
Theoretical Computer Science 35 (1983) 67-94 
North-Holland Publishing Company 

67 

ITERAIWE ALGEBRAS 

Evelyn NELSON 
Department of Mathematical Sciences, McMaster Wnwersity, Hamilton, On tanL L8S 4K1, Canad. 

Communicated by M. Nivat 
Received October 198 1 
Revised March I982 

Coutents 

1. Introduction . . . . . . , . . . , . . . . . . . , . . . . . . , . . . . , . 

2. Definitions and basic results . . . . . . . . . . . . . . . . . . . . . . . . 

, . 

, , 
2.1. Algebras and free algebras .......................... 
2.2. Iterative systems and their solutions ....................... 
2.3. Iterative algebras and free iterative algebras ................... 
2.4. Reduction and anther theorems for iterative systems ................ 

3. Tree constructions of free iterative algebras ...................... 
3.1. Regulartrees ................................ 
3.2. Application to context-free grammars ...................... 
3.3. Irredundant iterative systems .......................... 
3.4. L1-iterative algelbras .............................. 

4. Iterative theories ................................. 
4.1. Existence of free iterative theories ....................... 
4.2. Further examples ............................... 

References . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . 

Note added in groof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

67 

82 
82 
85 
87 
88 

89 
89 
91 

93 

1. Introduction 

The problem of finding suitable environments, in which so-called ‘iterative 
equations’ have solutions, occurs frequently in connection with the theory of 
computing and programming languages. The; equations, or rather sets of equakio:as, 
whicharetobesolved;are~ftheformy~=t,(nl,..., Xk,yl,..., ~,)(l~j~nP,for 
polynomials tj and ‘fixed’ xi. Such equations occur, for example, when modklling 
loops in flow charts or when studying formal grammars. 

Elgot [4] has proposed iterative algebraic theories as models in which such 
equations have unique solutions, and the existence of free iterative theories was 
established in Bloom and Elgot [2]. Subsequently, Ginali [5] gave a construction 
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ti8 E. Nelson 

of the free iterative theory using regular trees, analogous to the familiar construction 
of ordinary free algebras which uses finite labelled trees. 

Now, algebraic theories were put forward by Lawvere [6]; they provide a 

homogeneous approach to (not necessarily finitary) universal algebra via category 
theory. However, iterative theories are not entirely homogeneous, and Bloom and 

t 12, abstract] suggest that this is the obstacle to proving the existence of free 

iterative theories from ‘general algebraic considerations’. 

‘f&s paper outlines a new approach to modelling unique solutions of polynomial 

equations, namely that of iterative algebras. These are algebras in which some, 
or ~~11, iterative equations are uniquely solvable. This approach has the advantage 

that it is simpler than Elgot’s, dealing only with the familiar notion of poly- 

nomial, has Elgot’s results a!, corollaries, and is applicable to some situations 

that do arise in computer science which do not fit into the framework of iterative 

theories. 
Iterative algebras are introtIuced in Section 2.2, and general algebraic consider- 

ations are seen to indeed directly yield the existence of free iterative algebras 

&ectisn 2.3). This fact, together with some general properties of iterative systems 

of equations CSection 2.4) then has as a corollary the exi:&nce of free iterative 
thcorics &ction 4.1). 

This appwach is more general than that developed by Elgot et al., not only 

because their results are consequences of the ones presented here, but also 

bcc;tusc this approach lends itself to a consideration of algebras where there 

arc unique solutions;, not to all iterative systems of polynomial equations, 
but to specified subcollections. The existence of free algebras of this sort also 

follow from general considerations (Section 2.3), the point always being that the 

required solutions can be viewed as additional operations, and the algebras in 
yuc$tion arc then realized as an implicationally defined class of algebras of an 

~xpandcd type, in much the same way that torsion-free divisible abelian groups 

may be viewed as vector spaces over the field of rationals. This approach does 

not A&Irk in case the solutions are not required to be unique, and an example 

tgl show that free algebras need not exist in this situation is given at the end of 
Sccticn 2.3. 

