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Abstract

Gauge-noninvariant vector field theories with superficially nonrenormalizable nonpolynomial interactions are stud
show that nontrivial relevant and stable theories have spontaneous Lorentz violation, and we present a large class of
cally free theories. The Nambu–Goldstone modes of these theories can be identified with the photon, with potential exp
implications.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Experiments show that nature is well described
presently accessible energies by two field theories
Standard Model (SM) of particle physics, and E
stein’s General Relativity. These are expected to a
as the low-energy limit of a fundamental theory
quantum gravity at the Planck scale,MP � 1019 GeV.
The discrepancy betweenMP and attainable energie
makes experimental signals from this underlying t
ory difficult to identify, but one promising class o
observables involves violations of Lorentz symme
arising from new physics at the Planck scale.1

E-mail address: kostelec@indiana.edu(V.A. Kostelecký).
1 For a variety of recent reviews see, e.g., Refs.[1–5].
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.09.018

Open access under CC BY license.
An interesting and challenging issue that has
ceived little attention to date is the extent to whi
Lorentz violation might be generic or even ubiquito
in prospective fundamental theories. The present w
initiates a study of this issue. For definiteness, we
cus attention on the elegant possibility that Lore
symmetry is spontaneously broken in the underly
theory [6]. The basic idea is that interactions in t
underlying theory induce nonzero vacuum expecta
values for one or more Lorentz tensors, which c
be regarded as background quantities in the vac
throughout spacetime.

The analysis in this work adopts the methods
Lagrangian-based quantum field theory, in which
servable effects of Lorentz violation are described
an effective low-energy field theory[7–9], and it as-
sumes that the issue of obtaining the required hie
chy [7,10,4]for the associated coefficients for Loren
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violation can be addressed. In this language, the
damental theory may have many types of fields
interactions, including ones that are nonrenorma
able at the level of the effective low-energy theo
A comprehensive study of the likelihood of Lorentz v
olation at this level appears infeasible at present. H
ever, in Lorentz-invariant scalar field theories, cert
nonpolynomial and hence superficially nonrenorm
izable interactions have been shown to be relevan
the sense of the renormalization group (RG) by stu
ing the natural cutoff dependences of the coupl
constants[11]. The Gaussian fixed point of the R
flow is ultraviolet-stable along certain directions in t
parameter space of interactions, and these direc
correspond to nontrivial asymptotically free theori
Here, we exploit this idea by generalizing the sca
analysis to the case of vector fields and investiga
the occurrence of spontaneous Lorentz violation in
resulting theories.

The prototypical field theories for Lorentz viola
tion with a vector fieldBµ are the so-called bumblebe
models[12].2 These involve a gauge-noninvariant p
tential V (BµBµ) that has a minimum at nonzeroBµ

inducing spontaneous Lorentz violation. We consi
a generic model of this type with a convention
Maxwell-type kinetic term and an arbitrary nonpol
nomial potential, as might arise from a fundamen
theory, and we take RG relevance of the interacti
and stability of the associated quantum field the
as practical criteria determining acceptable models
our study. These assumptions make it possible to
dress the ubiquity of Lorentz violation in a defini
context. Surprisingly, we find that consistent sta
relevant theories of this typemust have spontaneou
Lorentz violation and that a large class of such theo
arises from superficially nonrenormalizable bumb
bee models. Moreover, these theories naturally con
Nambu–Goldstone (NG) modes[25] associated with
spontaneous Lorentz violation that can be identifi
with the photon, a result with potential experimen
consequences.

To perform the analysis, we study the flow in t
Wilson formulation of the RG[26], in which the the-
ory is considered with a momentum cutoff. An ana
sis with a more general cutoff is also possible[27],

