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Abstract

We study the structure functions Fb
k
(x,Q2) (k = 2,L) and the reduced cross section σb

r (x,Q2) for small
values of Bjorken’s x variable with respect to the hard (Lipatov) pomeron for the gluon distribution and
provide a compact formula for the ratio Rb that is useful to extract the beauty structure function from the
beauty reduced cross section, in particular at DESY HERA. Also we show that the effects of the nonlinear
corrections to the gluon distribution tame the behavior of the beauty structure function and the beauty
reduced cross section at low x.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The measurement of the inclusive beauty quark (b-quark) cross section and the derived struc-
ture function Fbb

2 in DIS at HERA is an important test of the theory of the strong interaction,
quantum chromodynamics (QCD), within the Standard Model. Precise knowledge of the par-
ton density functions (PDFs) is for example essential at the Large Hadron Collider (LHC). The
b-quark density is important in Higgs production at the LHC in both the Standard Model and in
extensions to the Standard Model such as supersymmetric models at high values of the mixing

E-mail addresses: grboroun@gmail.com, boroun@razi.ac.ir.
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.010
0550-3213/© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

https://core.ac.uk/display/82181123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.010
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:grboroun@gmail.com
mailto:boroun@razi.ac.ir
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.010
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.05.010&domain=pdf


G.R. Boroun / Nuclear Physics B 884 (2014) 684–695 685
parameter tanβ [1]. First measurements [2] of the b-quark cross sections at HERA were sig-
nificantly higher than the QCD predictions calculated at next-to-leading order (NLO) approx-
imation. The theoretical NLO QCD predictions are more than three standard deviations below
the experimental data. At the Tevatron, old analyses indicated that the overall description of the
data can be improved [3] by adopting the non-perturbative fragmentation function of the b-quark
into the B-meson: an appropriate treatment of the b-quark fragmentation properties considerably
reduces the disagreement between measured beauty cross section and the results of correspond-
ing NLO QCD calculations. Also the latest measurement [4] of beauty photoproduction at HERA
is in a reasonable agreement with the NLO QCD predictions or somewhat higher. This measure-
ment of the beauty contribution to the inclusive proton structure function F2(x,Q2) has been
presented for small values of the Bjorken scaling variable x, namely 1E−4 < x < 6E−2, and for
moderate and high values of the photon virtuality Q2, namely 5 ≤ Q2 ≤ 2000 GeV2. These data
were based on a dataset with an integrated luminosity of 189 pb−1, which was about three times
greater than in the previous measurements. The data was recorded in the years 2006 and 2007
with 54 pb−1 taken in e–p mode and 135 pb−1 in e+p mode. The e–p center of mass energy
is

√
s = 319 GeV, with a proton beam energy of Ep = 920 GeV and electron beam energy of

Ee = 27.6 GeV [4].
In the one-photon exchange approximation, beauty meson production in deeply inelastic ep

scattering is via the photon–gluon fusion subprocess γ � + g → b + b̄ and therefore sensitive
to the gluon density in a proton fg(x,μ2). The beauty structure function Fbb

2 is obtained from
the measured beauty-meson cross section after applying small correction for the longitudinal
structure function Fbb

L [5]. In the framework of DGLAP dynamics [6], the leading contribution
to the beauty meson production is given by two basic methods. One of them is based on the
massless evolution of parton distributions and the other one is based on the massive boson–gluon
fusion matrix element convoluted with the gluon density of the proton [7–17]. The reduced cross
section for beauty quark introduced by H1 Collaboration,

σbb
r = Q4x

2πα2Y+
d2σbb

dxdy
= Fbb

2

(
x,Q2,m2) − y2

Y+
Fbb

L

(
x,Q2,m2)

= Fbb
2

(
x,Q2,m2)(1 − y2

Y+
Rb

)
, (1)

where in earlier HERA analysis, Fbb
L was taken to be zero for simplicity. But for the NLO

analysis the Fbb
L contribution was subtracted from data. Therefore determination of the longi-

tudinal beauty structure function at low x at HERA is important because the Fbb
L contribution

to the beauty cross section can be sizeable. Here, we use the hard (Lipatov) Pomeron behavior

of structure functions and determine the ratio of the beauty structure functions Rb = Fbb
L