Ihc fret iterative algebra is explicitly constructed in Section 3.1 as the collection 

of all regular trees., and free iterative algebras with respect to certain subcollections 

of equations (including the one related to context-free grammars) are realized as 
suhelgehras of the algebra of regular trees in Sections 3.2 and 3.3. In Section 3.4 

WC see that, in ccntrast to the situation for theories (Bloom, Ginali and Rutledge 

an algebra may have unique solutions to all single polynomial equations but 
may not be iterative. 

All of the material on algebraic theories is postponed until Section 4, where the 

cneA existence results claimed above are proved and some examples from Elgot 

arc disc*ussed. Although this chapter is independent of the explicit constructions 
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given in Section 3, when combined with 3.1 it yields Ginali’s explicit description 
of the free iterative theory. 

2. Definitions and b&c results 

In this section, the definitions of an algebra and a free aPgebra of a given type 
are recalled, and th/z notion of an iterative algebra is introdltced, analogous to the 
iterative theories of Elgot [4], Bloom, Ginali and Rutledge -3].and Ginali [S]. In 
addition, basic results from universal algebra are used to establish the existence of 
free iterative algebras. 

2. I. Algebras and free algebras 

As usual, a type of algebras is a set C (of ‘operation symbols’) together with a 
function which assigns to each m EC a natural number lcrl called the arity of V. An 

algebra of type C is a set A together with, for each (T EC, a Itrl-ary operation on 
A, i.e. a function aA: A’“’ --p A. A homomorphism f: A + B between algebras A and 
B is a function from A to B such that, for all (T E J&Y and all 6-11, . . * , al,,1 E A, 

fbA(h . . . 9 ad) = m3Wad, . . . ,f(al,l)). For a set V (of ‘variables’) the free 
algebra ;F (word algebra) of type C over the set V is characterized (up to isomoryh- 
ism over V) by the property that V z F, and every function from V into an algebra 
A of type G extends uniquely to a homomorphism from F into r3. The existence 
of this free algebra is well known, as is the following explicit description as a 
collection of finite trees with labels from C u V: let w* be the set of finite sequences 
of natural numbers 2 1. A V-labelled C-tree is a partial function t: o* --I, C LI V with 
non-empty domain, dom(t ), such that 

(1) for all u Em*, k E CC), if uk E dam(t) then u E dam(t) arrd t(u) = t--r for some 

CPLZ with lclak; 
(2) if t(u) = CT then uk E dam(t) for all k s [ai. 
The set of all such trees forms an algebra TzV, where the operators are defined‘ 

bY 

gTL1/(tl, . . , , t\,ij(ku) = fk(U) for all u E ti*, all 15 k s 1~1. 

Also, the function which assigns to each ZI E V the partial function r.7 ?vith domain 

{II)}, such that fitid) = u, gives an embedding of V into TXV. The cwnplexi~ty (or 

degree) of an element t E TxV is the number cf operation symbols appearing m I, 
i.e. the number cf sequences II E W* with Z(M) E 2; the complexity car) 12 coutrsc bc 

infinite. 

Examples. C has a binary operation T, 
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s+t 

domain of s = (0, 1,2), 

domainofr=@, 1,2,11,12,ldl, 112,1111,1112,. . .} 

= all sequences containing at most one 2, which mutt occur at 

the end, 

domain oi s t t ={0,1,2,11,12,21,22,211,,~2,2111,2112 ,...) 

= (0) u(Zu i u E dom(:r)} u (2~ 1 u E dm~(t 1). 

The subset F’V of TXV cons;cting of all finite trees (i.t. 311 trees with finite 

domains) is clearly closed under tize X-operations, and hence is qn algebra; it is 

well known that this algebra is the fret E-algebra over V. Mxover, if U c V then 

the subalgebra of &V generated by U is &U. 
?f W=(u*,**., u,} is an m-element set then the elements of &t’ are called 

.rwzry p+wwziaf~. For each algebra A of type C, each t E FEU induces an m -ary 
operation fA:k’” -+A; for al,. . . , a,,, EA, t,&al, . . . , a,) is the image of t under 

the unique homomorphism FJJ -+ A mapping ui to ai for each i s m. Note that if 

I = 14, then fA: A’* -+ A is just the ith projection, i.e. tA(a 1, . . . , a,,1 ) = ai, and if 

I = (I(N~, . . . , LfL,j) for C E c then fA = UA. 
Each homomorphism f: A -+ I3 between algebras A and B preserves ~21 these 

~lynomials, i.e. for each t E Fx{u, . . . , u,} and for all al, . . . a,,, E A 

fK&h. . . . , ami)=tRCf(al), . . . ,f(a,)). 

