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Abstract

Gauge-noninvariant vector field theories with superficially nonrenormalizable nonpolynomial interactions are studied. We
show that nontrivial relevant and stable theories have spontaneous Lorentz violation, and we present a large class of asymptoti
cally free theories. The Nambu—Goldstone modes of these theories can be identified with the photon, with potential experimental
implications.

00 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction An interesting and challenging issue that has re-
ceived little attention to date is the extent to which
Lorentz violation might be generic or even ubiquitous
Experiments show that nature is well described at in prospective fundamental theories. The present work
presently accessible energies by two field theories: the initiates a study of this issue. For definiteness, we fo-
Standard Model (SM) of particle physics, and Ein- cus attention on the elegant possibility that Lorentz
stein’s General Relativity. These are expected to arise symmetry is spontaneously broken in the underlying
as the low-energy limit of a fundamental theory of theory[6]. The basic idea is that interactions in the
quantum gravity at the Planck scaldp ~ 10'9 GeV. underlying theory induce nonzero vacuum expectation
The discrepancy betweedp and attainable energies values for one or more Lorentz tensors, which can
makes experimental signals from this underlying the- be regarded as background quantities in the vacuum
ory difficult to identify, but one promising class of throughout spacetime.
observables involves violations of Lorentz symmetry The analysis in this work adopts the methods of
arising from new physics at the Planck schle. Lagrangian-based quantum field theory, in which ob-
servable effects of Lorentz violation are described by
an effective low-energy field theofy—9], and it as-
 E-mail address: kostelec@indiana.edi.A. Kostelecky). sumes that the issue of obtaining the required hierar-
1 For a variety of recent reviews see, e.g., REsS5]. chy[7,10,4]for the associated coefficients for Lorentz

0370-2693 2005 Elsevier B.VOpen access under CC BY license.
doi:10.1016/j.physleth.2005.09.018


https://core.ac.uk/display/82181168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:kostelec@indiana.edu
http://dx.doi.org/10.1016/j.physletb.2005.09.018
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B. Altschul, VIA. Kostelecky / Physics Letters B 628 (2005) 106-112 107

violation can be addressed. In this language, the fun- through the use of the Polchinski formulation of the
damental theory may have many types of fields and RG [28]. Since any Lorentz violation in nature is a
interactions, including ones that are nonrenormaliz- weak effect, we restrict attention to the linearized form
able at the level of the effective low-energy theory. of the RG transformation, in which only terms that
A comprehensive study of the likelihood of Lorentz vi-  are first-order in the interaction are retained. The lit-
olation at this level appears infeasible at present. How- erature for the Lorentz-invariant scalar case contains
ever, in Lorentz-invariant scalar field theories, certain some discussion about the persistence of the nonpoly-
nonpolynomial and hence superficially nonrenormal- nomial interactions when the full nonlinear RG is con-
izable interactions have been shown to be relevant in sidered[29]. However, a nonperturbative demonstra-
the sense of the renormalization group (RG) by study- tion to the contrary would require showing that the
ing the natural cutoff dependences of the coupling nonpolynomial potentials can be expanded as a sum of
constantg11]. The Gaussian fixed point of the RG an infinite number of irrelevant RG modes, a challeng-
flow is ultraviolet-stable along certain directions in the ing task. Moreover, there is evidence for persistence:
parameter space of interactions, and these directionsin the limit where the number of scalar-field compo-
correspond to nontrivial asymptotically free theories. nentsis large, it is known that the RG equations for the
Here, we exploit this idea by generalizing the scalar nonpolynomial modes can be integrated into a region
analysis to the case of vector fields and investigating far from the fixed poin{30]. This suggests that the
the occurrence of spontaneous Lorentz violation in the novel potentials exist outside the linearized regime for
resulting theories. finite-component fields as well. Other generalizations
The prototypical field theories for Lorentz viola-  of the original results include Ref@1,32]and a study
tion with a vector fieldB* are the so-called bumblebee of the impact of Lorentz violation on asymptotically
models[12].? These involve a gauge-noninvariant po- free scalar and spinor field theorig8]. No evidence
tential V(B* B,,) that has a minimum at nonze" exists for relevant nonpolynomial theories involving
inducing spontaneous Lorentz violation. We consider spinor fields, but a leading-order analysis shows that
a generic model of this type with a conventional Lorentz violation is a prerequisite for their existence, a
Maxwell-type kinetic term and an arbitrary nonpoly- conclusion compatible with the results for vector fields
nomial potential, as might arise from a fundamental obtained below.
theory, and we take RG relevance of the interactions
and stability of the associated quantum field theory
as practical criteria determining acceptable models for 2. Running the bumblebee
our study. These assumptions make it possible to ad-
dress the ubiquity of Lorentz violation in a definite Consider a theory for a vector-valued ‘bumblebee’
context. Surprisingly, we find that consistent stable potential fieldB* with Lagrange density
relevant theories of this typmust have spontaneous
Lorentz violation and that a large class of such theories , — _EBuv By + V(B*B,), (1)
arises from superficially nonrenormalizable bumble- 4
bee models. Moreover, these theories naturally containwhere B,,, = 3, B, — 9, B, is the field strength. The
Nambu—Goldstone (NG) mod¢85] associated with potentialV is assumed to be representable as a power
spontaneous Lorentz violation that can be identified series inB2, and it violates gauge invariance. For the
with the photon, a result with potential experimental simple case/ = m2B?/2, the theory describes a free

