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Every duality between a full subcategory V of topological R-modules and a full 
subcategory L? of Mod-S which contains S and is closed under isomorphisms is 
determined in a natural way by a bimodule R fJ9. This article examines the situation 
when 9 = Mod-S, in which case one gets a duality that may be considered as being 
one-half of a Morita duality. ‘B 19Y9 Academic Press, Inc. 

INTRODUCTION 

By a duality we mean a contravariant category equivalence. Covariant 
category equivalences will be referred to as equivalences. 

A bimodule R U, will be called a Morita-duality module if it is a balanced 
injective cogenerator for both R-Mod and Mod-S. A left R-module M 
is here called U”-rejlexirye if the natural R-homomorphism M--+ 
Hom,( Horn, (M, U), U) is an isomorphism. When R U, is a Morita- 
duality module, Hom,( , U) defines a duality between the V-reflexive left 
R-modules and the V-reflexive right S-modules and these subcategories 
are closed under submodules and epimorphic images. Conversely, if 
GY G R-Mod and GB 5 Mod-S are full subcategories closed under sub- 
modules and epimorphic images and containing RR and S,, respectively, 
then any duality between %? and 9 is naturally equivalent to Hom( , U) for 
some Morita-duality module RUS. This is a theorem due to Azumaya [2] 
and Morita [9], and we will refer to such a duality, ulhen it exists, as a 
Morita duality between R and S. 

In contrast to equivalences, which always exist for an arbitrary module 
category (e.g., between R-Mod and R--Mod, where R,, is the E x n matrix 
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ring over R), category dualities between entire module categories R-Mod 
and Mod-S never exist [ 1; Lemma 24.71. The reason for this is essentially 
an elaboration of the fact that the dimension of the dual of a countable 
dimensional vector space is not countable. 

When a Morita duality exists between R and S then R and S must be 
semiperfect rings [14] and the U-reflexive modules are precisely the 
modules which are linearly compact in the discrete topology. This was 
shown by Miiller in [lo]. In fact, a Morita duality exists for a ring R 
precisely when RR and its minimal injective cogenerator are linearly 
compact in the discrete topology [lo]. (The question of for which rings 
Morita dualities actually exist was already asked for commutative rings by 
Zelinsky [17]. It remains open at this time.) 

Topology having now entered the picture, however slightly, one should 
recall the classical Lefschetz duality [7] which states that when R is a field 
the standard Morita duality between finite dimensional vector spaces can 
be extended to a duality between all vector spaces which are linearly 
compact in a Hausdorff linear topology and all discrete vector spaces. 

The goals of this paper are twofold. First, we wish to extend Lefschetz 
duality to module categories over arbitrary rings, insofar as possible. A 
parallel objective is to provide an asymmetric generalization of Morita 
duality, which is itself of course symmetric with respect to R and S. The 
vehicle for doing this is the study of duality R-modules; these are discrete 
bimodules R U, such that RU is a finitely cogenerated, linearly compact, 
quasi-injective self-cogenerator and S is naturally isomorphic to 
Hom,( U, U). Duality modules should be regarded as “half-Morita-duality 
modules” because a discrete bimodule R U, is a Morita duality module if 
and only if it is a duality R-module and a (right) duality S-module. 

Duality R-modules are a particular instance of the strongly quasi- 
injective R-modules defined in [S]. It was shown there that a strongly 
quasi-injective R-module U yields a duality between the class of topological 
left R-modules which are isomorphic to closed submodules of a product of 
copies of R U and the class of right S-modules which are isomorphic to 
submodules of products of U,. 

In our particular situation, it is easy to deduce from [S] and [13] that 
duality R-modules are indeed associated with an asymmetrical form of 
Morita duality, and that their existence is necessary and sufftcient for a 
Lefschetz-type duality between a certain subcategory of linearly compact 
left R-modules and the category Mod-S of right S-modules. This kind of 
duality may exist even without an underlying Morita duality being present. 
If a Morita duality does exist between R and S, defined by the (discrete) 
Morita-duality module R U,y, then it extends to a duality between the 
category of linearly compact left R-modules which are (topologically ) 
cogenerated by R U and the module category Mod-S. 
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We have organized our presentation so that the topological dualities 
appear first, and then the algebraic dualities occur as subdualities. To 
describe them we first establish some conventions and definitions. 

RUS will always denote an R-S-bimodule endowed with a Hausdorff 
topology such that the elements of S induce continuous R-homomor- 
phisms. R-Top will stand for the category of Hausdorff topological left 
R-modules with the ring of operators R having the discrete topology. For 
M, NE R-Top, Cont,(M, N) will denote the group of continuous R-homo- 
morphisms from M to N. We call L E Mod-S U-reflexive if the natural 
S-homomorphism L + Cont,(Hom,(L, U), U) is an S-isomorphism; here 
Hom,fL, U) is endowed with the subspace topology induced by the 
product topology on UL. Similarly, ME R-Top is U-reflexive if the natural 
R-homomorphism M -+ Hom,(Cont, (M, U), U) is a homeomorphism, 
Finally, it is convenient to say that there is a U-dwlity between full 
subcategories 9? G R-Top and 9 E Mod-S when Cont,( , U): (Z + 9, 
Hom,( , U): 9 + V, and every module in %? and 9 is U-reflexive. 

Section 1 is devoted to basic facts about U-dualities. There is always 
a U-duality between the subcategories of U-reflexive modules in R-Top 
and in Mod-S (Theorem 1.6). In Theorem 1.3 we show that the dualities 
which will be of interest to us are always U-dualities. For if V is a full 
subcategory of R-Top which is closed under isomorphisms, direct products, 
and closed submodules and 9 is a full subcategory of Mod-S which 
contains S, and is closed under isomorphisms, and if there is a duality 
between V and 9, then this duality is naturally isomorphic to a U-duality 
with S 2 Cont R ( U, U). 

We consider when the U-reflexives are closed under the formation of 
quotients in Section 2. A key idea is that quotient modules in R-Top 
should not be endowed with the quotient topology; rather we assign 
quotients the U-topology which is defined as follows. For N a close 
submodule of ME R-Top, the sub-basic open neighborhoods of 0 in the 
U-topology are of the form Of -‘/iv for 0 an open neighborhood of 0 in U 
and f E Cont, (M, U) with Nf = 0. With the U-topology, M/N will be called 
a U-quotient of M. In Theorem 2.3, we show that if every U-quotient of R U 
and every quotient module of S, is U-reflexive then R U, is a duality 
R-module. 