Fbb
2

from

this behavior in the limit of low x. The low-x asymptotic behavior of the parton densities are
given by

f
(
x,Q2)∣∣

x→0 → 1/x1+δ, (2)

where δ is corresponding to the hard (Lipatov) Pomeron intercept [18–20]. In the low-x range,
the gluon and quark-singlet contributions matter while the non-singlet contributions are small.
However, our analysis shows that the predictions for Rb with hard Pomeron intercept describe the
inclusive structure function with good accuracy to NLO at low x, and this analysis is independent
of the DGLAP evolution of the gluon distribution function.
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In the present letter we use the hard-Pomeron method to derive the ratio of the beauty structure
function and the reduced beauty cross section in the region Q2 > m2 at low x. Section 2 is
devoted to the numerical solution of the master equation for the beauty structure functions using
gluon distribution parameterizations. Then we consider the nonlinear corrections to the gluon
distribution function with respect to the GLR–MQ equation for the Fb

2 (x,Q2) and σb
r (x,Q2).

Our results and conclusions are given in Section 3.

2. The method

In the twist-2 approximation, for the beauty flavor case, the beauty structure functions
Fbb

i (x,Q2) (i = 2,L) are described by

Fb
i

(
x,Q2;m2

b

) =
∑
j

C
j
i

(
as, x,

Q2

μ2

)
⊗ fj

(
x,μ2), (3)

where as = αs(μ
2)

4π
, fj (x,μ2) are the parton densities and C

j
i (as, x,

Q2

μ2 ) are the coefficients func-

tions. Here the mass factorization scale μ is assumed to be either μ2 = 4m2
b or μ2 = 4m2

b + Q2,
and the symbol ⊗ for heavy flavour structure functions denotes convolution according to the
integral

[A ⊗ B](x) =
1∫

ζ

dz

z
A(z)B

(
x

z

)
, (4)

where ζ = x(1 + 4ξ) (ξ≡m2
b

Q2 ). In the MS scheme, the coefficient functions C
j
i depend on the

scaling variables η(= (s − 4m2
b)/4m2

b) and ξ , where s is the square of the center of mass energy
of the virtual photon–parton subprocess Q2(1 − z)/z and z is the fraction of energy carrying by
the parton as

z = Q2

2q.pp

,

where pp is the partonic four-momentum transfer in boson–parton fusion processes. Based on the
hard-Pomeron behavior for the parton densities at low x (Eq. (2)), we determine the solutions of
the beauty structure functions in Eq. (3). After the conventional integration (according to Eq. (4))
and doing some rearranging, Eq. (3) can be rewritten as

Fb
i

(
x,Q2;m2

b

) =
∑

j=g,S

xfj

(
x,μ2)[C

j
i

(
as, x,

Q2

μ2

)
⊗ zδ

]
, (5)

with hard behavior for the intercept at Regge factorization, where [....] = ∫ 1
a

x
C

j
i (.., z)zδdz and

a = 1 + 4ξ .
Thus, considering structure functions with respect to hard intercept are given by the following

expression

Fb
i

(
x,Q2;m2

b

) = xfg

(
x,μ2)[C

g
i

(
as, x,

Q2

μ2

)
⊗ zδ

]

+ xfS

(
x,μ2)[CS

i

(
as, x,

Q2

2

)
⊗ zδ

]
. (6)
μ
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Here the coefficient functions are defined with respect to their origin. The coefficient function Cg

originate from the partonic subprocesses where the virtual photon is coupled to the heavy quark,
whereas the CS comes from the subprocess where the virtual photon interacts with the light
quark. The lowest order term contains only the gluon density so that its proportional to Cg .
Whereas the light quark densities only come in next order analysis and those is about 5%. Then
Fb

i ’s are used in global analyses constrain the gluon density. Besides the gluon density, the main
source of theoretical uncertainty in Fb

i ’s is the values of the beauty renormalization scales. There-
fore, a further simplification is obtained by neglecting the γ ∗q(q) fusion subprocesses in Eq. (6),
which is justified because their contributions vanish at LO and are small at NLO for small values
of x [21]. Thus, we derive the low-x approximation formula for the beauty structure functions at
LO up to NLO by the following form