consequences. massive vector boson. Potentials suctVas i(B2 —

To perform the analysis, we study the flow in the 52)2/4 for constanb? produce bumblebee models de-
Wilson formulation of the RG26], in which the the- scribing spontaneous Lorentz violation. Here, we con-
ory is considered with a momentum cutoff. An analy- sider a theory with more general nonpolynomiialin
sis with a more general cutoff is also possif¥], what follows, we introduce a momentum cutdiffrep-

resenting the only scale in the system, and we insert
appropriate powers ol in V to render dimensionless
2 Recent literature includes Ref§,13-24] all the couplingg11].
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To study the RG flow for the theorfd), it is con-
venient to Wick rotate the variables and operate in

Euclidean space. For scalar fields, the Euclidean RG

equations are knowf34]. The RG calculations for the

Wick-rotated vector field parallel those for an SO(4)
multiplet of four scalar fields, except for a minor mod-
ification arising from the structure of the kinetic term.
At tree level, the transversality of the bumblebee ki-

netic term ensures there are only three propagating

modes contained in the four-component figld. This

feature remains true in the RG analysis because no ki-

netic contributions to the two-point function for the
fourth mode can arise. The relevant diagrams eithe

have both external legs on the same vertex, yielding a

tadpole and no kinetic contribution, or they have an in-
ternal line for the fourth mode, which vanishes. Since
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theories have nontrivial continuum limits. It is conve-
nient to parametrize the coupligas

c
k=2 ©)

so the sign ofc gives the sign of the slope df, at
z=0.

Substantial additional complexities arise when the
theory in Euclidean space is reconverted to Minkowski
spacetime. For the scalar-field cagé = Z?zl(qﬂ)z
is guaranteed to be positive, but the analogous quan-

tity —B? = —B"B,, for vector fields can be either

g:

r Positive (spacelikeB") or negative (timelikeB").

This complicates the analysis of the stability of these
theories. Furthermore, any nontrivial, stable, asymp-
totically free theory of this type necessarily involves

only three modes propagate rather than four, we must SPontaneous Lorentz breaking. This follows because

replace the zero-separation scalar propagator

. 4 ik
jk _ d p §
AF 0) = (27_[—)4 ? (2
Ipl<4A
with the transverse propagator
D/w(o) - _ / d4p (&MY — p“Pv/pz)
F (27.[)4 p2
Ipl<A
3 342
= _ZA*;”(O) =— 64n25H”. (3)

However, the extra factor of/3 relative to the scalar
case contributes only to the overall normalization of
the vector field.

The asymptotically free solutions of the linearized
RG equations arfl1]

Ve (B?) = gAY Mk —2,2,2) — 1]. (4)

Here, M(«a; B8;z) is the confluent hypergeometric
(Kummer) function35],

az o+l 72
M(a’ﬂ’z)_1+ﬂll+ﬂ(ﬁ+1)2! (5)
with z = —327°B2/3A2. The parameter in Eq. (4)
describes the growth of the coupling constanthen
the cutoff scaleA is changed. If all modes with mo-
menta in the rangel1 < |p| < Ag are integrated out
of the theory and the fields rescaled accordingly, then
the renormalizeq shifts to g(Ag/A1)% . Asymptot-
ically free theories must have > 0, and only these

—+ ..,

z can now be positive or negative. ¥, either in-
creases or decreases & 0, then there is a state
with nonzeroB* having lower energy than a state
with B* =0, soB* develops a Lorentz-violating vac-
uum expectation value. If instedd has a vanishing
derivative at; = 0, thenc = 0, the potential vanishes
identically, and the theory is trivial.