Using results from [S] and [ 131, we present a converse in Section 3. To 
describe it, let Cogen, U (respectively, Cogen, U) denote the family of 
modules which are topologically isomorphic to a (closed) submodule of a 
direct product of copies of RU. We prove, as part of Theorem 3.1, that if 
R U, is a duality R-module then there is a U-duality between Cogen, U 
and Mod-S, Cogen, U = {ME Cogen, U 1 A4 is linearly compact >, and 
Cogen,U is closed under U-quotients. In particular, this is true for any 
Morita-duality module R U,. 
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Contained in such a duality between Cogen, U and Mod-S lies a purely 
algebraic subduality between subcategories of R-Mod and Mod-S. The 
elucidation of this subduality occupies our attention in Section 4. The key 
step is to consider R-modules in the U-adic-topology (here called the 
V-topology for brevity). This is the weakest topology with respect to 
which the natural R-homomorphism M-t UHomR(M,L’) is continuous. 
ME R-Mod will be U”-reflexive if and only if M, endowed with the 
U-topology, is U-reflexive. This enables us to describe the algebraic 
subduality associated with a duality R-module in Theorem 4.1. For 
instance, it turns out that the U-reflexive R-modules are precisely those 
which are cogenerated by R U and are linearly compact in the U-topology. 
Combining Theorems 4.1 and 4.5, one learns that a necessary and sufficient 
condition for the discrete bimodule RUS to be a duality R-module is that 
all quotient modules of R U and S, be U-reflexive. This shows in a very 
precise way that a duality R-module provides one-half of a Morita duality. 
We also indicate in this section how the theorems of Morita and Miiller on 
Morita duality are consequences of our approach. We conclude with a 
partial summary of the main results of this paper in Theorem 4.6. 

Section 5 is devoted to providing examples, particularly of duality 
R-modules which are not MO&a-duality modules. 

Much of the machinery used in this article already existed in the 
literature, some of it for some time. We could not have conceived of this 
project without Miiller’s linkage of Morita duality with linear compactness 
in [lo]; and we acknowledge our debt to Sandomierski’s pioneering work 
on duality modules [ 1.51. We rely heavily, particularly in Section 3, on the 
machinery developed in Menini and Orsatti’s comprehensive study [S] of 
the duality associated with a discrete (or compact) strongly quasi-injective 
module. They were apparently the first to recognize that a Morita duality 
extends to a Lefschetz-type duality. 

Another part of our inspiration for this project came from the work of 
Fuller for the case of equivalence between a completely additive sub- 
category of R-mod and a module category S-Mod. Fuller noted in [4] that 
such an equivalence is determined by a finitely generated, quasi-projective 
self-generator R U with S z Horn, ( U, U). Our results include a formal dual 
of this theorem. We are also indebted to J. Lambek for helpful seminar 
talks and private conversations. In addition, Lambek’s observation in [6] 
that a discrete quasi-injective R-module U is UA-injective in R-Top plays 
a key role in Section 3 of this paper, as it does also in [8]; and it was 
Lambek who suggested the use of U-copresented modules in Theorem 3.1. 

Finally, we note how our results compare with those of Oberst. In an 
ambitious and important work [12], Oberst produced a general duality 
theorem for Grothendieck categories. When specialized to module 
categories [12, p. 5281, it produces a subcategory STC(Hom,(U, U)) of 
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linearly compact (in the sense of [12]) Hom,( U, U)-modules and a 
Lefschetz-type duality STC(Hom,( U, U)) 2 Mod-S, under the assumption 
that every right ideal of S is the annihilator of a finite subset of U. When 
restricted further to a duality R-module R U,, this differs from our work in 
at least two respects. First, we avoid the hypotheses on the right ideals of 
S (which in view of Theorem 2.4 would restrict R U to be Noetherian); and, 
second, we get a duality directly between Mod-S and linearly compact 
R-modules, without having to pass to the completion Horn,(U, U). 

1 

Throughout this paper, unless otherwise indicated, R will denote a~ 
arbitrarji ring, S a ring with identity element, and U an R-S-bimodule 
endowed with a structure of a topological group such that the elements of S 
induce continuous R-homomorphisms. Homomorphisms will be written on 
the side of a module opposite to that of the scalars. R-Mod will stand for 
the category of left R-modules, Mod-S for the category of right S-modules, 
and Hom,(K, L) will often be abbreviated H,(K, L). 

For A4 and N topological R-modules, Cont,(M, N) or C,(M, N) will 
denote the group of continuous R-homomorphisms from -&I to N. 
Whenever we write Sg Cont,( U, U) we will mean that S is naturally 
isomorphic to Cont,( U, U) via its right action on U. By a topological 
R-monomorphism f: M-t N we shall mean an R-monomorphism which is 
continuous and open onto Mf endowed with the subspace topology; and 
a topological R-isomorphism will indicate an R-isomorphism which is also 
a homeomorphism. R-Top will denote the category of Hausdorff topologi- 
cal R-modules with the ring of operators R having the discrete topology. 
Note that to say that the topology is Hausdorff is equivalent to assuming 
that the intersection of the (basic) open neighborhoods of 0 equals 0. 

A topology on a left R-module M is called linear (and M is said to be 
linearly topologized) if it is invariant under translations and there is a basis 
of neighborhoods of 0 which consists of submodules of M. M thus becomes 
a topological module when R is endowed with the discrete topology. We 
will let R-Lin denote the category of Hausdorff linearly topologized left 
R-modules with continuous homomorphisms. Whereas all topologies in 
our main results will be linear and Hausdorff, this will not necessarily be 
required for the intermediate propositions 

For any right S-module L, the group Hom,( L, U) will always be assumed 
to carry the topology, induced 611 considering Hom,(L, U) as an R-sub- 
module of the product module UL. That is, the basic open neighborhoods of 
0 are of the form Lri(xi, . . . . x,) = (f E Hom,(L, U)) fxl, . . . . fxI E O] for some 
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Xl 7 . . . . X,E L and open neighborhood 0 of 0 in U. When U is discrete this 
is usually called the “finite topology” on Hom,(L, U). 

The following elementary observations are well known. 

PROPOSITION 1.1. For any Hausdorff topology on U, Hom,(L, U) is a 
closed submodtde of UL. 