Fb
i

(
x,Q2;m2

b

) � xfg

(
x,μ2)[C

g
i

(
as, x,

Q2

μ2

)
⊗ zδ

]
. (7)

Our prediction for the ratio of the beauty structure functions Rb is independent of the gluon
density at low x, as

Rb = Fb
L

Fb
2

=
[
C

g
L

(
as, x,

Q2

μ2

) ⊗ zδ
]

[
C

g

2

(
as, x,

Q2

μ2

) ⊗ zδ
] . (8)

In the above expression C
g
j ’s are the gluonic coefficient functions expressed in terms of LO and

NLO contributions in beauty-quark leptoproduction as follows

C
g
j → C0

j,g + as

(
μ2)[C1

j,g + C1
j,g ln

μ2

m2
b

]
. (9)

The coefficients C0
j,g and C1

j,g(C
1
j,g) are at LO and NLO respectively. These coefficient func-

tions have been computed at LO up to NLO in Refs. [7–9,22–27]. We conclude that the ratio
of the beauty structure functions (the Callan–Gross ratio) in heavy-quark leptoproduction is a
phenomenological observable quantitatively defined in pQCD. With respect to the experimental
aspect, it is useful for extraction of the reduced beauty cross section from the phenomenological
relation for structure function Fb

2 and the ratio Rb as follows

σbb
r = xfg

(
x,μ2)[C

g

2

(
as, x,

Q2

μ2

)
⊗ zδ

](
1 − y2

Y+

[
C

g
L

(
as, x,

Q2

μ2

) ⊗ zδ
]

[
C

g

2

(
as, x,

Q2

μ2

) ⊗ zδ
]
)

. (10)

This formula can reproduce the HERA results for the beauty reduced cross section from the
phenomenological models for the gluon distribution function at low x.

At low x, the high-density gluon distributions are singular for bb meson production. The
density of low momentum-fraction gluons is expected to be close to saturation of the available
phase space, so as to produce significant recombination effects. Therefore, the gluon distribution
function will be close to phase-space saturation and here will be important gluon-fusion effects
(gg → g). These effects can be accounted for the gluon scale evolution equation by adding a
negative nonlinear (quadratic) term to the standard linear DGLAP term as

∂fg(x,Q2)

2
= [

DGLAP term of order(fg)
] − [

term of order
(
f 2

g

)]
. (11)
∂ logQ
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Therefore, the linear evolution equation in this case is modified by non-linear term description
gluon recombination. An important point in the gluon saturation approach is the x-dependent
saturation scale Q2

s (x). This scaling argument leads to the conclusion that γ ∗p cross section,
which is a priori function of two independent variable (x and Q2), is a function of only vari-

able τ = Q2

Q2
s (x)

. In the limit of high energy, PQCD consistently predicts that the high gluon

density should form a Color Glass Condensate (CGC), where the interaction probability in DIS
becomes large and this is characterized by a hard saturation scale Qs(x) which grows rapidity
with 1/x [28–37]. In this region, the nonlinear saturation dynamics is incorporated into the CGC
model. As, it is valid only for Q2 less than or of the order of the saturation momentum, which
is at most several GeV2, while the fit result to SGK [31] model extends up to Q2 of the order of
several hundred GeV2. The overall physical picture is dependence to the different regions in the
(x,Q2)-plane. For Q2 < Q2

s (x) the linear evolution is strongly perturbed by nonlinear effects
where the parton system becomes dense and the saturation corrections start to play an important
role. In color-dipole (CD) model the excitation of heavy flavors at low x is described in terms
of interaction of small size quark–antiquark bb color dipoles in the photon. This interaction can
be defined by the Ψ bb

L,T (z, r), where it is the probability to find the bb color dipole in the photon

with respect to the σbb(x,Q2). Here z is the carrying fraction by the beauty quark into the pho-
ton’s light-cone momentum and r is the size of the bb interaction in the photon. In this region
the dipole cross section is bounded by an energy independent value, as the dipole cross section
was proposed [28–37] to have the form σdipole(x, r) = σ0{1 − exp(−r2Q2

s (x)/4)} which impose
the unitarity condition (σqq ≤ σ0) for large dipole sizes r . The CD cross section is given by color
dipole factorization formula

