sur-

Rizki (1956) and includes plasmatocytes, crystal cells,rounded by a noncellular layer of ECM and generally
and lamellocytes. The characteristics of each of thesedecrease in size from anterior to posterior (Figure 1B).
Drosophila hemocyte types is described in detail below,Proliferation of hemocytes in the embryo (both in the
including molecular markers with which they have sub-head mesoderm and in the lymph gland primordium)
sequently been associated (Figures 1C–1F).follow an intrinsically fixed program where most, if not
Prohemocytesall, mesodermal cells undergo four cell divisions at spec-
Although not a terminal blood cell type, attempts haveified times (Beer et al., 1987; Bate and Martinez Arias,
been made to characterize prohemocytes both morpho-1993; Tepass et al., 1994; Klapper et al., 1998; Holz et
logically and genetically (Shrestha and Gateff, 1982;al., 2003). Hemocytes in the lymph gland subsequently
Tepass et al., 1994; Rehorn et al., 1996; Lanot et al.,proliferate during the larval growth phase and as such
2001). Prohemocytes of the developing head mesodermare dependent, as are other larval tissues, on genetic
as well as the late embryonic and larval lymph glandand external factors such as nutrition and, in the specific
have been collectively described as cells 4–6 �m incase of blood cells, immune challenge.
diameter with few defining characteristics. Generally,Hemocyte differentiation in the lymph gland can first
they have little cytoplasmic volume but do have manybe observed during the late second larval instar when
free ribosomes and large lipid droplets (Tepass et al.,a small number of prohemocytes in the anterior-most

(primary) lymph gland lobes begin to express the crystal 1994; Lanot et al., 2001). Prohemocytes are also poorly
cell marker, Lozenge (Lz; Lebestky et al., 2000). By the defined with regard to molecular markers. The GATA
late third instar, the number of Lz-expressing cells is factor Srp is expressed in prohemocytes of the head
significantly expanded in the anterior lobes, and a few mesoderm, but Srp is expressed in parts of the meso-
of these cells can sometimes be found in secondary derm that give rise to other cell types, such as fat cells
lobes. In general, hemocyte differentiation remains re- (Rehorn et al., 1996; Sam et al., 1996). Furthermore, Srp
stricted to the large, primary lobes throughout the major- expression is not limited to the prohemocyte stage, but
ity of the third larval instar, while significant hemocyte is maintained in differentiating and mature hemocytes
differentiation in secondary lobes occurs only near the (Lebestky et al., 2000). Thus, whether true prohemocyte
onset of metamorphosis or during immune challenge. classes exist within the Srp� pool awaits the discovery

It is important that the differentiation of hemocytes of molecular markers that might distinguish between
in the lymph gland should be distinguished from their Srp� cells that give rise to blood cells and those that
release into circulation. It has been recurrently sug- give rise to other tissues.
gested that circulating hemocytes present in third instar Plasmatocytes
larvae are derived from the lymph gland, although this Plasmatocytes require the expression of the transcrip-
has never been rigorously demonstrated, except in the tion factor Glial-cells-missing (Gcm) for proper differen-
specific case of immune challenge (Lanot et al., 2001; tiation and generally appear as relatively round cells
Sorrentino et al., 2002). Contrary to this model, recent

8–10 �m in diameter with more cytoplasmic volume than
investigations employing embryonic transplantation of

is observed in prohemocytes (Shrestha and Gateff, 1982;marked progenitors indicates that hemocytes of the
Bernardoni et al., 1997; Lebestky et al., 2000; Lanotlymph gland are not released into circulation until the
et al., 2001). Additionally, the plasmatocyte cytoplasmonset of metamorphosis, despite ongoing differentiation
usually contains abundant lysosomes and endoplasmicthroughout the third instar (Holz et al., 2003). These
reticulum, which is consistent with their phagocytic andstudies would suggest that circulating cells in the larval
secretory functions. Plasmatocytes function primarily asstage are largely, if not entirely, derived from the embry-
professional phagocytes and are commonly referred toonic head mesoderm that arise through proliferation.
as macrophages (Rizki, 1978; Shrestha and Gateff, 1982;Hematopoiesis in Adult Flies
Tepass et al., 1994; Bangs et al., 2000; Lanot et al.,No hematopoietic tissue has been described in the adult
2001). In this role, plasmatocytes engulf and degradefly, despite the presence of hemocytes in the hemocoel.
dead cells and debris as well as invading pathogens.Whether hematopoietic differentiation occurs in the
The ability of plasmatocytes to recognize apoptotic cellsadult has been difficult to determine; however, trans-
is mediated by Croquemort (Crq), which is a member ofplantation studies using marked blood cell precursors
the CD36 family of receptors, which also recognizeshave indicated that at least subsets of the “adult hemo-
apoptotic cells in mammals (Franc et al., 1996). Addition-cyte” population originate in the embryonic head meso-
ally, a homolog of mammalian phosphatidyl serine re-derm and larval lymph gland (Holz et al., 2003). Phagocy-

tosis assays have demonstrated the presence of ceptor has been identified in Drosophila, which also
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likely functions in the removal of apoptotic cells (Fadok of melanin begins through the activation of a serine
et al., 2000). Pathogen recognition has been shown to protease cascade that converts the zymogen prophe-
be mediated by various receptors, including D-SR-CI noloxidase to active phenoloxidase (reviewed by Soder-
and PGRP-LC, which recognize Gram-negative bacteria hall and Cerenius, 1998). Although not completely de-
(Ramet et al., 2001, 2002b). Through the phagocytic scribed, a similar pathway appears to function in
removal of cells, plasmatocytes sculpt various develop- Drosophila, where both a candidate serine protease and
ing tissues and organs. An example of this is the embry- an inhibitory serpin have been identified (Chosa et al.,
onic nervous system, which does not condense properly 1997; De Gregorio et al., 2002; Ligoxygakis et al., 2002).
in the absence of plasmatocyte-mediated phagocytosis Active phenoloxidase catalyzes the oxidation of phenols
(Sears et al., 2003). Additionally, flies deficient in plasmato- to quinones that then nonenzymatically polymerize into
cyte-mediated engulfment exhibit diminished resistance melanin. Melanin and its biosynthetic byproducts, such
to microbial infection (Elrod-Erickson et al., 2000). as hydrogen peroxide and nitric oxide, are directly toxic

Plasmatocytes also secrete and remodel a wide array to microorganisms.
of ECM proteins, including Peroxidasin (Pxn), the colla- Lamellocytes
gen proteins Dcg1 and Viking (Vkg), as well as Laminin Lamellocytes are large (15–40 �m across), flat, adherent
(Fessler et al., 1994; Yasothornsrikul et al., 1997). These cells (Figure 1D) that appear to primarily function in the
proteins are deposited in basement membranes that are encapsulation and neutralization of objects too large to
critical to many morphogenetic processes (Murray et be engulfed by plasmatocytes (Nappi, 1975; Rizki and
al., 1995; Kiger et al., 2001). Plasmatocytes also secrete

Rizki, 1992). These cells are themselves nonphagocytic
antimicrobial peptides, including Cecropin A1, Droso-

and their cytoplasmic constituents are relatively sparse
mycin, and Diptericin, reinforcing the role of the fat body