PROPOSITION 1.2. For ME R-Top and L E Mod-S, there is a natural 
isomorphism of groups Hom,(L, Cont,(M, U)) 2 Cont,(M, Hom,(L, U)). 

Proof. The mutually inverse isomorphisms q5 and $ are defined 
by (rrf4)x=m(fx) and m(g”x)=(mg)x for any m~A4, XEL, 
f E H,(L, C,(M, U)), gECR(M, H,(L, U)). It is easy to verify that 
f) E CR (A4, H,( L, U)), that g*x E C, (44, U), and that 4 and $ are 
mutually inverse group homomorphisms with gti an S-homomorphism and 
f@ an R-homomorphism. 1 

For ME R-Top and L E Mod-S we define natural homomorphisms 
~~:M+Hom,(Cont.(M, U), U) and vL: L+Cont,(Hom,(L, U), U) in 
the usual way: (m,uM)f=mf and g(v,x)=gx for mEM, MEL, 
f ECont.(M, U), and gE Hom,(L, U). vLx is indeed a continuous map 
because for any open neighborhood 0 of 0 in U, O(v,x)-‘= O(x) is an 
open set in Hom,(L, U). Similarly, pM is a continuous map. 

We will call ME R-Top U-reflexive if pM is a topological 
R-isomorphism; similarly, LE Mod-S is called U-reflexive if vL is an 
S-isomorphism. It will be useful to say that there is a U-duality between full 
subcategories 59 E R-Top and 9 G Mod-S when Cont,( , U): V -+ 9, 
Hom,( , U): 9 + G!?, and every module in % and 9 is U-reflexive. 

The main result of this section is an analogue of Theorem 23.5 in [l]. 
It shows that the dualities which will be of interest to us are naturally 
isomorphic to U-dualities. (The proof given below demonstrates how to use 
Proposition 1.2 to simplify the proof given in Cl].) 

THEOREM 1.3. Suppose that W is a full subcategory of R-Top and that 23 
is a full subcategory of Mod-S which contains S, and is closed under 
isomorphisms. Let V 2: 9 be a pair f o mutually inverse dualities and let 
U = G(S) endowed with its canonical structure of R-S-bimodule. Then 

(i) S is naturally isomorphic to Cont, (U, U), and 

(ii) there is a natural isomorphism F( ) 2 Cont,( , U). 

IJ; additionally, % is closed under topological R-isomorphisms, direct 
products and closed submodules, then 
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(iii) there is a natural isomorphism G( ) 1 Hom,( , U), and 
(iv) ever)l ME % and every L E 9 is U-rejlexive. 

Prooj: The S-module structure on U= G(S) is defined by u. s = 
u(G(s,)j, where si E Hom,(S, S) is left multiplication by ss s. 

(i) Sg Hom,(S, S) g Cont,(G(S), G(S)) as rings, with the second 
isomorphism given by G. 

(ii) Let [: Z, -+ GO F and 11: Z3 + Fo G denote the assumed natural 
isomorphisms. Since F and G are full and faithful we have natural 
isomorphisms of groups 

C,(M, G(L)) = C,(GF(M), G(L)) G’ H,(L, F(M)) 

for any ME %?, L E -9. Hence we have natural S-isomorphisms F(M) z 
Hom,(S, F(M))rCont.(M, G(S))=Cont,(iCI, U), so Cont,(M, U)E~ 
and it follows that F( ) z Cont, ( , U). 

(iii) Next, suppose also that Q? is closed under topological 
R-isomorphisms, direct products, and closed submodules. We show that 
G(L)s Hom,(L, Uj for any LEE by showing that Hom,( , U) is adjoint 
to F. We have that Hom,( L, U) is closed in UL by Proposition 1.1. Hence 
Hom,( L, U) E ‘+? and therefore Hom,( ? U) is a functor 9 -+ 59’~ For any 
LEE and ME% we have by Proposition 1.2 that Hom,(L, F(M))2 
Hom,(L, Cont,(M, U))zCont,(M, Hom,(L, U)). Hence Hom,( , U) is 
adjoint to F, and the proof of (iii) is complete. 

(iv) To show that each ME% is U-reflexive, observe first that pnl is 
a monomorphism because Mz GF(M) in R-Top. We may assume that 
F( ) = Cont,( , U) and G( ) = Hom,( , U), and it will suffice to prove that 
[,cr = hp, for some h E Cont, (M, M). For it then follows, sequentially, that 
F,~ is an R-epimorphism (because i, is); that h is an R-isomorphism 
(because [, and pM are); that h is a topological R-isomorphism (because 
CM is and P.~ is a continuous R-isomorphism); and hence, finally, that 
pL,rf = h-I<, is a topological R-isomorphism. 

Let $ be the natural isomorphism defined in the proof of Proposi- 
tion 1.2. [,ECont.(M, GF(M)), so &E Hom,(F(M), F(M)). Also, 3 
induces an isomorphism F( ): Cont,(M, M) -+ Hom,(F(Mj, F(M)), so 
there exists h E Cont,(M, M) with CL= F(h). Hence, for every f E F(M) 
and every m E M, m([tf) = m(F(h)f) or (mc,)f= m(hf) = (mh)f= 
(mhp,w)f: Thus ml, = mhpM for all m E M, whence [hf = h,u,w. 

By a similar argument, one shows that vL is an S-isomorphism for each 
LE9. @ 
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One should recognize that there is always a U-duality between the sub- 
categories of U-reflexive modules in R-Top and Mod-S, just as is the case 
for module categories [l, Proposition 23.11. We show this in Theorem 1.6 
as a consequence of the following pair of fairly well-known results. 

PROPOSITION 1.4. For L, L’ E Mod-S, each g E Hom,(L, L’) induces an 
element g* =Hom,(g, l)~Cont.(Hom,(L’, U), Hom,(L, U)) defined by 
(fk* = fo g for f E H om,(L’, U). rf g is an epimorphism then g* is a 
topological R-monomorphism. 

Proox Let 0(x,, . . . . x,) be a basic open neighborhood of 0 in 
Hom,(L, U) with xi, . . . . x, E L and 0 an open neighborhood of 0 in U. 
Then (0(x 1, . . . . x,))(g*))‘=U(gx,, . . . . gx,) which is a basic open 
neighborhood of 0 in Homs(L’, U). If g is an epimorphism then every basic 
open neighborhood of 0 in Hom,(L’, U) is of this form, and the fact that 
g* is an R-monomorphism is well-known. 1 

Similarly, if f E Cont,(M, N) then ‘we will writef* for the induced map 
Cont,(f, 1) E Hom,(Cont,(N, U), Cont,(M, U)). 