2 Recent literature includes Refs.[9,13–24].
through the use of the Polchinski formulation of t
RG [28]. Since any Lorentz violation in nature is
weak effect, we restrict attention to the linearized fo
of the RG transformation, in which only terms th
are first-order in the interaction are retained. The
erature for the Lorentz-invariant scalar case conta
some discussion about the persistence of the nonp
nomial interactions when the full nonlinear RG is co
sidered[29]. However, a nonperturbative demonst
tion to the contrary would require showing that t
nonpolynomial potentials can be expanded as a su
an infinite number of irrelevant RG modes, a challe
ing task. Moreover, there is evidence for persisten
in the limit where the number of scalar-field comp
nents is large, it is known that the RG equations for
nonpolynomial modes can be integrated into a reg
far from the fixed point[30]. This suggests that th
novel potentials exist outside the linearized regime
finite-component fields as well. Other generalizatio
of the original results include Refs.[31,32]and a study
of the impact of Lorentz violation on asymptotical
free scalar and spinor field theories[33]. No evidence
exists for relevant nonpolynomial theories involvi
spinor fields, but a leading-order analysis shows
Lorentz violation is a prerequisite for their existence
conclusion compatible with the results for vector fie
obtained below.

2. Running the bumblebee

Consider a theory for a vector-valued ‘bumbleb
potential fieldBµ with Lagrange density

(1)L= −1

4
BµνBµν + V

(
BµBµ

)
,

whereBµν = ∂µBν − ∂νBµ is the field strength. The
potentialV is assumed to be representable as a po
series inB2, and it violates gauge invariance. For t
simple caseV = m2B2/2, the theory describes a fre
massive vector boson. Potentials such asV = λ(B2 −
b2)2/4 for constantb2 produce bumblebee models d
scribing spontaneous Lorentz violation. Here, we c
sider a theory with more general nonpolynomialV . In
what follows, we introduce a momentum cutoffΛ rep-
resenting the only scale in the system, and we in
appropriate powers ofΛ in V to render dimensionles
all the couplings[11].
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To study the RG flow for the theory(1), it is con-
venient to Wick rotate the variables and operate
Euclidean space. For scalar fields, the Euclidean
equations are known[34]. The RG calculations for th
Wick-rotated vector field parallel those for an SO
multiplet of four scalar fields, except for a minor mo
ification arising from the structure of the kinetic term
At tree level, the transversality of the bumblebee
netic term ensures there are only three propaga
modes contained in the four-component fieldBµ. This
feature remains true in the RG analysis because n
netic contributions to the two-point function for th
fourth mode can arise. The relevant diagrams ei
have both external legs on the same vertex, yieldin
tadpole and no kinetic contribution, or they have an
ternal line for the fourth mode, which vanishes. Sin
only three modes propagate rather than four, we m
replace the zero-separation scalar propagator

(2)∆
jk
F (0) =

∫
|p|<Λ

d4p

(2π)4

δjk

p2

with the transverse propagator

D
µν
F (0) = −

∫
|p|<Λ

d4p

(2π)4

(δµν − pµpν/p2)

p2

(3)= −3

4
∆

µν
F (0) = − 3Λ2

64π2
δµν.

However, the extra factor of 3/4 relative to the scala
case contributes only to the overall normalization
the vector field.

The asymptotically free solutions of the lineariz
RG equations are[11]

(4)Vκ

(
B2) = gΛ4[M(κ − 2;2; z) − 1

]
.

Here, M(α;β; z) is the confluent hypergeometr
(Kummer) function[35],

(5)M(α;β; z) = 1+ α

β

z

1! + α(α + 1)

β(β + 1)

z2

2! + · · · ,

with z = −32π2B2/3Λ2. The parameterκ in Eq. (4)
describes the growth of the coupling constantg when
the cutoff scaleΛ is changed. If all modes with mo
menta in the rangeΛ1 < |p| < Λ0 are integrated ou
of the theory and the fields rescaled accordingly, t
the renormalizedg shifts tog(Λ0/Λ1)

2κ . Asymptot-
ically free theories must haveκ > 0, and only these
theories have nontrivial continuum limits. It is conv
nient to parametrize the couplingg as

(6)g = c

κ − 2
,

so the sign ofc gives the sign of the slope ofVκ at
z = 0.