(Shrestha and Gateff, 1982; Lanot et al., 2001). Lamello-in humoral immunity (Samakovlis et al., 1990; Dimarcq
cytes can be identified by their large size and by theet al., 1997; Roos et al., 1998). Adult hemocytes have
expression of an antigen that is recognized by the L1also been shown to signal to the fat body by secreting
monoclonal antibody (Asha et al., 2003). Additionally, aUnpaired-3, a ligand that activates the JAK/STAT path-
misshapen-lacZ reporter gene serves as a lamellocyteway in a cytokine-like fashion and promotes antimicro-
marker (Braun et al., 1997; Lanot et al., 2001; Sorrentinobial peptide synthesis (Agaisse et al., 2003).
et al., 2002), although any direct function of the mis-Several investigations have noted the presence,
shapen locus, which encodes a component of the JUNprimarily at the onset of metamorphosis, of plasmato-
kinase signaling cascade, in lamellocyte differentiationcyte-like cells exhibiting altered adhesive qualities and
is currently unknown.extensive cytoplasmic projections or pseudopodia. Col-

Very few lamellocytes are observed in normal larvaelectively, these cells have been referred to as filamen-
(Luo et al., 2002); however, significant lamellocyte differ-tous plasmatocytes or, more generally, podocytes (Rizki
entiation is rapidly induced as an immune response.and Rizki, 1980; Shrestha and Gateff, 1982). Podocytes
For example, parasitization by the Hymenopteran waspare phagocytic and are of similar size to plasmatocytes,
Leptopilina boulardi initiates the rapid differentiation ofand thus it has been suggested that podocytes are a
lamellocytes, which subsequently adhere to and sur-specialized derivation of the plasmatocyte lineage (Rizki,

1962). Furthermore, there is an apparent correlation in round (laminate) the egg capsule (Nappi, 1975; Rizki and
the increase in podocyte number with a decrease in Rizki, 1992; Carton and Nappi, 2001). Subsequently, this
plasmatocyte number at the onset of metamorphosis, capsule melanizes, locally generating cytotoxic com-
suggestive of their transformation. pounds and creating a barrier (Nappi and Vass, 1998;
Crystal Cells Nappi et al., 2000). Bacterial challenge does not induce
Crystal cells are somewhat larger in size (10–12 �m) lamellocyte differentiation, but the encapsulation re-
than plasmatocytes and derive their name from the para- sponse can be invoked artificially with objects placed
crystalline inclusions they contain (Figures 1C and 1F; in the larval hemocoel that are too large to be engulfed
Rizki and Rizki, 1980; Shrestha and Gateff, 1982; Lanot (Ratcliffe and Rowley, 1979). Thus, lamellocyte differen-
et al., 2001). Crystal cells are nonphagocytic and func- tiation in the immune context is probably linked to object
tion in the process of melanization, which facilitates size and/or the penetration of the larval cuticle and is
innate immune and wound-healing responses (De Gre- not pathogen specific. Recently, the gene Hemese has
gorio et al., 2002; Ramet et al., 2002a). Molecularly, crys- been described that, in part, controls lamellocyte differ-
tal cells have been defined as hemocytes expressing

entiation and the encapsulation response (Kurucz et al.,
the transcription factor Lozenge and Prophenoloxidase

2003). Depletion of Hemese enhances the differentiationA1 (Lebestky et al., 2000; Duvic et al., 2002; Fossett et
of lamellocytes and the encapsulation response uponal., 2003).
parasitization, indicating that Hemese normally limitsIt is believed that the crystal cell inclusions consist
this process. Additionally, depletion of Hemese en-of mass quantities of one or more components of the
hances melanotic tumor formation in the malignantmelanization enzymatic cascade, namely prophenoloxi-
blood neoplasm-1 tumorous mutant. Although it is gen-dase enzymes, which are similar to the tyrosinase en-
erally unclear what seeds their formation, melanotic tu-zymes of vertebrates (Rizki and Rizki, 1985; Soderhall
mors involve lamellocytes and may represent inappro-and Cerenius, 1998). The cell-free hemolymph of Dro-
priate encapsulation responses against self tissuessophila contains phenoloxidase activity that is absent
(Rizki and Rizki, 1974, 1979).in mutant lines that lack functional crystal cells, and

Lamellocytes share similar adhesive properties withthus it has been proposed that crystal cells supply this
plasmatocytes, and in vitro studies demonstrate thatactivity to the hemolymph (Peeples et al., 1969; Rizki et

al., 1980). In other arthropod systems, the production relatively small, round cells, presumably plasmatocytes,
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can be transformed into larger, flattened lamellocyte- causing blood cell differentiation closely follow Srp ex-
pression in this tissue. In contrast, Srp expression inlike cells, suggesting that lamellocytes represent a fur-

ther differentiated form of circulating plasmatocytes lymph gland precursors occurs later due to the fact that
the generation of these cells is downstream of several(Rizki, 1962). In contrast, recent analysis using a molecu-

lar marker (misshapen-lacZ) suggests that lamellocyte signaling inputs and morphogenetic events. Further-
more, there is a relatively long delay between the onsetdifferentiation occurs de novo from precursors within

the lymph gland (Lanot et al., 2001; Sorrentino et al., of Srp expression in the lymph gland precursors and
the differentiation of these Srp� cells into mature hemo-2002). How signals directing lamellocyte differentiation

are communicated from the site of infestation to the cytes. During this delay (the entire first half of larval
development), cells in the lymph gland undergo exten-lymph gland is not known, although it likely involves

initial recognition events by plasmatocytes and/or crys- sive proliferation. Once initiated, however, blood cell
differentiation in the lymph gland appears to utilize simi-tal cells (Russo et al., 1996).

Recently, a gene called yantar has been discovered lar genetic mechanisms to those that mediate differenti-
ation of hemocytes in the head mesoderm of the embryo.that encodes a novel but conserved protein with a puta-

tive RNA-processing function. The mutation of yantar It has recently been demonstrated that srp primary
transcripts are alternatively spliced to generate two pro-exhibits a wide array of hematopoietic effects including

aberrant differentiation of lamellocyte-like cells. In tein isoforms, one containing two zinc fingers (SrpNC;
N- and C-terminal zinc fingers), similar to vertebrateyantar mutants, the number of cells staining with the

lamellocyte-specific antibody L1 is dramatically in- GATA factors, and the other containing a single zinc
finger (SrpC; Waltzer et al., 2002). Functionally, SrpNCcreased (S. Sinenko and B. Mathey-Prevot, personal

communication). However, these cells lack typical la- was found to exhibit differential DNA binding character-
istics compared to SrpC and to differentially regulatemellocyte morphology and are found to express Lz,

which is normally restricted to crystal cells. The finding the expression of various target genes. Furthermore,
SrpNC specifically interacts with the Friend-of-GATAof cells that express both markers in yantar mutants

indicates that lamellocytes and crystal cells may share (FOG) homolog U-shaped (Ush) in a manner similar to
vertebrate GATA:FOG interactions (Tevosian et al., 1999;a common progenitor (S. Sinenko and B. Mathey-Prevot,

personal communication). It will be interesting to deter- Waltzer et al., 2002; Fossett et al., 2003). Interestingly,
expression of either Srp isoform in srp null embryos ismine whether this result is an explanation for the empiri-

cal observation that noncrystal cells can be derived from sufficient to support the differentiation of cells express-
ing plasmatocyte and crystal cell lineage markers, indi-Lz� cells (Lebestky et al., 2000; Figure 2C).
cating that the N-terminal zinc finger of Srp (and any
presumptive interaction with Ush) is not required for theTranscriptional Regulation of Hematopoiesis
initial steps of hematopoietic specification. However, asSerpent and U-Shaped
described below, Ush is required for subsequent stepsBlood cell formation in Drosophila commences with the
of hematopoietic lineage commitment.expression of the GATA transcription factor Serpent