We also need the following fact, whose proof is routine and is therefore 
omitted. 

PROPOSITION 1.5. Suppose that M’ +J-M+g M” -+ 0 is an exact 
sequence in R-Top. If g is an open map then the induced sequence 
0 --, Cont.(M”, U) +g* Cont,(M, U) -J* Cont,(M’, U) is exact. 

THEOREM 1.6. There is a U-duality between the subcategories $2 = 
{ME R-Top 1 M is U-rejlexive} and 9 = {L E Mod-S 1 L is U-rejlexive}. 

Proof We need only show that for each ME% and L ~9, M* = 
Cont,(M, U) and L* = Hom,( L, U) are U-reflexive. 

We first establish by a routine calculation that p&o vMM* = l,, and 
pLr.ov~=l,, (see [l, Proposition 20.141). Next, for ME%?, pM is 
a topological R-isomorphism. By Proposition 1.5, ~2~ is then an 
S-isomorphism. Hence I’~* is an S-isomorphism. Similarly, for L E $2, vL is 
an S-isomorphism. It then follows from Proposition 1.4 that vz is a 
topological R-isomorphism. Hence, so is ,uLL*. 1 

2 

Henceforth, U is assumed to be Hausdorfj Our objective in this section 
is to describe the properties that are necessary for R Us in order that 
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quotients of certain U-reflexive modules be U-reflexive. We begin by 
defining these properties. 

Recall that a module is finitely cogenerated (or finitely embedded) if 
whenever an intersection of submodules is 0 then already a finite inter- 
section is 0; this is equivalent to having a finitely generated essential socle 
[I, Proposition 10.71. Observe that a finitely cogenerated Hausdorff 
linearly topologized module is necessarily discrete. 

ME R-Top will be called quasi-injective if every element of Cont,(N, Mj 
with N a submodule of A4 can be extended to an element of Cont,(M, M); 
for M discrete this agrees with the usual definition in R-Mod. RU will be 
called a self-cogenerator if for every closed submodule K of U and every 
x E U\K there exists JE Cont,(U, U) with Kf = 0 and xf f: 0. For I? U 
discrete, this says precisely that every quotient module of R U can be 
embedded in a direct product of copies of R Ii. (This deviates from the most 
common definition; see [S] and [ 151. For discrete quasi-injective modules 
the two concepts will agree; see the proof of Theorem 3.1. Our preference 
for this definition lies in the fact that it is dual to the usual definition of 
self-generator; see [4, p. 5371.) 

For Kc U and LES, we set l,,,(L)= (u~U/uL=0), r,(K)= 
(s E S / KS = 0 >. Obserce that rvhen S z Cont, ( U, U), U is a selfcogeneratoi 
if and only> if K= I,r,(K) for euery closed submodule K of R li. 

A linearly topologized module M is linearly compact if every family of 
cosets {m,+Mi}iEI with each Mi a closed submodule of M satisfies 
the finite intersection property; that is, if niEl mi + Mj = @ then 
f-h mj + Mi = 0 for some finite set F 5 I. 

The following facts are well known [3]. 

(1) A linearly compact module is linearly compact in any weaker 
topology. 

(2) A direct product of linearly compact modules is linearly compact, 

(3) A linearly compact submodule of a Hausdorff linearly 
topologized module is closed. 

(4) A closed submodule N of a Hausdorff linearly compact module 
M is linearly compact and M/N is linearly compact in the quotient 
topology. 

(5 ) A continuous homomorphic image of a linearly compact module 
in a Hausdorff linearly topologized module is closed. In particular, a con- 
tinuous homomorphism of a Hausdorff linearly compact module into a 
Hausdorff linearly topologized module is a closed mapping on submodules. 
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We will frequently use the following basic fact. Its proof is 
straightforward and so will be omitted. 

PROPOSITION 2.1. The canonical R-homomorphism Hom,( Sfx), U) --to Ux 
is a topological R-isomorphism. In particular, Hom,(S, U) E U is a topologi- 
cal R-isomorphism. 

We now recall the connection between linear compactness of R U and 
injectivity of Us; see [ 15, Corollary 2, p. 3421 or [8, Theorem 9.41. 
A straightforward adaptation of the arguments used in the discrete case, 
which we omit, allows one to extend the same result to linearly topologized 
modules. 

PROPOSITION 2.2. Assume that U E R-Lin and that S r Cont, (U, U). 

(i) If RU is a self-cogenerator, then RU is linearly compact when Us 
is injective. 

(ii) If UC”’ is a self-cogenerator for every positive integer n, then Us 
is injective when n U is linearly compact. 

We are almost ready for the main result of this section. It turns out that 
a key step is to use a topology on quotient modules which is not, in 
general, the quotient topology. 

For N a closed submodule of ME R-Top, we define the U-topology on 
M/N to be the topology whose sub-basic open neighborhoods of 0 are of 
the form Of-‘/N, where 0 is an open nieghborhood of 0 in U and 
f E Cont,(M, U) with Nf = 0. By the U-topology on M we mean the 
U-topology on M/O. (Really, we should speak of the U(M, N, o)-topology 
since this topology depends on the topology 0 on M as well as on the 
choice of the submodule N of M, and not just on the isomorphism type of 
M/N. But no confusion should arise in practice.) The U-topology is, in 
general, weaker than the quotient topology (see Example 5.1) and is the 
weakest topology on M/N with respect to which every f E Cont,(M, U) 
with Nf = 0 induces a continuous homomorphism of M/N into U. It is a 
linear topology whenever U is linearly topologized. It will be convenient to 
call a quotient module M/N with N a closed submodule of A4 a U-quotient 
of M to indicate that it is endowed with the U-topology. 

THEOREM 2.3. Let U E R-Lin and suppose that every U-quotient of R U 
and every quotient module of S, is U-reflexive. Then R U is a discrete, finitely 
cogenerated, quasi-injective self-cogenerator which is linearly compact, and 
SgHom.(U, U). 