Substantial additional complexities arise when
theory in Euclidean space is reconverted to Minkow
spacetime. For the scalar-field case,φ2 = ∑4

j=1(φ
j )2

is guaranteed to be positive, but the analogous q
tity −B2 = −BµBµ for vector fields can be eithe
positive (spacelikeBµ) or negative (timelikeBµ).
This complicates the analysis of the stability of the
theories. Furthermore, any nontrivial, stable, asym
totically free theory of this type necessarily involv
spontaneous Lorentz breaking. This follows beca
z can now be positive or negative. IfVκ either in-
creases or decreases atz = 0, then there is a stat
with nonzeroBµ having lower energy than a sta
with Bµ = 0, soBµ develops a Lorentz-violating vac
uum expectation value. If insteadVκ has a vanishing
derivative atz = 0, thenc = 0, the potential vanishe
identically, and the theory is trivial.

3. Stability analysis

To determine whichκ correspond to stable theo
ries, we examine the asymptotic behavior ofVκ as
z → +∞ andz → −∞. For large positivez, the as-
ymptotic formula

(7)M(α;β; z) ≈ �(β)zα−βez

�(α)

holds, with all corrections being suppressed by pow
of z−1. Also useful is the Kummer formula

(8)M(α;β;−z) = e−zM(β − α;β; z),
which is an exact relation.

Consider first the case of a spacelike expecta
value forBµ, so that the minimum ofVκ has−B2 > 0
and hencez > 0. This parallels the case of positiv
vacuum expectation value forφ2 [11]. Supposec < 0.
The potential is then decreasing withz at z = 0, so
if Vκ diverges to positive infinity for largez then at
least one stable minimum must exist forz > 0. Eq.(7)
showsVκ indeed diverges asz → +∞, and its sign
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is determined by the sign ofc/(κ − 2)�(κ − 2) or,
equivalently, by the sign of−�(κ − 1). This is pos-
itive whenκ lies in one of the open intervals(0,1),
(−2,−1), (−4,−3), etc. Since a nontrivial theor
must haveκ > 0, the only relevant range is 0< κ < 1.
In contrast, ifc > 0, then there are no stable potenti
with local minima on the positivez-axis because eithe
Vκ → −∞ as z → +∞ or Vκ increases monoton
cally.

The potentialsVκ of interest that generate a spac
like expectation value forBµ are therefore those wit
c < 0 and 0< κ < 1, corresponding tog > 0 in the
range|c/2| < g < |c|. The stability ofVκ for z < 0
must, however, also be verified. For negativez,

(9)Vκ(B2) = g
[
e−|z|M

(
4− κ;2; |z|) − 1

]
.

In the range 0< κ < 1, the hypergeometric func
tion grows faster with|z| thane|z| = M(2;2; z). Since
g > 0, it follows thatVκ is positive for all negativez.
These theories are therefore stable, with a space
expectation value forBµ and spontaneous Lorentz v
olation.

Next, consider the case of a timelike expectat
value forBµ, for which the vacuum has−B2 < 0 and
z < 0. Any stable theories of this type must haveκ �
1, and alsoc > 0 is required for stability asz → +∞.
Moreover, asz → −∞ the asymptotic behavior of th
hypergeometric function is determined by

(10)

c

κ − 2
e−|z|M

(
4− κ;2; |z|) ≈ c

κ − 2

�(2)|z|2−κ

�(4− κ)
.

For 1� κ < 2, this diverges to negative infinity fo
large negativez, so the potentials in this range are u
stable. Forκ = 2, the potential vanishes. Forκ > 2, we
find Vκ → −c/(κ −2) asz → −∞, since|z|2−κ → 0.
The theory is therefore stable if there exists az < 0 for
which Vκ � −c/(κ − 2), which occurs if and only if
M(4− κ;2; |z|) has a root. This function cannot ha
a root unlessκ > 4 because otherwise all the terms
the sum(5) are positive. However,M(α;2; |z|) does
indeed have a root forα sufficiently large and nega
tive. The absolute value of the smallest root decrea
asα becomes more negative[36]. In fact, there is a
root for anyα < 0, i.e., anyκ > 4: if −1 < α < 0,
then the asymptotic value ofM(α;2; |z|) is negative
and so it must possess a root.
In summary, we find that theories having pote
tials Vκ with 0 < κ < 1 are stable, with minima lying
at spacelike values ofBµ. Theories with 1� κ < 2
and 2< κ � 4 are unstable, while the caseκ = 2 is
trivial. Stability is restored forκ > 4, and the vacuum
value of Bµ becomes timelike. A timelike vacuum
value forBµ may in fact be favored because the p
tentials leading to this form of symmetry breaking a
more relevant.