U-shaped is a member of the FOG family of zinc finger(Srp), which plays a central role in committing mesoder-
proteins that modulates the function of GATA transcrip-mal cells to hemocyte fate. Serpent (also known as
tion factors (Chang et al., 2002). In mice, FOG-1 hasdGATA-B and ABF) is one of five Drosophila GATA factor
been shown to specifically regulate erythropoiesis andhomologs (pannier, grain, dGATA-D, and dGATA-E are
megakaryopoiesis in conjunction with GATA-1 (Tsangthe others), but is the only one known to be directly
et al., 1997, 1998; Cantor et al., 2002; Katz et al., 2002),required for hematopoiesis (Rehorn et al., 1996; Lebestky
and FOG-2 is required for heart morphogenesis alonget al., 2000; Patient and McGhee, 2002). The GATA family
with GATA-4 (Svensson et al., 1999; Tevosian et al.,of zinc finger transcription factors is highly conserved,
1999; Crispino et al., 2001). Likewise, Ush has beenpresent from yeast to vertebrates, and has diverse roles
shown to interact genetically and physically with Pannierin many developmental programs, including cell fate
(a homolog of GATA-4) in limiting the production ofspecification, differentiation, and proliferation (Orkin et
cardial cells and sensory bristles (Haenlin et al., 1997;al., 1998; Lowry and Atchley, 2000; Cantor and Orkin,
Fossett et al., 2000). U-shaped appears to function in a2002; Maduro and Rothman, 2002; Patient and McGhee,
similar manner with Srp during hematopoiesis to repress2002). In mice, GATA-1, GATA-2, and GATA-3 all have
crystal cell fate, because loss-of-function mutations infundamental roles in various aspects of hematopoietic
ush lead to an expansion of the crystal cell populationdevelopment (Table 1; Pevny et al., 1991; Tsai et al.,
and directed misexpression of Ush in crystal cell precur-1994; Ting et al., 1996; Shivdasani et al., 1997). Further-
sors causes a reduction in the number of crystal cellsmore, it has recently been shown that GATA factor func-
(Fossett et al., 2001). U-shaped is expressed in the headtion is one of the earliest requirements for the specifica-
mesoderm by embryonic stage 8 and is subsequentlytion of blood progenitors during primitive hematopoiesis
maintained in plasmatocytes but is downregulated in(Fujiwara et al., 2003).
crystal cells (Fossett et al., 2001), suggesting that re-In the developing Drosophila embryo, the zygotic ex-
pression of Ush is important for commitment to crystalpression of the transcription factor Twist establishes
cell fate. Lineage repression by Ush is likely achievedand is expressed throughout the mesoderm (Castanon
through interaction with the transcriptional corepressorand Baylies, 2002). Accordingly, the expression of Srp
CtBP, which binds the PXDL motif found in all knownis downstream of Twist function; however, the timing of
FOG proteins (Turner and Crossley, 1998; Holmes et al.,Srp expression in the mesoderm is not uniform. Serpent

is expressed early in the head mesoderm and the events 1999; Deconinck et al., 2000; Fossett et al., 2001).
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Table 1. Transcriptional Regulators Influencing Hematopoiesis in Drosophila

Factor Function Vertebrate Homologs Function References

Serpent Hemocyte specification; Murine GATA-1, -2, -3 Required for primitive hematopoiesis; Pevny et al., 1991; Tsai et al., 1994;
CC differentiation definitive erythropoiesis, megakary- Rehorn et al., 1996; Ting et al.,

opoiesis, T cell lymphopoiesis 1996; Shivdasani et al., 1997;
Lebestky et al., 2000; Fujiwara et
al., 2003

U-shaped Represses CC fate Murine FOG-1 Required for erythropoiesis and Tsang et al., 1998; Deconinck et al.,
megakaryopoiesis 2000; Fosset et al., 2001, 2003

Xenopus FOG Represses erythropoiesis
Lozenge Specification of CC fate Murine AML-1/Runx1 Required for definitive hematopoiesis Okuda et al., 1996; Wang et al.,

1996a; Lebestky et al., 2000;
Fosset et al., 2003

Gcm/Gcm2 Specification of PM fate Murine Gcm1, Gcm2 No known hematopoietic function Bernardoni et al., 1997; Lebestky et
al., 2000; Alfonso and Jones, 2002

CC, crystal cell; PM, plasmatocyte.

Lozenge It has recently been shown that murine Runx1 and
The transcription factor Lozenge, a known regulator of GATA-1 physically interact and cooperate in megakary-
cell fate specification in the eye (Daga et al., 1996; Flores ocyte differentiation in vitro (Elagib et al., 2003), sug-
et al., 1998; Siddall et al., 2003), is also required for gesting that Lz could directly interact with Srp in a similar
crystal cell development (Rizki and Rizki, 1981; Lebestky manner during crystal cell differentiation. Coexpression
et al., 2000). Lozenge is a member of the Runx family of Lz and Srp throughout the mesoderm causes large
of transcription factors and has high homology (71% numbers of crystal cells to develop, while expression of
within the Runt domain) to human AML-1/Runx1 (Daga either alone causes only a modest increase in crystal
et al., 1996), which is one of the most frequent targets cell differentiation (Fossett et al., 2003). Furthermore,
of chromosomal translocations leading to acute myeloid coexpression of Lz and SrpNC was found to repress
leukemia (AML; Lutterbach and Hiebert, 2000; Speck ush expression, supporting the idea that blocking Ush
and Gilliland, 2002). AML-1 forms a heterodimeric com- function is an important step in committing to crystal
plex with CBF�, a protein homologous to the Drosophila cell fate. Consistent with this model, pan-mesodermal
proteins Brother and Big brother (Li and Gergen, 1999; coexpression of Ush and SrpNC, but not SrpC, specifi-
Adya et al., 2000; Kaminker et al., 2001; Speck and cally blocks crystal cell development. Thus, SrpNC ap-
Gilliland, 2002). Importantly, targeted disruption of either pears to function as a contextual switch, which depends
AML-1 or CBF� leads to a loss of definitive hematopoie- upon the relative levels of srp, lz, and ush expression,
sis in mice (Okuda et al., 1996; Sasaki et al., 1996; Wang in the promotion or repression of the crystal cell lineage
et al., 1996a, 1996b). (Fossett et al., 2003).