Furthermore, rs( ) and l”( ) determine mutually inverse lattice anti- 
isomorphisms between the R-submodules of U and the right ideals of S. 



DUALITY MODULES 267 

Proof. From Proposition 2.1 and since S, is U-reflexive, we have 
natural isomorphisms S z Cont, (Hom,(S, U), U) 2 Cont,( U, U). 

For any right ideal L of S, 1,(L) = fi,,LOs-l is closed in U and the 
kernel of vsfL: S/L+ C,(H,(S/L, U), U) is r,E,(Lj/L. Since vSJL is an 
isomorphism, r,l,(L) = L for each right ideal L of S. 

On the other hand, for K a closed submodule of R U, the U-quotient U/K 
is assumed to be U-reflexive. Since the kernel of pfiiK is IrFrs(K);‘K, 
I,r,(K) = K. Hence, R U is a self-cogenerator and rS( ) and tc;( ) are 
mutually inverse lattice anti-isomorphisms between the closed submodules 
of R U and the right ideals of S. 

Since R U is Hausdorff, (lie I Uj = 0, where the Ui, i E 1, are the open sub- 
module neighborhoods of 0 in U. Each Ui is also closed, and the lattice 
anti-isomorphism above together with the fact that S, is finitely generated 
guarantees that already 0 ie F Uj = 0 for some finite subset F c Z. Hence (0 1. 
is an open set which implies that R U has the discrete topology and is 
finitely cogenerated. In particular, S r Cont,( U, U) = Horn, (U, U). 

In view of Proposition 2.2(i), it remains only to show that R U is quasi- 
injective and U, is injective. To see this, we proceed as follows. Since R U 
is discrete, one has that: 

(i) For every .KE R U, the U-topology on U/K is the weak topology 
of Hom,( U/K, U) and hence Hom,(r,(K), U) r U/K; and 

(ii) For every L,c S,, Hom,(l,,(L), U) z S/L. 

From (i) and the fact that every right ideal of S is of the form r,(K), TJ, 
is injective. Moreover, since every submodule of R U is of the form EL’(L), 
we conclude from (ii) that R U is quasi-injective. 1 

In view of the preceding theorem, it is of interest to know when the 
quotient topology and the U-topology coincide. This is answered by the 
following elementary observation. 

PROPOSITION 2.4. For A4 E R-Top and N a closed sirbmodule of R AI, the 
following conditions are equioalent for M/N with the quotient topology. 

(ii The quotient topology on M/N coincides with the U-topoiogy 
on M/N. 

(ii) pMIN is a topological R-monomorphism. 

(iii) The canonical mapping j: M/N + UContR( MiN. L” is a topological 
R-monomorphism. 

(iv) M/N is topologically isomorphic to an R-submodule of U” for 
some set X. 

Proof: (i) = (ii) The quotient topology on M/N is Hausdorff because N 
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is closed in M, so n (0j-i/N) = 0 where the intersection runs over all the 
sub-basic U-open neighborhoods of 0 in M/N. In particular, fl ker f/N = 0 
where the intersection is over all f E Cont,(M, U) with Nf = 0. Since 
each such f induces an element f~ Cont.(M/N, U), we have that 
n gc cR(MIN. u) ker g = 0. Therefore, P~,M is a continuous R-monomorphism; 
and it is open because the quotient topology coincides with the U-topology 
on M/N. 

(ii) + (iii)j: M/N+ PtR(M’N,Li) is delined by rFzj= {Frg}g,cn(M,Ntu) for 
r?r E M/N. Observe that j= pM1,,, , “i where i is the inclusion mappmg of 
Hom,(Cont.(M/N, U), U) into U ContR(M’N,U). Hence j is a topological 
R-monomorphism when ,u&~,,~ is. 

(iii) * (iv) is trivially true. 
(iv)+(i) The U-topology on M/N is, in general, weaker than the 

quotient topology. On the other hand, let i: M/N+ Ux be the assumed 
topological R-monomorphism, rc, : U x--f U the projection map of Ux onto 
the x-coordinate, and n: I%+ M/N the quotient map. Then a family of 
basic open neighborhoods of 0 in M/N comprises those of the form 
fiL=, 0(irr,,)-i= nL=, O(rrri~,))‘/N for 0 an open neighborhood of 0 in 
U and xi, . . . . X~E X. Since each rein, E Cont,(M, U) and N(+n,,) =0, 
these neighborhoods are U-open. Thus the two topologies coincide. 1 

3 

In .this section we produce a converse to Theorem 2.3. That is, we give 
a description of the duality associated with a finitely cogenerated, quasi- 
injective self-cogenerator which is linearly compact. 

We will let Cogen,U (respectively, Cogen,U) denote the family of 
modules which are topologically isomorphic to a (closed) submodule of a 
direct product of copies of R U. ME R-Top is said to be copresented by R U 
if there exists an exact sequence 0 +M-+iUX-+UY in R-Top with i a 
topological R-monomorphism. 

The main result of this section can now be stated. 

THEOREM 3.1. Suppose that RU is a discrete, finiteIy cogenerated, 
quasi-injective self-cogenerator which is linearly compact and that 
SE Horn, ( U, U). Then the following hold. 

(i) There is a U-dl4alitv between Cogen, U and Mod-S. 
(ii) U, is an injective cogenerator. 

(iii) Cogen, U = (linearly compact modules in Cogen, U} = {modules 
copresented by R U} = { U-reflexive R-modules). 
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(iv) Cogen, U is closed under isomorphisms, direct products, closed 
submodules, and U-quotients. 

(v) For each L E Mod-S, rL( ) and fHs,L,c’,( ) are mutually inverse 
lattice anti-isomorphisms between the closed R-submodules of Hom,(L, U) 
and the S-submodules of L. Similarly, for each ME Cogen, U, I,Qf( ) and 
rcRtjII, (/) ( ) are mutually inverse lattice anti-isomorphisms between the 

S-submodules of Cont.(M, U) and the closed R-submodules of M. 

The new information here is the deescription of Cogen, U, and par- 
ticularly its closure property under U-quotients. However, we emphasize 
that this result is essentially available in the existing literature. In par- 
ticular, the second conclusion can be found in [ 10, Lemma 41, and the first 
conclusion is an immediate consequence of [8, Theorem 4.7] and the 
second conclusion. The proof presented here relies on interesting density 
argument [ 8, Theorem 2.41 as well as other machinery from [ 8 ] and [ 13 3. 