σbb
(
x,Q2) =

1∫
0

∫
d2r

[∣∣Ψ bb
L (z, r)

∣∣2 + ∣∣Ψ bb
T (z, r)

∣∣2]
σdipole(x, r). (12)

At small −r region, the dipole cross section is related to the gluon density where it is valid in the
double logarithmic approximation. As the gluon density is xg(x,Q2 = Q2

s (x)) = r0x−λ, and the
parameter r0 specifies the normalization along the critical line. Thus, the saturation scale is an
intrinsic characteristic of a dense gluon system. At low-x region, the CD cross section satisfies
the solutions with Regge behavior for the beauty structure function of the proton as

Fb
2

(
x,Q2) = Q2

4π2αem

σbb
(
x,Q2) =

∑
n

f b
n

(
Q2)(x0

x

)�n

(13)

where n = soft,0,1, .. and the choice x0 = 0.03 [9,10,12]. The intercepts �n are equal to
�0/(1 + n), where �0 is defined with respect to the hard Lipatov pomeron and the coefficients
f b

n (Q2) are presented in Ref. [12]. The observation of the QCD pomeron dynamics at distances
∼m−1

b leads to exchange beauty exponent from �n to �eff , where �eff is defined by

�eff = �0

[
1 −

∑
n=1

rn

(
1 − �n

�0

)(
x0

x

)�n−�0
]
. (14)

At what follows, we consider Eq. (11) for the behavior of the beauty structure functions as
the recombination processes between gluons in a dense system have to be taken into account and
it has to be tamed by screening effects. These nonlinear terms reduce the growth of the gluon
distribution in this kinematic region where αs is still small but the density of partons becomes
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so large. Gribov, Levin, Ryskin, Mueller and Qiu (GLR–MQ) [38,39] argued that the physical
processes of interaction and recombination of partons become important in the parton cascade at
a large value of the parton density, and that these shadowing corrections could be expressed in a
new evolution equation (the GLR-MQ equation).

Therefore, the evolution equations of gluons can be modified as

∂xfg(x,Q2)

∂lnQ2
= ∂xfg(x,Q2)

∂lnQ2

∣∣∣∣
DGLAP

− α2
s γ

R2Q2

1∫
χ

dy

y

[
yfg

(
y,Q2)]2

, (15)

where the first term is the linear standard DGLAP evolution and the second term is defined with
respect to the 2-gluon density [40,41]. In this equation, γ is equal to 81

16 for Nc = 3 and R is
the size of the target which the gluons populate becomes so large that the annihilation of gluons
becomes important. R will be of the order of the proton radius (R � 5 GeV−1) if the gluons are
spread throughout the entire nucleon, or much smaller (R � 2 GeV−1) if gluons are concentrated
in hot-spot [42] within the proton. Here χ = x

x0
where x0 (= 0.01) is the boundary condition that

the gluon distribution joints smoothly onto the unshadowed region. In this equation we need
to determine the appropriate behavior of the shadowing corrections to the gluon distribution at
the initial point. Where the unshadowed distribution to the gluon (f u

g ) at Q2
0 has to modify for

x < x0 as

xfg

(
x,Q2

0

)
= xf u

g

(
x,Q2

0

)[
1 + θ(x0 − x)

[
xf u

g

(
x,Q2

0

) − xf u
g

(
x0,Q

2
0

)]/
xf sat

g

(
x,Q2

0

)]−1
, (16)

here xf sat
g (x,Q2) = 16R2Q2

27παs(Q2)
is the value of the gluon which would saturate the unitarity limit

in the leading shadowing approximation. Eq. (16) reduces to the unshadowed form xf u
g when

shadowing is negligible; that is, when xf sat
g → ∞. In this region, the interaction of gluons is

negligible and we use the linear evolution equations in xfg(x,Q2). However, at sufficiently low
x, two gluons in different cascades may interact and so decrease the gluon density. Therefore,
we apply the saturation corrections to the gluon distribution function in Eqs. (7) and (10) to
obtain the shadowing corrections for the beauty structure function and the beauty reduced cross
section behavior and show that this behavior tame at low-x limit.