Initially, mutations in lz were shown to suppress hemo- Gcm/Gcm2
lymph phenoloxidase as well as the Black cells (Bc) Cells entering the plasmatocyte lineage begin to express
phenotype, in which crystal cells lose their inclusions the transcription factor Glial-cells-missing (Gcm; also
and become melanized (Peeples et al., 1969; Rizki and known as Glide; Bernardoni et al., 1997; Lebestky et al.,
Rizki, 1981). Subsequently, it was determined that Lz is 2000) and its homolog Gcm2 (Alfonso and Jones, 2002).
required for the hematopoietic differentiation of crystal The Gcm proteins also function in the nervous system,
cells (Lebestky et al., 2000). In the embryo, lz expression

where they are the primary determinants of glial cell fate
can first be detected in the head mesoderm at approxi-

(Hosoya et al., 1995; Jones et al., 1995; Vincent et al.,
mately stage 10, which coincides with a functional re-

1996; Kammerer and Giangrande, 2001; Alfonso andquirement for Lz in crystal cell development between
Jones, 2002). Gcm proteins are novel transcription fac-stages 10 and 14 (Lebestky et al., 2000). Lz is expressed
tors that have been conserved in vertebrates (reviewedin two bilateral clusters (�18 cells each) within a subset
by Wegner and Riethmacher, 2001). Two Gcm homologsof Srp-expressing prohemocytes in the head mesoderm
are found in mammals, though genetic studies have yetand defines these cells as crystal cell precursors (Le-
to find a role for these genes in vertebrate hematopoiesisbestky et al., 2000). By stage 17, these crystal cells
(Altshuller et al., 1996; Kim et al., 1998; Gunther et al.,have matured into a single, loose cluster that generally
2000; Schreiber et al., 2000). During Drosophila bloodremains in the head region. Lozenge expression in the
development, Gcm/Gcm2 expression is restricted tolarval lymph gland can first be detected during the late
and first detectable in plasmatocyte precursors soonsecond instar, although when present, this expression
after Srp expression in stage 5 embryos and colocalizesis limited to the anterior lobe and consists of only a few
with the plasmatocyte markers Peroxidasin (Pxn) andcells (Lebestky et al., 2000). By the late third larval instar,
Croquemort (Crq) during stages 10 and 11 (Bernardonimany more crystal cell precursors can be observed
et al., 1997; Alfonso and Jones, 2002). Gcm/Gcm2 ex-within the anterior lymph gland lobes and a few are found
pression diminishes after embryonic stage 11 and is notwithin the secondary lobes. Lozenge is also expressed in
observed in fully differentiated plasmatocytes.mature crystal cells, both in circulation and in the lymph

gland (Figures 1C and 1F). Embryos mutant for either gcm or gcm2 do not lose
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plasmatocytes entirely, but rather exhibit a limited re- Additionally, a significant fraction (�40%) of mice with
targeted disruption of a single allele of CBP were shownduction in the number of plasmatocytes (25%–40%; Ber-

nardoni et al., 1997; Alfonso and Jones, 2002). Simulta- to develop an array of hematopoietic defects including
tumors and/or tumorigenic cells, which were often asso-neous deletion of both gcm genes, however, has more

severe consequences. All Crq expression is lost and the ciated with a loss of CBP heterozygosity (Kung et al.,
2000).remaining presumptive plasmatocytes, identified by Pxn

expression, are further reduced in number and exhibit Transcriptional repression via histone deacetylation
may also play a role during lineage commitment. Repres-aberrant morphologies and migratory behavior. Thus,

Gcm and Gcm2 have critical overlapping roles in the sion of the crystal cell lineage by Ush is likely mediated
via interaction with the corepressor CtBP, which is asso-early expansion and definitive maturation of the plas-

matocyte lineage (Alfonso and Jones, 2002). Gcm/Gcm2 ciated with histone deacetylase (HDAC) activity (Sund-
qvist et al., 1998; Fossett et al., 2001). Similarly, Lz inter-expression is never observed in the crystal cell lineage

and their deletion does not affect crystal cell develop- acts with the corepressor Groucho (TLE1 in mammals;
Canon and Banerjee, 2003), which also recruits HDACment (Alfonso and Jones, 2002). Gcm is capable, how-

ever, of specifying plasmatocyte cell fate when ectopi- activity (Courey and Jia, 2001). Likewise, TLE1 has been
shown to interact with AML-1 and to repress AML-1-cally expressed in crystal cell precursors (Lebestky et

al., 2000). Thus, Gcm and Gcm2 appear to function as mediated transactivation (Levanon et al., 1998).
Mutations affecting the function of the nucleosomegenetic switches in the specification of plasmatocyte

fate, similar to their role in gliogenesis. remodeling complexes SWI/SNF and NURF have also
been found to perturb Drosophila blood development.Direct targets of Gcm during blood development have

not been well established, though several genes have The genes brahma and domino encode members of
the SWI2/SNF2 family of DNA-dependent ATPases (therecently been identified that specifically require Gcm/

Gcm2 for expression in hemocytes (Freeman et al., catalytic subunit of the SWI/SNF complex), and both
genes are generally required for cell viability and prolifer-2003). One of these genes, draper, is expressed by all

Gcm� glia and hemocytes and was shown to be required ation control (Elfring et al., 1998; Ruhf et al., 2001). As
such, mutations in these genes have wide-ranging ef-for the phagocytosis of apoptotic cells (Freeman et al.,

2003). Interestingly, Draper shares homology with the fects including hematopoietic defects and lethality.
Brahma is required to activate hemocyte proliferationC. elegans CED-1 surface receptor, which is itself re-

quired for the engulfment of apoptotic cells in the worm while Domino appears to repress the proliferation of
hemocytes (Ruhf et al., 2001; Remillieux-Leschelle et(Zhou et al., 2001). This suggests that the engulfment-

mediated cell corpse removal by plasmatocytes as well al., 2002); neither gene appears crucial for hemocyte
differentiation. Similarly, mutation of iswi, which en-as that by glia are both controlled by the expression of

Gcm/Gcm2. codes a distinct but related DNA-dependent ATPase
of the NURF, ACF, and CHRAC chromatin remodelingChromatin Remodeling Factors

Chromatin modification is a global and relatively gener- complexes, causes increased hemocyte proliferation
and melanotic tumor formation, and similar results arealized mechanism of gene regulation, although many of

its effectors have specific roles in hematopoietic devel- obtained with mutations in the NURF subunit nurf301
(Badenhorst et al., 2002). In mammals, SWI/SNF functionopment (reviewed by Fisher, 2002; Georgopoulos, 2002).

It is now well established that chromatin modification has been implicated in various hematopoietic processes
including the transcription of myeloid- and erythroid-in the form of histone acetylation and deacetylation is

associated with transcriptional activation and repres- specific genes (Armstrong et al., 1998; Kowenz-Leutz
and Leutz, 1999; Lee et al., 1999; Ogawa et al., 2003),sion, respectively (see Struhl, 1998; Kurdistani and

Grunstein, 2003). The coactivator CREB binding protein and these proteins are often recruited by CBP (Agalioti
et al., 2000; Zhang et al., 2001).(CBP) exhibits histone acetyltransferase (HAT) activity

and has many roles in murine hematopoietic develop- Members of the Polycomb (PcG) and trithorax (trxG)
groups modify chromatin through the relatively long-termment, including interaction with GATA-1 to establish

acetylation patterns that promote erythropoiesis (Ban- maintenance of previously established transcriptional
states (see Lessard and Sauvageau, 2003). Recently,nister and Kouzarides, 1996; Letting et al., 2003). CBP

has also been shown to critically associate with AML-1 mutation of the PcG gene multi sex combs (mxc) has
been shown to cause hyperproliferation of both circulat-during myeloid differentiation (Kitabayashi et al., 1998).