ProoJ: Since RU is a discrete quasi-injective self-cogenerator, it is 
strongly quasi-injective in the sense of [S, p. 2001, and hence it is a 
self-cogenerator in the sense of [S, p. 1941 and [lS, p. 3381; see [8, 
Corollary 4.51. From Proposition 2.2(ii), Us is injective. Moreover, since 
the socle of R U is essential in R U, U, is a cogenerator in Mod-S by [ 13, 
Proposition 4.71. Thus (ii) is proved and hence, by [8, Theorem 4.71: we 
get (i). 

To see that Cogen.U is closed under the formation of U-quotients, let 
N be a closed submodule of ME Cogen, U. From [S, Theorem 4.7 and 
Proposition 2.61, we learn that M/N is in Cogen, U. Let q: M/N -+ Ux be 
a topological R-monomorphism. RM is linearly compact and so M/N is 
linearly compact in the U-topology, and it follows that (M/N)rp is closed 
in Ux. Hence the U-quotient M/N is in Cogen, U. Thus (iv) is proved. 

If ME Cogen, U, then one may apply [8, Proposition 2.61 in a 
straightforward manner to show that M is copresented by x U. Conversely, 
if ME R-Top is copresented by R U, then M is topologically isomorphic to 
the kernel of a continuous homomorphism cp: Ux -+ Uy for some sets X 
and Y. Hence ME Cogen, U. (iii) is now easily verified. 

(v) is proved by the same arguments given in the second and third 
paragraphs of the proof of Theorem 2.3. i 

4 

The objective of this section is twofold: to elucidate the relationship 
between Morita dualities and the dualities described by Theorems 2.3 and 
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3.1 (the former are a special instance of the latter); and to provide purely 
algebraic restatements of these theorems. 

For R a ring with identity element, we call the bimodule R Us a Morita- 
duality module if it is a faithfully balanced bimodule (that is, there are 
natural isomorphisms SE Hom,( U, U) and R z Hom,( U, U)) such that 
R U and U, are injective cogenerators in R-Mod and Mod-S, respectively. 
The conditions are, of course, symmetric with respect to R and S. For con- 
venience, we call a full subcategory of R-Mod which contains RR and R U 
and is closed under homomorphic images a suitable subcategory of R-Mod. 
One version of Morita’s duality theorem for rings with identity element 
states that R Us is a MO&a-duality module if and only if Hom,( , U) and 
Hom,( , U) provide mutually inverse dualities between suitable sub- 
categories of R-Mod and Mod-S, respectively [ 1, Theorems 23.5 and 
24.11. Miiller showed that the natural domain for such a duality, when it 
exists, is the family of modules which is linearly compact in the discrete 
topology [lo, Theorem 21. 

The bimodules R Us which were featured in Theorems 2.3 and 3.1 
satisfied the requirement that R U be a discrete, finitely cogenerated, quasi- 
injective self-&generator which is linearly compact with S 2 Horn, (U, U). 
We will call such a bimodule a duality R-module (or, simply, a duality 
module). From Proposition 2.2(i) and Theorem 3.1 it is readily deduced 
that a discrete bimodule R U,, over a ring R with identity element, is a 
Morita duality module if and only if it is a duality R-module and a (right) 
duality S-module. It is for this reason that the duality theory presented 
here may be regarded as providing an asymmetrical generalization of the 
Morita duality theory. 

We begin by showing just how our results specialize when RUS is a 
duality module which is also a cogenerator in R-Mod. 

For ME R-Mod we define the V-topology on A4 (sometimes called the 
U-adic topology on M) to be the topology whose sub-basic open 
neighborhoods of 0 are of the form of -’ for C an open neighborhood of 
0 in U and f E Hom,(M, U). This is the weakest topology such that the 
canonical R-homomorphism i: M + UHomR(M,“) (defined for m E M by 
mi= {mf)fEHomR(M,u) ) is continuous. We will let M” denote the R-module 
M endowed with the V-topology. Obviously, Cont.(M”, U)= 
Hom,(M, U). 

Let nisi: M+ Hom,(Hom,(M, U), U) be the canonical R-homo- 
morphism defined for m EM, f~ Hom,(M, U) by (nzp&)(f) = nzJ: Observe 
that, as R-homomorphisms, nk = pLMi. An R-module M will be called 
U”-rejlexive when CL& is an R-isomorphism; equivalently, when pMi is a 
topological R-isomorphism. Thus, M is V-reflexive if and only if M” is 
U-reflexive. Similarly, a right S-module L is U”-rejlexive when the canoni- 
cal S-homomorphism v:: L + Hom,(Hom,(L, U), U) is an isomorphism. 
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We begin by stating a variant of Theorem 3.1 for R-Mod. Here we 
set V” = (ME R-Mod 1 M is U-reflexive > and 9” = {L E Mod-S/ L is 
U-reflexive). Compare [15, Theorem 3.81. 

THEOREM 4.1. Suppose that R U, is a duality module. Then 

(i) Hom,( , U) and Hom,( , U) are .mutuali~~ inverse dualities 
between 5?? and 9”. 

(ii) ?ZO = {ME R-Mod/M’ is linearly compact and U cogenerates M 
in R-Mod} = {ME R-Mod1M”ECogen.U). 

(iii) Zf MEW and N is a closed submodule of M’ then M/NEW. 
%‘” is closed under finite direct sums and %?’ 2 {ME R-Mod 1 M” is discrete :. 
In particular, %?’ contains every submodule and quotient module of Ufn) for 
each positive integer n. 

(iv) 9’ is closed under submodules, extensions, and finite direct sums. 
and &3!” contains every finitely generated right S-module. 

Proof. (i) is the algebraic analogue of Theorem 1.6 and is proved by a 
similar argument. It is true for any bimodule RUS; see [ 1, Proposi- 
tion 23.11. 

(ii) M is U-reflexive if and only if MC is U-reflexive. Thus, by 
Theorem 3.1, w” = {ME R-Mod 1 M” E Cogen, U> and M” is linearly 
compact. 

Conversely, assume that M” is linearly compact and that M is 
cogenerated by U in R-Mod. Then i: M” -+ UHomRCM,“j is a topological 
R-monomorphism. Since M” is linearly compact, M’i is closed in 
UHomR(M,G) and so M” E Cogen, U. 