3. Results and conclusions

In this work, the beauty structure functions, the ratio of the beauty structure functions and
the reduced beauty cross sections at Q2 = 60 and 650 GeV2 have determined. We compared
our results with H1 data on beauty production [4], color dipole model [9,10,12] and the GJR
parametrization [43]. In Figs. 1 and 2 the beauty structure functions and reduced cross section
with respect to the gluon distribution function at the renormalization scale μ2 = 4m2

b + Q2 with
mb = 4.57 GeV are shown. We observe that these relations (Eqs. (7) and (10)) are dependence
to the gluon distribution, which is usually taken from the GRV [22] and Block [44] parame-
terizations or DL [18–20] model. In what follows we shall use the gluon distribution with an
intercept according to the hard pomeron behavior at the DL model. These results show that the
fractional accuracy for the DL model with a hard pomeron intercept is the best which confirms
the correctness of our solution with DL model when compared with H1 data, color dipole model
and GJR parametrization. For comparing with H1 data (2010) [4], we presented our results from
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Fig. 1. Predictions for Fb
2 (x,Q2), Fb

L
(x,Q2) and σb

r (x,Q2) at Q2 = 60 GeV2 with the input gluon distribution from DL
[18–20] model (dash curve), GRV [22] parameterization (dot curve) and Block [44] model (dash–dot curve), compared
with color dipole [9,10,12] model (dash–dot–dot curve) and the GJR [43] parameterization (solid curve).

Fig. 2. The same as Fig. 1 at Q2 = 650 GeV2.

Q2 = 5 GeV2 up to 2000 GeV2 in Table 1. The theoretical uncertainties in our result are accord-
ing to the renormalization scales μ2 = 4m2

b + Q2 and μ2 = 4m2
b . We observe that the theoretical

uncertainties, for the beauty functions, related to the freedom in the choice of μ are negligibly
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e renormalization scales μ2 = Q2 +4m2
b

and μ2 = 4m2
b

,

σb
r Fb

2 Fb
L

σb
r

0.00115 0.00116 0.187E−4 0.00116
0.00411 0.00419 0.00015 0.00418
0.00260 0.00264 0.94E−4 0.00264
0.01029 0.01075 0.00070 0.01062
0.00644 0.00666 0.00043 0.00665
0.02085 0.02271 0.00263 0.02229
0.01077 0.01152 0.00134 0.01151
0.02439 0.02891 0.00506 0.02834
0.01525 0.01776 0.00314 0.01772
0.02397 0.03220 0.00580 0.03109
0.01530 0.01996 0.00368 0.01987
0.01710 0.02530 0.00447 0.02480
Table 1
Values of Fb

2 (x,Q2), Fb
L
(x,Q2) and σb

r (x,Q2) extracted from the DL model at low and high Q2 (in GeV2) values at th
respectively. Also, for comparison, the results determined by H1 Collaboration (2010) [4] are quoted.

Q2 (GeV2) x y σr
b(H1 data) ± � Fb

2 (H1 data) ± � Fb
2 Fb

L

5 0.00020 0.246 0.00244 ± 0.461 0.00244 ± 0.01 0.00116 0.186E−4
12 0.00032 0.369 0.00487 ± 0.318 0.00490 ± 0.011 0.00412 0.00015
12 0.00080 0.148 0.00247 ± 0.435 0.00248 ± 0.011 0.00260 0.926E−4
25 0.00050 0.492 0.01189 ± 0.251 0.01206 ± 0.013 0.01040 0.000674
25 0.00130 0.189 0.00586 ± 0.341 0.00587 ± 0.010 0.00645 0.000418
60 0.00130 0.454 0.01928 ± 0.250 0.01969 ± 0.010 0.02124 0.002454
60 0.00500 0.118 0.00964 ± 0.326 0.00965 ± 0.011 0.01078 0.001250

200 0.00500 0.394 0.02365 ± 0.232 0.02422 ± 0.029 0.02488 0.00430
200 0.01300 0.151 0.01139 ± 0.344 0.01142 ± 0.027 0.01528 0.00267
650 0.01300 0.492 0.01331 ± 0.347 0.01394 ± 0.033 0.02480 0.00430
650 0.03200 0.200 0.01018 ± 0.301 0.01024 ± 0.034 0.01536 0.00274

2000 0.05000 0.394 0.00499 ± 0.611 0.00511 ± 0.043 0.01740 0.00288
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Fig. 3. Rb evaluated as functions of Q2 with μ2 = Q2 + 4m2
b

compared with LO compact formula in Ref. [8] (solid
curve).

small. The agreement between our predictions with the results obtained by H1 Collaboration
is remarkably good at the renormalization scale μ2 = 4m2

b + Q2 and with the DL parton dis-
tribution function. As can be seen in all figures, the increase of our calculations for the beauty
structure functions towards low x are consistent with the experimental data.