Similarly, Drosophila CBP (dCBP) functions during blood ing and lymph gland hemocytes (Remillieux-Leschelle
et al., 2002). Additionally, in mxc mutants, the percent-formation (Bantignies et al., 2002), though whether

dCBP interacts with Srp or Lz remains to be established. age of cells representing podocytes and lamellocytes
were found to be increased while those of crystal cellsNull mutation of dCBP is lethal, though loss of one allele

of dCBP has been shown to enhance melanotic tumor were decreased, compared to wild-type. Several mam-
malian PcG and trxG genes have been implicated information associated with mutations in modulo, which

encodes a chromatin-associated factor first identified hematopoiesis including the well-characterized Mixed-
Lineage Leukemia (MLL) gene. MLL is a homolog ofas a modifier of position effect variegation (Garzino et

al., 1992; Bantignies et al., 2002). Interestingly, haploin- trithorax in Drosophila and, like AML-1, is a frequent
target of chromosomal translocations leading to leuke-sufficiency of CBP in humans leads to Rubinstein-Taybi

syndrome, which is characterized by various develop- mias in humans and mice (Ayton and Cleary, 2001). Addi-
tionally, targeted disruption of MLL in mice leads tomental defects and mental retardation and is often ac-

companied by hematopoietic malignancies including defects in both primitive and definitive hematopoiesis
(Hess et al., 1997; Yagi et al., 1998).AML (Miller and Rubinstein, 1995; Petrij et al., 1995).
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Table 2. Signaling Pathway Components Influencing Hematopoiesis in Drosophila

Pathway Component Function Phenotype References

Notch Serrate Ligand LOF blocks CC differentiation; GOF Duvic et al., 2002; Lebestky et al., 2003
causes extra CCs

Notch Receptor LOF blocks CC differentiation; GOF
causes extra CCs

Su(H) Transcriptional regulator LOF blocks CC differentiation
JAK/STAT Hopscotch JAK kinase LOF has no clear effect; GOF causes Betz et al., 2001; Hanratty and Dearolf,

hyperproliferation of hemocytes, 1993; Harrison et al., 1995; Luo et al.,
excess LM differentiation, 1995, 2002; Remillieux-Leschelle et
melonotic tumor formation al., 2002

STAT92E Transcriptional regulator LOF inhibits proliferation and LM
differentition

PIAS STAT inhibitor LOF enhances hopTum-l-mediated
tumor formation

D-Rafa LOF causes loss of circulating
hemocytes and loss of LM
differentiation

Toll/Cactus Toll Receptor LOF causes reduced hemocyte Gerttula, et al., 1988; Qiu et al., 1998;
proliferation; GOF causes hyper- Remillieux-Leschelle et al., 2002
proliferation of hemocytes,
excess LM differentiation,
melonotic tumor formation

Tube Signaling adapter LOF causes reduced hemocyte
proliferation

Pelle IRAK kinase LOF causes reduced hemocyte
proliferation

Cactus I�B homolog LOF causes hyperproliferation of
hemocytes, excess LM differenti-
ation, melanotic tumor formation

Dorsal NF�B homolog LOF has no effect; GOF causes
melanotic tumor formation

VEGFR VEGF-2 Ligand LOF no clear effect, redundant with Cho et al., 2002; Heino et al., 2001;
VEGF-1/3; GOF can redirect PM Munier et al., 2002; Sears et al., 2003
migration and can cause excess
hemocyte proliferation

VEGFR Receptor LOF blocks PM migration from head
mesoderm

CC, crystal cell; LM, lamellocyte; PM, plasmatocyte; LOF, loss of function; GOF, gain of function; Su(H), Suppressor of Hairless.
a See text.

Signal Transduction Pathways cells rarely divide in comparison with other cells of the
lymph gland. Thus, the hematopoietic microenviron-Influencing Hematopoiesis

The Notch Pathway ment of the lymph gland appears functionally similar to
that of vertebrates. Both contain a signaling cell popula-In Drosophila, the Notch (N) pathway has been shown

to have an important role in lineage specification (Table tion, the PSC in the lymph gland, and, for example, the
stromal cells of the mammalian bone marrow, as well2). Loss of N signaling blocks the expression of Lz (Leb-

estky et al., 2003) and prophenoloxidase (Duvic et al., as blood cells that differentiate in response to those
signals. In this context, it is interesting to note that mu-2002), while ectopic expression of an activated form of

N dramatically increases the number of Lz� cells within rine bone marrow stromal cells have been found to ex-
press the mammalian Ser homolog Jagged-1 (Lindsellthe lymph gland, particularly in secondary lobes where

few Lz-expressing cells are normally found (Lebestky et et al., 1995), which influences the proliferation and differ-
entiation of various hematopoietic precursors (Varnum-al., 2003). Notch signaling is similarly required for crystal

cell development in the head mesoderm (Lebestky et Finney et al., 1998).
In mice and humans, N has been implicated in theal., 2003).

Of the two known ligands for the N receptor in Dro- regulation of various hematopoietic processes (re-
viewed by Allman et al., 2002; Radtke et al., 2002). Ex-sophila, Serrate (Ser) and Delta, only Ser appears to

function during hematopoiesis. Examination of Ser ex- pression analyses have shown that N is selectively uti-
lized during various stages of hematopoiesis (Walker etpression in the lymph gland identified a cluster of Ser�

cells near the posterior tip of the primary (anterior-most) al., 2001). Activation of N in bone marrow hematopoietic
stems cell (HSCs) in vitro leads to increased proliferationlobe, designated the posterior signaling center (PSC;

Figure 1G; Lebestky et al., 2003). Other Ser� cells, which and survival (Varnum-Finney et al., 1998; Karanu et al.,
2000). Additionally, signaling via Notch1 is required formay be derived from the PSC, are often scattered within

the primary lobes, where most crystal cells develop. the generation of HSCs from endothelial cells in mice
(Kumano et al., 2003) and also controls the differentia-Cells of the PSC do not express Lz and do not require

N signaling for their own development. Additionally, PSC tion of myeloid cells from HSCs by regulating GATA-2



Developmental Cell
682

expression (Kumano et al., 2001). Notch signaling is also 1996; Hattori et al., 2001). Interestingly, conditional dis-
ruption of VEGF in bone marrow HSCs blocks their abilityreiteratively utilized during lymphocyte development,

where it mediates commitment to the T cell lineage (Pui to repopulate lethally irradiated mice, though signaling
through VEGFR restores this ability, implicating a VEGFet al., 1999; Radtke et al., 1999; Wilson et al., 2001).