(iii) Let N be a closed submodule of M” for MEW’. Then 
M” E C0gen.U and the U-topology on MO/N and the U-topology on 
M/N coincide. Hence by Theorem 3.1, (M/N)” E Cogen,U and so 
M/NEW. 

Next, let M,, . . . . M,EV and set M= @:= i Mi. The U-topology on M 
is weaker than the product topology obtained from the U-topologies on 
the individual Mi. Hence by Theorem 3.1, M” is linearly compact and so 
MEq3. 

If RM is discrete in the U-topology then 0 = fir= 1 ker fi for some 
fi, . . . . f, E Hom,(M, U). Hence M is isomorphic to an R-submodule of 
7Yn’. Since UC”) is discrete, M” E Cogen, U and so ME %?“. 

(iv) Let 0 + L’ -+ L -+ L” + 0 be an exact sequence in Mod-S. Since 

481/!25/2-2 
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Us is an injective cogenerator (Theorem 3.1), we obtain a commutative 
exact diagram 

o- H,(H,(L’, u), u)- H,(H,(L, U), Cl)--+ H,(H,(L”, u), u) 

T “;, T Y; T Y;” 
0-L’ +L ) L” - 0 

with each vertical map a monomorphism. 
If L E 9” then V: is an isomorphism. From a diagram chase, we conclude 

that vi, is an epimorphism. So L’ E 9” and 9” is closed under submodules. 
If in the above diagram we choose L = S’“‘, then the upper row becomes 

right exact because Homs(S@‘, U) 2 Ut”’ and R U is quasi-injective. We 
conclude that vi,, is an isomorphism in this case, and hence 9’ contains 
every finitely generated right S-module. 

A similar diagram chase establishes that 9” is closed under extensions. 
Finally, suppose that L,, . . . . L,E~’ and set L=@fEl L,. Then v: 

equals the composition of natural isomorphisms 

L = & L- @ % 
i=l 

I- @I ffR(ffS(L U), W=ffH,(H,(L, WV U). 

Hence L E 9’ and 9’ is closed under finite direct sums. 1 

COROLLARY 4.2. Suppose that R U, is a duality module which 
cogenerates each quotient module of ME R-Mod. Then M is V-reflexive if 
and only if RM is linearI-v compact in the discrete topology. 

ProoJ If M is linearly compact in the discrete topology, then it is 
certainly linearly compact in the U-topology, and hence M is V-reflexive 
by Theorem 4.1. 

Conversely, assume that M is U-reflexive. It suffices by Theorem 4.1 to 
prove that every R-submodule N of A4 is closed in the U-topology. This 
follows directly from Theorem 3.1(v) in view of the assumption that M/N 
is cogenerated by R U. 1 

Observe that the previous corollary implies, in particular, that when R U, 
is a Morita-duality module then the U-reflexive modules are precisely the 
modules which are linearly compact in the discrete topology [ 10, 
Theorem 21. It can also be used to derive Miiller’s important description 
of Morita dualities [lo, Theorem 11. 

PROPOSITION 4.3. A ring R with identity element possesses a Morita- 
duality module R U, if and only if RR and its minimal injectiue cogenerator 
are linearly compact in the discrete topology. 
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Proqf Suppose that R U, is a Morita-duality module and let R V be a 
minimal injective cogenerator for RR (that is, V is the injective hull of a 
direct sum of simple R-modules, one for each isomorphism type). Then R V 
is isomorphic to a direct summand of R U and hence is linearly compact 
in the discrete topology. Since RR is clearly U-reflexive, RR is linearly 
compact in the discrete topology by Corollary 4.2. 

Conversely, suppose that =R and its minimal injective cogenerator R U 
are linearly compact in the discrete topology. Then, with S = Horn, ( U, U), 
R U, is a Morita-duality module. For R U is finite dimensional by [15, 
Lemma 2.31, and hence is finitely cogenerated. Us is therefore an injective 
cogenerator by Theorem 3.1. Finally, R R is UC-reflexive by Corollary 4.2, 
so we have the desired natural isomorphism RI Hom,(Hom,(R, U), U) 
gHom,(U, U). 1 

The next lemma prepares the way for an algebraic version of 
Theorem 2.3. 

LEMMA 4.4. Szrppose that the canonical S-homomorphism vi: L -+ 
Hom,(Hom,(L, U), U) is an epimorphism. Then the subspace topology on 
Hom,(L, U) induced by UL coincides with the UC-topolog?l on Hom,(L, U-j. 

Proof: The sub-basic U-open neighborhoods of 0 in Hom,(L, U) 
are of the form 04-i for some 4 E Hom,(Hom,(L, U), U) and 0 
an open neighborhood of 0 in U. Since v: is an epimorphism by 
hypothesis, we may write 4 = vi(x) for some x EL. Hence 
Q-‘= (fEHom,(L, U)I(f)4~0} = {fEHom,(L, U)If(t$(+~)jEP)= 

(fe Hom,(L WI f(-x) E c}>, which is a sub-basic open neighborhood 
of 0 in Hom,( L, U). This argument is reversible and the topologies 
coincide. 1 

THEOREM 4.5. If R Us is a discrete binzodule szzch that ali quotient 
modules of R U and S, are U”-rejlexioe then R li, is a duality R-modzde. 

ProoJ: By hypothesis, (U/K)” is U-reflexive for every submodule K of 
R U. Since the U-topology on U/K and the U-topology on U/K coincide, 
each U-quotient UfK of R U is U-reflexive. 

Each cyclic right S-module SfL is UC-reflexive, so by the preceding 
lemma, Hom,(S/L, U) has the U-topology. It follows that each cyclic 
right S-module is U-reflexive. Theorem 2.3 may now be applied to give the 
desired conclusion. 1 

A Morita-duality module RUS is characterized by the fact that all 
quotient modules of RR, RU, S,, and Us are U-reflexive [l, 
Theorem 24.11. (This and the characterization of a Morita-duality module 
given in the Introduction are straightforward applications of the results of 
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this article. We will refrain from performing this exercise.) From 
Theorems 4.1 and 4.5 we know that the discrete bimodule R U, is a duality 
module if and only if all quotient modules of R U and S, are U-reflexive. 
This shows in an explicit way that a duality module can be thought of as 
a half-Morita-duality module. 