3. Stability analysis

To determine whiche correspond to stable theo-
ries, we examine the asymptotic behavior 6f as
z — 400 andz — —oo. For large positiver, the as-
ymptotic formula

[(B)z* Per @
')

holds, with all corrections being suppressed by powers
of z71. Also useful is the Kummer formula

M(a; B;2) =

M(a; B; —2) =e *M(B —a; B; 2),

which is an exact relation.
Consider first the case of a spacelike expectation

value forB*, so that the minimum o, has—B2 > 0

and hencez > 0. This parallels the case of positive
vacuum expectation value fgr [11]. Suppose: < 0.
The potential is then decreasing withat z = 0, so

if V. diverges to positive infinity for large then at
least one stable minimum must exist for 0. Eq.(7)
showsV, indeed diverges as — 400, and its sign

(8)
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is determined by the sign af/(x — 2)['(k — 2) or, In summary, we find that theories having poten-
equivalently, by the sign of-I'(x — 1). This is pos- tials V, with 0 < ¥ < 1 are stable, with minima lying
itive when« lies in one of the open interval®, 1), at spacelike values aB*. Theories with 1< k < 2
(-2,-1), (—4,-3), etc. Since a nontrivial theory and 2< « < 4 are unstable, while the cagse= 2 is
must havec > 0, the only relevant range is9« < 1. trivial. Stability is restored fok > 4, and the vacuum

In contrast, ifc > O, then there are no stable potentials value of B# becomes timelike. A timelike vacuum
with local minima on the positive-axis because either  value for B* may in fact be favored because the po-
Ve > —oo0 asz — +oo or V, increases monotoni- tentials leading to this form of symmetry breaking are
cally. more relevant.

The potentialsV, of interest that generate a space- The potentials for O< x < 1 are discussed in
like expectation value foB* are therefore those with  Ref.[11]. The hypergeometric functiond (« —2; 2; z)
¢ <0 and O< « < 1, corresponding t@ > 0 in the have minima withz < 10 for nearly allx, and the

rangelc/2| < g < |c|. The stability of V, for z <0 values of the Kummer functions at these minima are

must, however, also be verified. For negatiye typically also less than 10. However, as~> 1 the po-
tential evolves into an unstable inverted parabola, and

Ve(B?) =gle 1M (4—k;2;12]) — 1]. 9) so both the location of the minimum and its value di-

verge in this limit. In the timelike range > 4, the po-
tential may possess multiple local minima at negative
values ofz. However, the exponential damping factor
e~ in Eq. (9) ensures that the one with the small-
est|z| is always the global minimum. As increases,
the wavelength of the oscillations ¥ (z) decreases,
and the location of the minimum is pushed to smaller
values of|z|. This location may be calculated numer-
ically, and it is roughly given bymin &~ —6/(k — 3).
The valueV, min Of V,. atzmin is consistently close to
Viemin ~ —0.1g A%(k — 3).

In the range O< « < 1, the hypergeometric func-
tion grows faster withz| thanel?l = M(2; 2; z). Since
g > 0, it follows thatV, is positive for all negative.
These theories are therefore stable, with a spacelike
expectation value foB* and spontaneous Lorentz vi-
olation.

Next, consider the case of a timelike expectation
value for B#, for which the vacuum has B2 < 0 and
z < 0. Any stable theories of this type must have:
1, and alsa > 0 is required for stability ag — +oo.
Moreover, ag — —oo the asymptotic behavior of the
hypergeometric function is determined by