In Fig. 3 we show the predicted ratio of the beauty structure functions, Rb , as a function Q2

at x = 0.001. This ratio is independent of the choice of the gluon distribution function, where
approaches based on perturbative QCD and kT factorization give similar predictions [13–15].
The Rb effect on the corresponding differential beauty cross section should be considered in
extraction of Fb

2 . We see that this value is approximately between 0.10 and 0.20 in a region
of Q2 and this prediction for Rb is close to the results [13–15]. We can see that the behavior of
this ratio is in agreement with the prediction from Ref. [8]. As authors obtained an approximate
formula at LO and NLO analysis for low x values, where at LO the compact form is

Rb ≈ 2

1 + 4ξ

1 + 6ξ − 4ξ(1 + 3ξ)J (ξ)

1 + 2(1 − ξ)J (ξ)
, (17)

where J (ξ) = − 1√
a

ln(
√

a−1√
a+1

). We compare our result with this compact formula in Fig. 3.
In Figs. 4 and 5, the values of the nonlinear corrections to the gluon distribution function

determined for predictions of the beauty structure functions and beauty reduced cross section.
In Fig. 4, we show shadowing corrections to the gluon distribution function determined from
Eq. (16) as a function of x at the initial scale Q2

0 = 5 GeV2 for determination of the beauty struc-
ture function and beauty reduced cross section. In Fig. 5, we show the shadowing corrections to
the gluon distribution function determined from Eq. (15) at Q2 = 60 GeV2. We observed that,
as x decreases, the singularity behavior of the gluon functions are tamed by shadowing effects.
Therefore the singularity behavior of the beauty structure function and beauty reduced cross sec-
tion are tamed by shadowing effects. The solid curves show the low-x behavior when shadowing
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Fig. 4. The shadowing corrections to the Fb
2 (x,Q2) and σb

r (x,Q2) at Q2
0 = 5 GeV2 from the solution of the initial con-

dition shadowing effects with the boundary condition at x0 = 0.01. The solid curve is the our results with DL model for
unshadowed corrections and dash (dot) curves are the shadowing correction included with R = 5 GeV−1 (= 2 GeV−1),
respectively, that compared with CD model (dash–dot–dot) and H1 data.

Fig. 5. The same as Fig. 4 at Q2 = 60 GeV2.

is neglected, and the lower curves (dash and dot) show the effect of the shadowing contribu-
tion for R = 5 and 2 GeV−1, respectively. We compared our results with H1 data [4] and CD
model [9,10,12] (dash–dot–dot). These results show that beauty structure function and beauty
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reduced cross section behaviors are tamed with respect to nonlinear terms at the GLR–MQ equa-
tion to the gluon density behavior at low x. These figures show that screening effects are provided
by multiple gluon interaction which leads to the nonlinear terms in the DGLAP equation.

In summary, our numerical results for the beauty structure functions and beauty reduced cross
section at low x are obtained by applying the hard (Lipatov) pomeron behavior at all Q2 values

in the NLO analysis. We derived the ratio Rb = Fbb
L

Fbb
2

that is valid through NLO at small values of

Bjorken’s x variable, as it is independent of the input gluon distribution function. To confirm the
method and results, the calculated values are compared with the H1 data and other models on the
beauty structure function, at low x. Then we studied the effects of adding the nonlinear GLR–MQ
corrections to the DGLAP evolution equation, by adding to the beauty structure function and
beauty cross section at low x. The nonlinear effects to the gluon distribution are found to play an
increasingly important at x < 0.001. We observed that, as x decreases, the singularity behavior of
the beauty structure function and beauty reduced cross section are tamed by shadowing effects.
We compared our results with the H1 data and with the CD model.
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