It is known that a ring S is right linearly compact in the discrete topol- 
ogy if and only if there exists a duality R-module R U,. Furthermore, in the 
“only if” part, U can be chosen to be a minimal injective cogenerator for 
Mod-S and R= Hom,(U, U); see [15, Theorem 3.101. Miiller asked in 
[lo] whether a commutative linearly compact ring must have a Morita 
duality. For arbitrary rings the answer is negative; see Example 1 of [ 151. 
Our results enable one to conclude that a right linearly compact ring S has 
a duality in the sense of Theorems 3.1 and 4.1. 

The final item in this section summarizes our main results. 

THEOREM 4.6. For a bimodule R U, E R-Lin the following conditions are 
equivalent. 

(1) RUs is a duality R-module. 

(2) Every U-quotient of R U and every quotient module of Ss is 
U-reflexive. 

(3) U is discrete and every quotient module of R U and S, is 
V-reflexive. 

(4) There is a U-duality between C0gen.U and Mod-S, and 
Cogen, U is closed under U-quotients. 

(5) U= G(S) for some duality G: $9 + %? where % is a full subcategory 
of R-Top which is closed under isornorphisms, closed submodules, 
U-quotients, and direct products, and 9 is a full subcategory of Mod-S which 
is closed under isomorphisms and contains all cyclic right S-modules. 

ProoJ (l)=~- (4) is just Theorem 3.1, and (4)* (5) is clear. (5) = (2) 
follows from Theorem 1.3, and (2) * (1) is in Theorem 2.3. Finally, as was 
noted above, the equivalence of (1) and (3) is contained in Theorems 4.1 
and 4.5. 1 

5 

This section is largely devoted to presenting examples of duality modules 
which are not already MO&a-duality modules. 

There are some obvious examples of duality modules. A simple left 
module U over an arbitrary ring R is a duality module and there is a 
duality between Cogen, U and the right vector spaces over S= 
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Horn, (U, U). (Since S = Horn, ( U, U) is a division ring in this case, every 
ME Cogen, U is topologically isomorphic to Ux for some A’.) This is but 
a slight generalization of Lefschetz duality for fields. 

Next, let I be an ideal of R. If U is a duality module over R/I then U 
is also a duality module over R. Hence, if R/Z has a Morita-duality module 
and U is a minimal injective cogenerator for R-Mod then r,,(1) is a duality 
module over R. 

From now on we assume that R is a ring with identity element. 
In Section 2, we introduced the U-topology on a quotient module M/N 

with N closed in M. It was this topology which was instrumental in our 
description of dualities. The following example shows that the U-topology 
may be strictly weaker than the quotient topology. 

EXAMPLE 5.1. Let R U, be a Morita-duality module which is not left 
artinian (for example, U could be the minimal injective cogenerator of a 
commutative non-Noetherian maximal valuation ring R [16, Exam- 
ple 2.41). By [l, Theorem lO.lO] there is a submodule K of R U with U/K 
not finitely cogenerated. 

Now R U has the discrete topology by assumption, so the quotient 
topology on U/K is also discrete. On the other hand, the U-topology on 
U/K has as basic open neighborhoods of 0 the finite intersections of kernels 
of elements of Hom,(U/K, U); that is, the kernels of elements of 
Hom,( U/K, UC"') for various n. Since all R-submodules of UC"' are finitely 
cogenerated there can exist no R-monomorphisms from U/K to UC"'. Hence 
(0) cannot be open in the U-topology on U/K and the U-topology is not 
discrete. (However, every submodule of U/K is closed in the U-topology. j 

We next show how a duality module gives rise to other duality modules. 

EXAMPLE 5.2 (Subduality). If R Us is a duality module and R iv, is a 
sub-bimodule of U which is essential in R U then R V is a duality module. 

For, linear compactness in the discrete topology and being finitely 
cogenerated are inherited by submodules. That R V is quasi-injective 
follows from a standard argument. R Y is quasi-injective if and only if 
VE= V, where E = Hom,( 0, 8) = Hom,( 9, 9) and 8 denotes the injec- 
tive hull of RIJ. Now S=Hom,(U, U)rE/r,(U) and rE(U)zrE(V)T so 
ii/E= I’S= V and R V is quasi-injective. (see [t, pp. 216-2173.) Finally, a 
quasi-injective module is a self-cogenerator if and only if it contains all 
(isomorphism types of) simple submodules of factors of itself. Since R U is 
a self-cogenerator, Sot, U contains all simple submodules of factors of R II. 
But Sot, U= Sot, V, so Sot, V must contain all simple submodules of 
factors of R V, proving that R V is a self-cogenerator. 
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EXAMPLE 5.3 (Noetherian PI rings). Assume that R is a Noetherian PI 
ring and ~2 = {M, , . . . . M,) is a finite collection of maximal ideals of R, 
closed under outgoing links [ 11, p. 2381. Set M= nl= r Mj and let U be 
the R-injective hull of R/M. Then R U is a duality module. 

For, by its definition, R l-J is finitely cogenerated. R U is in fact a left 
artinian injective module because it is a finite direct sum of injective hulls 
of simple modules, each of which is artinian by [S, Theorem 21. A left 
artinian module is linearly compact in the discrete topology [17]. 

A left long link P-+ -uut Q between maximal ideals of an FBN ring as 
defined in [12] is a nonzero homomorphism from E, to E,, where E, 
denotes the injective hull of the simple left module with annihilator P. Since 
4’ is closed under outgoing links there exists no nonzero homomorphism 
from R U to E, for any maximal ideal N $ JY. Every factor module of R U 
is finitely cogenerated [ 1, Proposition 10.101, and every simple submodule 
of a factor module of R U is isomorphic to a simple submodule of U (else 
there would be a nonzero homomorphism from RU to E, for some 
N I$ ,&‘). Hence we conclude that R U is a self-cogenerator, and R U is there- 
fore a duality module. 

The finite link-closed (that is, closed under both outgoing and incoming 
links) families of maximal ideals are precisely those whose intersections are 
classically localizable [ 111. Hence, by [S, Theorem 31, the finite link- 
closed families of maximal ideals are exactly those for which localization 
and completion yields a ring with Morita duality. There exist, however, 
unpublished examples (due to Miiller and the second author) of noetherian 
PI rings with finite families of maximal ideals closed under outgoing links 
but whose full link-closure is infinite. Thus, the embedding R + Biend, U 
for R U as above yields a localization and completion in a situation where 
a classical localization step is not available. 
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