The potentials for 0< κ < 1 are discussed i
Ref.[11]. The hypergeometric functionsM(κ−2;2; z)
have minima withz < 10 for nearly allκ , and the
values of the Kummer functions at these minima
typically also less than 10. However, asκ → 1 the po-
tential evolves into an unstable inverted parabola,
so both the location of the minimum and its value
verge in this limit. In the timelike rangeκ > 4, the po-
tential may possess multiple local minima at nega
values ofz. However, the exponential damping fact
e−|z| in Eq. (9) ensures that the one with the sma
est|z| is always the global minimum. Asκ increases
the wavelength of the oscillations inVκ(z) decreases
and the location of the minimum is pushed to sma
values of|z|. This location may be calculated nume
ically, and it is roughly given byzmin ≈ −6/(κ − 3).
The valueVκ,min of Vκ at zmin is consistently close to
Vκ,min ≈ −0.1gΛ2(κ − 3).

4. Features and implications

We have shown thatBµ must develop a Lorentz
violating vacuum expectation value in any nontriv
stable theory. There are many potential implication
this scenario. An immediate one concerns the inter
tation of the excitations about the vacuum. Denot
the vacuum value as〈Bµ〉 = bµ, we may parame
trizeBµ as

(11)Bµ = (1+ ρ)bµ + Aµ,

wherebµAµ = 0. DefiningFµν = ∂µAν − ∂νAµ, the
kinetic term forAµ is found to be−1

4FµνFµν . More-
over, at lowest order only fluctuations inρ cause
changes in the potential term in the energy, so th
is no mass term forAµ. We therefore can identifyAµ

with the photon field.
The notation in Eq.(11) is chosen to match that o

Ref. [19], which provides a general description of t
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NG modes associated with spontaneous Lorentz vi
tion and presents the complete effective action forAµ

in various space–times. In this context, excitatio
around the vacuum of the fieldAµ are the NG mode
associated with spontaneous Lorentz breaking, w
vacuum excitations ofρ are the NG modes for spont
neous diffeomorphism breaking. The masslessnes
the photon follows directly from this interpretation
a consequence of the breaking of Lorentz invarian3

rather than the existence of gauge symmetry. The
fective action also contains higher-order correctio
to conventional electrodynamics that could be sou
in experimental tests. The superficially nonrenorm
izable couplings are suppressed by powers ofΛ and
vanish in the continuum limit.

Since at leading order the potentialAµ satisfies the
orthogonality conditionbµAµ = 0, the equivalent con
ventional electrodynamics must be defined in an a
or generalized axial gauge. One check on the quan
equivalence between electrodynamics and the th
(1) at leading order is provided by a comparison
the corresponding transverse propagators. In fact
Euclidean propagator for electrodynamics subjec
the gauge conditionbµAµ = 0 is4

D
µν
F (x − y)

= −
∫

d4p

(2π)4
e−ip·(x−y)

(12)

× 1

p2

[
δµν + b2

(b · p)2
pµpν − bµpν + bνpµ

(b · p)

]
.

Within the subspace of propagating modes, this
equivalent to the corresponding propagator for the
ory (1).

The formulation of the theory(1) involves three
propagating modes, and three modes also appea
ter the spontaneous Lorentz breaking. Two are pho
modes contained inAµ. The third mode is massive
with excitations that change the value ofB2 and hence
the potential. The curvature at the global minimum
the potential determines the mass of the fluctuati

3 In the context of electrodynamics without physical Lorentz
olation, this interpretation has a long history. See, for exam
Ref. [37].

4 For a discussion of the propagator in axial gauges see, for e
ple, Ref.[38].
-

of B2 about its vacuum valuebµbµ = b2. This curva-
ture is always proportional togΛ2. However,g must
be small for the linearized calculations to be va
while the natural physical cutoff scaleΛ is expected to
be very large, possibly of the order ofMP . It is there-
fore reasonable to expect that the particles assoc
with the fluctuations ofB2 are unobservable in a low
energy theory. A large value ofκ implies both smallb2

and a large mass for these particles, so weak Lor
violation is naturally associated with unobservabil
of the massive mode.