. 4. Featuresand implications

2—k
e*IZIM(4_ ;2 |Z|) ~ ¢ F(ZL
K—=2 K—=2 T'(4-x) We have shown thaB* must develop a Lorentz-
(10) violating vacuum expectation value in any nontrivial
For 1< « < 2, this diverges to negative infinity for ~ stable theory. There are many potential implications of
large negative, so the potentials in this range are un- this scenario. An immediate one concerns the interpre-
stable. Fok = 2, the potential vanishes. For> 2, we tation of the excitations about the vacuum. Denoting
find Ve — —c/(x — 2) asz — —o0, since|z|>* — 0. the vacuum value a$B*) = b*, we may parame-
The theory is therefore stable if there exists-a0 for trize B* as
which V, < —c¢/(x — 2), which occurs if and only if
M (4 — k; 2; |z]) has a root. This function cannot have BY =1+ p)b" + A%, (11)
a root unlesg > 4 because otherwise all the terms in whereb* A, = 0. Defining F,, = 8, A, — 3,A,, the
the sum(5) are positive. HoweverM («; 2; |z|) does kinetic term forA* is found to be—%lFl”FW. More-
indeed have a root far sufficiently large and nega- over, at lowest order only fluctuations in cause
tive. The absolute value of the smallest root decreaseschanges in the potential term in the energy, so there
asa becomes more negati86]. In fact, there is a  is no mass term foA*. We therefore can identifp#
root for anya < 0, i.e., anyx > 4: if -1 <a <0, with the photon field.
then the asymptotic value dfl («; 2; |z]) is negative The notation in Eq(11) is chosen to match that of
and so it must possess a root. Ref.[19], which provides a general description of the
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NG modes associated with spontaneous Lorentz viola- of B? about its vacuum valuk*b, = b?. This curva-
tion and presents the complete effective action46r ture is always proportional toA2. However,g must
in various space—times. In this context, excitations be small for the linearized calculations to be valid,
around the vacuum of the field* are the NG modes  while the natural physical cutoff scaleis expected to
associated with spontaneous Lorentz breaking, while be very large, possibly of the order tfp. It is there-
vacuum excitations gb are the NG modes for sponta- fore reasonable to expect that the particles associated
neous diffeomorphism breaking. The masslessness ofwith the fluctuations o032 are unobservable in a low-
the photon follows directly from this interpretation as energy theory. A large value efimplies both smalb?
a consequence of the breaking of Lorentz invaridnce and a large mass for these particles, so weak Lorentz
rather than the existence of gauge symmetry. The ef- violation is naturally associated with unobservability
fective action also contains higher-order corrections of the massive mode.
to conventional electrodynamics that could be sought  For « > 4, the potential remains finite at infinite
in experimental tests. The superficially nonrenormal- positive timelike values ofB2. The energy density
izable couplings are suppressed by powersicind required to shift the expectation value of the field ar-
vanish in the continuum limit. bitrarily far from its vacuum value therefore remains
Since at leading order the potentiéf satisfies the  finite. However, ifA is of the order of\ p, this energy
orthogonality conditio* A, = 0, the equivalentcon-  density is proportional t(ng;. This is suppressed by
ventional electrodynamics must be defined in an axial only one power ofg relative to the naive scale of the
or generalized axial gauge. One check on the quantumcosmological constant. The energy density required to
equivalence between electrodynamics and the theorygenerate these large field values exists only in the early
(1) at leading order is provided by a comparison of Universe, when high-temperature corrections are ex-
the corresponding transverse propagators. In fact, thepected to restore the broken Lorentz symmetry.
Euclidean propagator for electrodynamics subject to  Another interesting feature of the timelike case is
the gauge conditioh* A, =0 ist the inverse variation witk of the locations of the min-
ima of theV, potentials zmin ~ —6/(x — 3). Suppose

Dy’ (x —y) the underlying theory contains a sum of nonpolyno-
d4 . mial interactionsd/, with values ofc ranging to a max-
— P —ipx—y) . . " :
=- We imum kmax and with coefficients for the differerit,
1 2 Loy L potentials controlled by the details of the fundamen-
= [8’“’ 1 b PhpY — M] tal physics. When the spontaneous Lorentz breaking
p? (b - p)? (b-p) is studied in a lower-energy effective field theory with

(12) a smaller value of the cutoff, then the effective poten-
Within the subspace of propagating modes, this is tial is dominated by thos&, with « in the vicinity
equivalent to the corresponding propagator for the the- of kmax because these potentials grow the most rapidly
ory (1). as the cutoff decreases. The magnitude of the Lorentz-
The formulation of the theoryl) involves three  violating vectorb* is then proportional to A, /kmax.
propagating modes, and three modes also appear af-Since kmax represents the maximum in a potentially
ter the spontaneous Lorentz breaking. Two are photon large collection ofc values, it can naturally be big.

modes contained iM*. The third mode is massive,
with excitations that change the value®? and hence
the potential. The curvature at the global minimum of

This could provide a partial explanation for the small
size of any Lorentz violation in nature.
Additional physical implications of our scenario

the potential determines the mass of the fluctuations can be explored by extending the the¢tyto include

3 In the context of electrodynamics without physical Lorentz vi-
olation, this interpretation has a long history. See, for example,
Ref.[37].

4 For a discussion of the propagator in axial gauges see, for exam-

ple, Ref.[38].

couplings betweerB* and one or more other fields.
For example, introducing a Dirac fermion fiejd of-

fers various possibilities for interactions betwet

and fermion bilinears. Note that gauge-noninvariant
couplings are acceptable here, unlike the usual case
of quantum electrodynamics (QED), because the ini-
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