Subsequently, N mediates the determination of T cell autocrine signaling loop in the maintenance and/or sur-
vival of HSCs (Gerber et al., 2002). Last, increased ex-type, �� versus �� and CD4 versus CD8 (Robey et al.,

1996; Washburn et al., 1997; Fehling et al., 1999). It pression of VEGF ligands as well as receptors have
been associated with a large number of hematologicalhas also been shown that the B cell lineage specifically

utilizes Notch2 signaling during marginal zone B cell malignancies, suggestive of their role in promoting de-
velopment and/or proliferation (Ferrara et al., 2003).development (Saito et al., 2003). Last, excessive activa-

tion the N signaling pathway has been associated with The JAK/STAT Pathway
The Janus kinase (JAK)/signal transducer and activatorincreased leukemogenic potential in the T cell lineage

(reviewed by Aster and Pear, 2001). of transcription (STAT) signal transduction pathway is
also conserved in Drosophila and it modulates manyThe VEGF Receptor Pathway

The vascular endothelial growth factor receptor (VEGFR, developmental processes including hemocyte prolifera-
tion and differentiation (reviewed by Hou et al., 2002).also known as PDGF/VEGF receptor or PVR in Drosoph-

ila) signaling pathway has previously been implicated in Mutations that cause constitutive activation of the JAK
kinase Hopscotch (such as hopTum-l and hopT42) lead tothe control of hemocyte migration (Heino et al., 2001;

Cho et al., 2002; Sears et al., 2003), similar to its role in a leukemia-like hyperproliferation of both circulating and
lymph gland hemocytes during larval stages and facili-border cell migration during oogenesis (Duchek et al.,

2001). The single Drosophila VEGF receptor is first ex- tate the formation of melanotic tumors (Harrison et al.,
1995; Luo et al., 1995). Transplantation studies havepressed in prohemocytes of the head mesoderm at

stage 8 and is subsequently maintained in plasmato- demonstrated the cell-autonomous nature of these mu-
tations through the clonal expansion of mutant hemo-cytes (Heino et al., 2001; Cho et al., 2002). Despite the

early expression of VEGFR/PVR, its function is not re- cytes and formation of tumors within wild-type hosts
(Hanratty and Ryerse, 1981; Luo et al., 1995). Hyperacti-quired for plasmatocyte specification or differentiation

(Heino et al., 2001; Cho et al., 2002; Sears et al., 2003). vation of Hop primarily affects plasmatocytes, which are
expanded in number and exhibit altered morphologies,Rather, VEGFR mutant plasmatocytes, once mature, do

not properly migrate within the embryo. Consistent with though lamellocyte differentiation is also increased by
the hopTum-l and hopT42 mutations, facilitating tumor for-this proposed role in hemocyte migration, each of the

three Drosophila VEGF ligands is expressed, subse- mation. Interestingly, crystal cells appear unaffected in
these mutant backgrounds (Silvers and Hanratty, 1984),quent to VEGFR/PVR expression, in tissues along these

routes where they have been hypothesized to act as suggesting that hop or downstream effectors are down-
regulated in this lineage. In fact, misexpression of themigration cues (Cho et al., 2002).

Recent analysis of VEGFR/PVR signaling, however, activated Hop protein in crystal cell precursors will sup-
press crystal cell fate (Lebestky, 2001). Null mutationssuggests that the observed plasmatocyte migration de-

fect could primarily be a consequence of diminished of hop result in an underproliferation of diploid tissues
and often give rise to late larval/pupal lethal phenotypeshemocyte survival. Disruption of the VEGFR/PVR leads

to a slow but continuous reduction in the number of (Perrimon and Mahowald, 1986), though examination of
circulating as well as lymph gland hemocytes revealedplasmatocytes through apoptotic cell death during em-

bryonic development (K. Brückner and N. Perrimon, per- no significant defect due to zygotic hop deficiency (Re-
millieux-Leschelle et al., 2002). Thus, JAK signaling issonal communication). Similarly, abolishing VEGFR/PVR

expression in a hemocyte-like cell line leads to cell death either not required for normal hematopoietic develop-
ment or maternal Hop has sufficient activity to supportin vitro, which is consistent with similar experiments

where blocking VEGFR signaling was found to stop cell blood development.
Drosophila STAT (D-STAT/STAT92E/Marelle) is hy-proliferation (Munier et al., 2002). Much of the hemocyte

cell death and migration defects can be suppressed by peractivated in a hopTum-l background and is required for
hopTum-l-mediated plasmatocyte proliferation, lamello-the activation of downstream effectors of VEGFR/PVR

signaling as well as ectopic expression of an inhibitor cyte differentiation, and tumor formation (Luo et al.,
2002; Remillieux-Leschelle et al., 2002). Accordingly, de-of apoptosis (K. Brückner and N. Perrimon, personal

communication). Thus, it appears that VEGFR/PVR sig- ficiency in Drosophila PIAS, an inhibitor of STAT func-
tion, enhances melanotic tumor formation (Betz et al.,naling provides an essential trophic survival cue for he-

mocytes that ultimately has an effect on their migration 2001). Interestingly, one target of activated D-STAT is
the promoter of Drosophila Raf (D-Raf), a member ofthroughout the embryo (Heino et al., 2001; Cho et al.,

2002; Sears et al., 2003). the canonical Ras/Raf/MAP kinase pathway (Kwon et
al., 2000). D-Raf has been shown to physically interactIn mammals, the VEGFR pathway has primarily been

associated with regulation of vascular endothelial cells with Hop and is required for both normal and hopTum-l-
mediated lamellocyte differentiation as well as the prolif-during the processes of angiogenesis and vasculogen-

esis, both in normal development and in pathological eration or survival of circulating hemocytes (Luo et al.,
2002). Expression of activated Ras in hemocytes causesscenarios such as tumor growth (reviewed by Ferrara et

al., 2003). With regard to blood development, signaling hyperproliferation as well as the transcriptional modula-
tion of many genes, but this is also suppressed by athrough the VEGFR pathway exhibits various effects

including the promotion of B cell development and inhi- loss of D-Raf (Asha et al., 2003). Thus, the Hop and
Ras pathways cooperate in the control of hemocytebition of dendritic cell maturation (Gabrilovich et al.,
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proliferation and differentiation. Signaling downstream the Rel protein(s) involved is less clear. Dorsal is ex-
pressed in hemocytes, but loss of dorsal fails to sup-of Hop also utilizes chromatin remodeling factors to

implement transcriptional programs. Mutations in press cactusA2-mediated hyperproliferation and tumor
formation (Qiu et al., 1998), suggesting that this proteinbrahma suppress hopTum-l-mediated hyperproliferation

while mutations in the NURF remodeling complex en- is redundant with Relish and/or Dif. As mentioned, hy-
peractivation of Tl also causes significant lamellocytehance tumor formation while specifically derepressing

the expression of Hop target genes (Badenhorst et al., differentiation, similar to hyperactivation of the JAK/
STAT pathway. Moreover, loss of a single copy of2002; Remillieux-Leschelle et al., 2002).

In vertebrates, the JAK/STAT pathway has been asso- D-STAT suppresses the Tl10B-mediated lamellocyte dif-
ferentiation (Remillieux-Leschelle et al., 2002), sug-ciated with several aspects of hematopoietic develop-

ment (Rane and Reddy, 2002). Murine JAK2 is required gesting that there is crosstalk between the Toll and JAK/
STAT pathways during lamellocyte differentiation.for erythropoiesis and chromosomal translocations

within JAK2, and the transcription factor Tel has been In Drosophila, the Toll pathway regulates develop-
ment, immunity, and hematopoiesis (Anderson et al.,associated with leukemia (Lacronique et al., 1997; Peet-

ers et al., 1997; Neubauer et al., 1998; Parganas et al., 1985; Lemaitre et al., 1995; Qiu et al., 1998). In mammals,
this pathway primarily mediates innate immune re-1998). Murine STAT5, which is most similar to D-STAT,

is required for Tel/JAK leukemic transformation sponses through an array of Toll-like receptors (TLRs)
that respond to various microbial stimuli (Silverman and(Schwaller et al., 2000), and the hyperactivation of STAT

homologs has been associated with various cancers Maniatis, 2001). Signaling through numerous receptors,
including the TLRs and the tumor necrosis factor recep-including leukemias and lymphomas (Bromberg, 2002).