This fact is well known, and in any case not difficult to prove; one merely shows 

that the set of all t E FL.{ulr . . . , u,,,) which are preserved by f contains u 1, . l l , u,,, 

and is closed under all the E-operations, and uses the fact that Fz(ul, . . l , u,,*) is 
cntratcd by (N 1, . . . , u,,,). 

Actually, since F&r,, . . . , II,} E F&Q, . . . , up) whenever U’I s p, each t E 

urn ] induces a p-ary operation AP + A for each p 2 m, which, of course, 
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does not depend on its last p -m arguments. Thus, strictly speaking, our notation 
VA’ is ambiguous and should also include the ‘m’; however this will normally be 
clear from context. 

2.2. Iterative systems and their solutions 

The main concern of this paper is algebras in which certain syst.?ms of polynomial 
equations of the form 

y1= hh l * l , x/c, y17 * m l , y,) 

y2 = t2h * l l , Xk, )~I, * l . , y,) 

Yn = fnh, l * l , n:, y1, l l ’ , y,) 

have, for each choice of the xi, unique solutions yl, . . . , yn. Since the xi and )?I really 
play different roles, it will be convenient to introduce two disjoint sets of variables 
for them, and so we make the following definition. 

For the rest of this paper, let X = (xi 11~ i E o) u { yi 11 G i E w) be a countable 
set, where xi # yi, and for i # j, xi Z xi # yi # yj, and let Ffi be, as described above, 
the free algebra of type 2 over the set X. For each pair n 2 1 and k of natural 
numbers, let F’(k, n 3 be the subalgebra of F&Y generated by {x 1, . . , , x/<, y 1, . . . , y,, }. 
Further, for each t O”(k, n) and each Z-algebra A, le:t rA be the (k +rt)-ary 
polynomial on A induced by t such that t&z l, . . . , ok, b 1, . . . , h,) is the image of 
l under the homomorphism from &(k; tz) to A mapping x, to ai for 1 -s i s k and 
yj to bj for 1-1 < ‘=z n. (Note that k may be zero.) 

An iterative system is, for some n Z= 1 and k, an n-tuple 7’ = (t 1, . . . , I,,) of elements 
of &(k, n ); T is called uniquely solvable in A (for a x-algebra ,4) iff 

(*) for all al,. . . , a& E A there exists unique bl,, . . . , 6, E A such that 

bj=tif\(al-. . . ,ak, 61, . . . . ,b,,) for lsjsn. 

An iterative system T is called degenerate iff it is uniquely solvable in every 
Z-algebra. T = (tl, . . . , tn) is called trivial iff there exist il, . . . , i, E (I, 2, . . . , n ) 
such that ti, = yi2, t;, = yi,, . . . , ti,,, z yil. Note that a solution in A for the system 

T = t ~2, ~3, ~4, . . . , y,, y I) consists of elements b1 1 . . . , h, E A, such that b i = & = 

b3=- = 6, and hence for any element b e A, b = b1 = 62 = - l 0 = b,, provides such 
a solution. Thus, rf this system is uniquely sotvable in A, it follows that A is the 
trivial (= one-element) algebra. 

Further, T is called ideal if fi ti {x1, . . . , xk, yl, . . . , y,,): for all 1 s n ; Le., if each t, 

has complexity 21; the ideal iterative systems are the analogucs for algebras of 
the ideal morphisms of Elgot [3]. Clearly every ideal system is non-trivial; we will 
see below that f’rom the point of view of solva@itv these notions are equivalent. 
First some examples. 
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Ensunple 1. Suppose C has one binary operation + and let T = (xl + y2, yl) E 
Fx(l, 2j*; then T is non-trivial but not ideal. T is uniqely solvable in an algebra 
A iff for all Q EA there exist unique 61, 62~A with 61 =a +62 and 62~61. This 
is clearly equivalent to the existence of a unique 6 E A with 6 = a + 6, and hence 

the solvability of T is equivalent with the solvability of the idcal system 7 = 
(Xl + yrH Fr;(l, f)‘. 