For κ > 4, the potential remains finite at infinit
positive timelike values ofB2. The energy density
required to shift the expectation value of the field
bitrarily far from its vacuum value therefore remai
finite. However, ifΛ is of the order ofMP , this energy
density is proportional togM4

P . This is suppressed b
only one power ofg relative to the naive scale of th
cosmological constant. The energy density require
generate these large field values exists only in the e
Universe, when high-temperature corrections are
pected to restore the broken Lorentz symmetry.

Another interesting feature of the timelike case
the inverse variation withκ of the locations of the min
ima of theVκ potentials,zmin ≈ −6/(κ − 3). Suppose
the underlying theory contains a sum of nonpolyn
mial interactionsVκ with values ofκ ranging to a max-
imum κmax and with coefficients for the differentVκ

potentials controlled by the details of the fundam
tal physics. When the spontaneous Lorentz brea
is studied in a lower-energy effective field theory w
a smaller value of the cutoff, then the effective pot
tial is dominated by thoseVκ with κ in the vicinity
of κmax because these potentials grow the most rap
as the cutoff decreases. The magnitude of the Lore
violating vectorbµ is then proportional to 1/

√
κmax.

Sinceκmax represents the maximum in a potentia
large collection ofκ values, it can naturally be big
This could provide a partial explanation for the sm
size of any Lorentz violation in nature.

Additional physical implications of our scenar
can be explored by extending the theory(1) to include
couplings betweenBµ and one or more other field
For example, introducing a Dirac fermion fieldψ of-
fers various possibilities for interactions betweenBµ

and fermion bilinears. Note that gauge-noninvari
couplings are acceptable here, unlike the usual
of quantum electrodynamics (QED), because the
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62)
tial theory(1) has no gauge invariance. Whatever
nature of the other fields being introduced, Loren
violating terms for them appear following spontaneo
Lorentz violation whenBµ is replaced with its vac
uum valuebµ in the interactions. If the additiona
fields are identified with ones in the SM or in gra
ity, the resulting Lorentz violation is contained in th
Standard-Model Extension (SME)[8,9]. For example,
a simple choice of interaction isLa ∝ Bµψ̄γ µψ , par-
alleling the usual QED current coupling. WhenBµ

acquires a vacuum value, this interaction generates
usual coupling ofAµ to the current along with a coe
ficient for Lorentz violation of theaµ type in the min-
imal Lorentz-violating QED extension. For a sing
fermion, a constant coefficientaµ is unobservable, bu
when fermion flavor changes are present coefficie
of this type can produce observable effects[39,40].
More exotic couplings could also be countenanc
such as an axial-vector couplingLb ∝ Bµψ̄γ5γ

µψ

[13]. When Lorentz symmetry is spontaneously b
ken, this induces a coefficient for Lorentz violation
the bµ type in the SME, along with a remnant inte
action involving the fluctuations aboutbµ. Note that
all these couplings are known to be renormalizabl
one loop[41]. If the massless excitations are identifi
with the photonAµ as above, then a novel coupling
the photon arises.

Many other types of couplings forBµ can also
be considered. Although beyond our present scop
would be of definite interest to explore features
troduced by derivative couplings within this fram
work. These could provide insight about the stru
ture of higher-derivative terms in the effective acti
and hence about the causality and stability of th
ries with Lorentz violation[13], and they could have
bearing on predicted Lorentz-violating effects with
the photon sector[42]. It would also be of interes
to investigate gravitational couplings, including bac
ground spacetimes[9]. Incorporating gravity typically
makes RG calculations of the type adopted here
practical, but comparatively simple cases such as c
formally flat backgrounds may be tractable. In a
event, the occurrence of spontaneous Lorentz vi
tion as a necessary feature in the above stable
relevant theories with nonpolynomial potentials su
gests that Lorentz violation might indeed be gene
in a large class of underlying theories at the Pla
scale.
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