Furthermore, STAT5 is required in hematopoietic pro- tor, result in the activation of NF�B proteins, which medi-
ate immune and hematopoietic responses. Targetedgenitors and for proper myeloid cell function (Kieslinger

et al., 2000). Last, murine Raf-1 facilitates hematopoietic disruption of various murine NF�B/I�B components
causes a variety of hematopoietic disorders (reviewedcell survival as well as promotes B cell development

(Iritani et al., 1997; Mikula et al., 2001; Haughn et al., by Gerondakis et al., 1999), including proliferation and
differentiation defects. Not surprisingly, these hemato-2003).

The Toll/Cactus Pathway poietic deficiencies are often associated with defects
in innate and adaptive immune responses. Interestingly,The Toll (Tl) signal transduction pathway was first shown

to control dorsal/ventral patterning during embryogene- targeted disruption of I�B� causes extensive granulo-
poiesis (Beg et al., 1995), reminiscent of the overprolifer-sis (Anderson et al., 1985) and, subsequently, to be im-

portant for humoral immunity (Lemaitre et al., 1995; Ros- ation of hemocytes in cactus mutants of Drosophila (Qiu
et al., 1998). Last, many cancers, including a large num-etto et al., 1995; Ip and Levine, 1994). Additionally,

mutations that cause constitutive activation of the Tl ber of leukemias and lymphomas, have been associated
with the dysfunction of NF�B/I�B genes (see Rayet andpathway lead to hematopoietic phenotypes similar to

those observed for the JAK/STAT pathway, including Gelinas, 1999).
the expansion of the plasmatocyte and lamellocyte pop-
ulations as well as melanotic tumor formation (Gerttula Perspectives on Blood Development in Drosophila
et al., 1988; Qiu et al., 1998). In contrast, loss-of-function and Vertebrates
mutations in Tl as well as downstream effectors both As described above, hematopoiesis in Drosophila oc-
reduce the number of circulating hemocytes and sup- curs in two distinct temporal waves: one in the embryo
press gain-of-function-mediated melanotic tumor for- and another during larval development. Additionally,
mation (Qiu et al., 1998), further implicating this pathway these waves occur in the spatially distinct locations of
in proliferation control. Last, Tl signaling is normally an- the embryonic head mesoderm and the larval lymph
tagonized by the PcG protein Mxc, because mutations gland. This reinitiation and relocation of hematopoiesis
in mxc lead to hematopoietic defects that are sup- in Drosophila is similar to what is seen during vertebrate
pressed by loss-of-function mutations in the Tl pathway primitive and definitive hematopoietic stages (Figure 2A;
(Remillieux-Leschelle et al., 2002). Traver and Zon, 2002). Overall, Drosophila hematopoie-

Drosophila Toll is a transmembrane receptor that con- sis generates cells with functional similarity to cells of
trols the activity of the Rel transcription factors Relish, the granulocyte/macrophage branch of the vertebrate
Dorsal, and Dif, which share homology with mammalian lineage (Figures 2B and 2C). Furthermore, head meso-
NF�B proteins (Hashimoto et al., 1988; Schneider et al., derm hematopoiesis in Drosophila is rather similar to
1991; Rosetto et al., 1995; Govind, 1999; Silverman and primitive hematopoiesis in vertebrates in that both pri-
Maniatis, 2001). Cactus (an I�B homolog) functions as marily provide a developmental function during em-
an inhibitor of Rel transcription factors by sequestering bryogenesis. In contrast, immune functions become
these proteins in the cytoplasm. Toll signaling causes more important in later stages of development. In both
the degradation of Cactus, thereby allowing its Rel coun- Drosophila and mammals, embryonic development is
terpart to enter the nucleus and regulate transcription. protected from the environment, and thus pathogens
Gain-of-function mutations in Tl (such as Tl10b) and loss- are not usually encountered until hatching in the case
of-function mutations in cactus (such as cactusA2) both of Drosophila, or birth in vertebrates. Thus, secondary
cause increased nuclear Rel activity and hematopoietic periods of hematopoiesis, in the lymph gland of Dro-
defects (Gerttula et al., 1988; Belvin et al., 1995; Qiu et sophila larvae and definitive hematopoiesis in verte-
al., 1998). Although Tl function in Drosophila hemocyte brates, generate large populations of cells important

for immunity.proliferation has been well established, the identity of
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unpublished). Progenitor cells of the blood, cardiovas-
cular, and excretory systems are also closely related
molecularly and developmentally in the mesodermal
AGM domain of vertebrates. In remarkable similarity to
the situation in Drosophila, differentiation is induced
in response to multiple converging signaling pathways,
including FGF, BMP, and Wnt (see Bodmer and Ven-
katesh, 1998; Cripps and Olson, 2002).

The significant similarities in the way in which blood
cells develop in arthropods and vertebrates, and the
close relationship blood precursors have to cells of the
vascular and excretory system in both animal groups,
prompt the question of whether these systems might
be considered homologous. In other words, did the com-
mon Bilaterian ancestor possess blood cells, blood
vessels, and excretory organs that developed in close
proximity to each other? Comparative morphological
evidence, not contradicted by molecular phylogenetic
data, suggests that the Bilaterian ancestor was most
likely a small acoelomate or pseudocoelomate worm
similar to extant “lower” invertebrates, such as platyhel-Figure 3. An Evolutionary View of the Development of Hematopoi-

etic, Vascular, and Excretory Mesodermal Components minths (flatworms) or nemathelminths (Gerhart and
Kirschner, 1997). A specialized vascular system or respi-Primitive coelomates (A), insects (B), and mammals (C). See text

for details. ratory system was probably absent, though cells spe-
cialized for transport and excretions were likely present
because they exist in most extant Bilaterian phyla. OneIt is interesting to speculate that hematopoiesis in the
can further assume that groups of mesoderm cells inhead mesoderm of Drosophila and primitive hematopoi-
the Bilaterian ancestor could have formed epithelialesis in the yolk sac of mammals represent related pro-
structures lining internal tubules or cavities.cesses that have undergone a developmental transition

A vascular system made its first appearance in coelo-during evolution. Functionally and developmentally
mate worms, including both protostome taxa (e.g., anne-primitive macrophages in vertebrates are similar to Dro-
lids) and deuterostome taxa (e.g., hemichordates andsophila plasmatocytes. Unlike the macrophages derived
cephalochordates). In coelomates, the mesoderm trans-from definitive hematopoiesis, primitive macrophages
forms into an epithelial sac, the walls of which attachin mice retain proliferative capacity subsequent to differ-
to the ectoderm (somatopleura) and the inner organsentiation (Takahashi et al., 1989; Takahashi and Naito,
(splanchnopleura). Blood vessels are formed by tubular

1993), as is seen with plasmatocytes. Moreover, both
clefts bounded by the splanchnopleura (Figure 3A). The

plasmatocytes and primitive macrophages are thought
specialized splanchnopleural cells forming the vascular

to be important for sculpting and remodeling of tissues
tubes between them are contractile, myo-epithelial cells

during development. The relationship between head and thereby closely resemble cardioblasts in insects, to
mesoderm hematopoiesis in Drosophila and primitive which they have indeed been homologized in a number
hematopoiesis in vertebrates is further highlighted in of classical studies. Excretory nephrocytes are inte-
lower vertebrates such as zebrafish and Xenopus. Like grated into the vascular walls, which also gives rise to
Drosophila plasmatocytes, primitive macrophages in blood cells circulating within the blood vessels. Thus,
zebrafish originate in the mesoderm of the head region, blood, vascular, and excretory cells in these animals
though these cells subsequently migrate to the yolk sac were closely related and formed a single, functional
where they mature, as in mice (Herbomel et al., 1999). system.
Once mature, primitive macrophages leave the yolk sac Further evolutionary changes separated the three sys-
to colonize the anterior region of the embryo proper, tems, but, as we pointed out in this review, the close
where they begin to remove apoptotic cells. Similar relationship is still evidenced developmentally and by
primitive macrophages have been shown to be derived the existence of shared molecular mechanisms. In ar-
from the head region of Xenopus (Ohinata et al., 1990). thropods, blood, vascular, and excretory cells derive

As a further developmental correlate, a high degree from an equivalence group, the cardiogenic mesoderm
of similarity is apparent between lymph gland develop- (Figure 3B). The different cell types are separated from
ment in Drosophila and definitive hematopoiesis that each other during embryogenesis, but stay in close con-
occurs in the AGM region of mammals. Drosophila tact for much of development (e.g., lymph gland and
lymph gland progenitors develop from a subregion of the pericardial nephrocytes lined up next to the dorsal ves-
lateral mesoderm, termed the cardiogenic mesoderm, sel). In vertebrates, the AGM region gives rise to both
which also gives rise to vascular and excretory cells endothelial and blood precursors that migrate to various
(Figure 3). The specification of the cardiogenic meso- sites within the embryo to assemble into blood vessels
derm requires the input of FGF, Dpp, and Wg signaling, and diversify into separate hematopoietic lineages, re-
and is inhibited by N signaling (Frasch, 1995; Wu et al., spectively (Figure 3C). The rest of the AGM forms the
1995; Gisselbrecht et al., 1996; Bodmer and Venkatesh, mesonephros, which in many ways still resembles the

excretory nephridia of invertebrate coelomates.1998; Cripps and Olson, 2002; L. Mandal, U.B., and V.H.,
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Perrimon, N. (2003). Signaling role of hemocytes in Drosophila JAK/Despite the obvious developmental and morphologi-
STAT-dependent response to septic injury. Dev. Cell 5, 441–450.cal differences in the body plan of Drosophila and higher
Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., andvertebrates, many fundamental mechanisms of genetic
Thanos, D. (2000). Ordered recruitment of chromatin modifying andcontrol are conserved between them. A clear example
general transcription factors to the IFN-� promoter. Cell 103,

of this is the organization and expression of the homeo- 667–678.
tic gene clusters that pattern the anterior-posterior (A/P)

Akashi, K., Traver, D., Miyamoto, T., and Weissman, I.L. (2000). A
axis. At the molecular level, the homeotic genes are clonogenic common myeloid progenitor that gives rise to all myeloid
organized in generally the same linear order along the lineages. Nature 404, 193–197.
chromosome in both Drosophila and vertebrates and Alfonso, T.B., and Jones, B.W. (2002). gcm2 promotes glial cell
are correspondingly expressed in overlapping patterns differentiation and is required with glial cells missing for macrophage

development in Drosophila. Dev. Biol. 248, 369–383.along their respective A/P axes (Kmita and Duboule,
2003). Eye formation offers an additional example of Allman, D., Aster, J.C., and Pear, W.S. (2002). Notch signaling in

hematopoiesis and early lymphocyte development. Immunol. Rev.conserved molecular genetic mechanisms. Although the
187, 75–86.fully developed Drosophila eye shows little similarity to
Altshuller, Y., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Froh-the vertebrate eye, the function of a complex of proteins
man, M.A. (1996). Gcm1, a mammalian homolog of Drosophila glialincluding Pax-6 is crucial for the development of either
cells missing. FEBS Lett. 393, 201–204.

eye tissue (Gehring, 2002). Often, tissues such as verte-
Anderson, K.V., Bokla, L., and Nusslein-Volhard, C. (1985). Establish-brate and Drosophila wings are not homologous, yet
ment of dorsal-ventral polarity in the Drosophila embryo: the induc-

they follow a similar logic of development that includes tion of polarity by the Toll gene product. Cell 42, 791–798.
a common network of genes (Martin, 2001). Therefore, Armstrong, J.A., Bieker, J.J., and Emerson, B.M. (1998). A SWI/
the limited cell types and functions of Drosophila blood, SNF-related chromatin remodeling complex, E-RC1, is required for
compared to the relative complexity of mammalian tissue-specific transcriptional regulation by EKLF in vitro. Cell 95,

93–104.blood, should not be viewed as a deterrent to using
Drosophila as a model system of hematopoietic devel- Asha, H., Nagy, I., Kovacs, G., Stetson, D., Ando, I., and Dearolf,

C.R. (2003). Analysis of ras-induced overproliferation in Drosophilaopment. In fact, the conserved function of GATA/Runx/
hemocytes. Genetics 163, 203–215.FOG-like transcription factors, the similar use of signal-
Aster, J.C., and Pear, W.S. (2001). Notch signaling in leukemia. Curr.ing pathways, and the apparent similarities in develop-
Opin. Hematol. 8, 237–244.mental strategies alluded to in this review all suggest
Ayton, P.M., and Cleary, M.L. (2001). Molecular mechanisms of leu-that the use of Drosophila as a model system to study
kemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–hematopoietic development offers great potential for
5707.

the identification and characterization of novel genes
Badenhorst, P., Voas, M., Rebay, I., and Wu, C. (2002). Biologicaland functions that are relevant to vertebrate systems.
functions of the ISWI chromatin remodeling complex NURF. Genes

Furthermore, Drosophila should be useful in further Dev. 16, 3186–3198.
characterizing several factors already known to be im- Bangs, P., Franc, N., and White, K. (2000). Molecular mechanisms
portant for vertebrate hematopoiesis. For example of cell death and phagocytosis in Drosophila. Cell Death Differ.
the potential hematopoietic roles of Drosophila SCL 7, 1027–1034.
(HLH3B) and Drosophila Lmo (Beadex) await investiga- Bannister, A.J., and Kouzarides, T. (1996). The CBP co-activator is

a histone acetyltransferase. Nature 384, 641–643.tion, while the role of Drosophila Myb in hemocyte prolif-
eration and differentiation is being determined (David- Bantignies, F., Goodman, R.H., and Smolik, S.M. (2002). The interac-

tion between the coactivator dCBP and Modulo, a chromatin-asso-son et al., 2003). With the current effort in the
ciated factor, affects segmentation and melanotic tumor formationdevelopment of new tools and genetic markers specific
in Drosophila. Proc. Natl. Acad. Sci. USA 99, 2895–2900.for the Drosophila hematopoietic system, new genetic
Bate, M., and Martinez Arias, A. (1993). The Development of Dro-screens can be devised to facilitate the discovery of
sophila melanogaster (Cold Spring Harbor, NY: Cold Spring Harborregulatory genes and mechanisms. It is hoped that the
Laboratory Press).

ability to manipulate the function of such genes in Dro-
Beer, J., Technau, G.M., and Campos-Ortega, J.A. (1987). Lineage

sophila will aid in understanding function and dysfunc- analysis of transplanted individual cells in embryos of Drosophila
tion in human hematopoiesis. melanogaster. IV. Commitment and proliferative capabilities of me-

sodermal cells. Rouxs Arch. Dev. Biol. 196, 222–230.
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