E~lrrunglc 2. Let T = (x 1, y ,) E &( 1, 2)2; then T is uniquely solvable in A iff for all 
A there are unique 61 and 62 in A with 61 = a, 62 = 61. This system T is 

degenerate; for any A and a E A, the unique solution for T is given by bI = 62 = a. 

&ample 3. For any type 2, let 22- be the algebra whose elements are 0 and 1, 

with operations defined by 

fP(U, * l l l * a;“!) = 
0 ifUi = 0 for some i < lfl(, 

1 otherwise, 

We will see in Section 2.4 that an iterative system is uniquely solvable in 2x iff it 
is degenerate, so that 22 is 

!X.Mbie. 
a ‘test object for which systems are always uniquely 

Example 4. For any type E and any set V, let FZV be the Z-algebra obtained by 

adjoining one new element * to &V and defining the operations to act as usual 

in F2V and to take value * otherwise, so that (T(Q, . . . , a& = * whenever ai = * 
rr[. Then FZV is a X-algebra in which every non-trivial iterative 

system is uniquely solvable; this is shown by the following discussion. 

For any non-trivial and non-degerate iterative system T = (tl, . . . . , t,) E F_(k, n ), 
if sQn1e I,EF&,, . . . , xk) then we may drop tj from T and obtain an equivalent 

system (see Lemmas 1 and 2 in Section 2.4), and so we may restrict our attention 

to those iterative systems T with no components in F’{x 1, . . . , xk). But for any 
suchTanda,,...,akE~~V,bI=bz=~~~~6”=~providesasolutiontoTwith 

respect to a,% . * . , ffk. 
FinaLly, we verify that this solution is unique. Suppose b 1, . . . , b, is any solution 

for T with respect to a 1, . . . . ak and choose p1 s n sluch that b,, # $, and among all 

the j - n with h, f *, bpI has the minimum complexity. Since fP, & &{x ], . . . , x,& 

thcrc exists pz with yPr in the image of fP,, and thus because of the way the operations 
are defined MY Fg V, 6, f *, and so the complexity of b,, is 2 the complexity of 

bpr#. But bps =$,((ll,. . . , ak, 6,, . . . ,6,) and hence s,,, =y, and b,, = b,. Now we 
a)?: repeat the above argument with b,, replacing b,,, and eventually yield a cycle 

th lpa = vpi, t,_$ := VPt, . . . , t,,_ = yp,, contradicting the non-triviality of T. It follows 
tt b 1 -- A_i z-z: * l -7 /I, = * is the only solution for T, as required, 

Erample 5. If S is a commutative semigroup containing a ‘zero element’ z such 
that )” - xy far x, y e S iff y = z, then every non-trivial iterative system, for the type 
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C consisting of a single binary operation, is uniquely solvable in S, This is not 
difficult to prove, using the results which will be established in Section 2.4. Moreover, 
every commutative semigroup S i-n which exry non-trivial iterative system is 
uniquely solvable is of this form: since y = yy is uniquely solvable in S, there is a 
unique element z ES with z = zz. Now for any x E S there is a ur.ique x’ ES with 
Z =2X, and then XZ =x22 which implies that E =x’ I’cly the uniqueness 
of 2) and hence Z = z (by the uniqueness of t). Thus, fo all x ES, z is the unique 
element of S with z = xz. 

2.3. Iterative algebras and free iterative algebras 

Let C be any set of iterative systems of type C, i.e. C is any subset of 

U k.nEo,nal Fz(k dn. 

An algebra A of type C is called C-iterative iff every T E C is uniquely solvable 
in A. A is called iterative iff every non-trivial iterative system is uniquely solvable 
in A. 

A C-iterative algebra I is the free C-iterative algebra over a set V if’f V 6 1, and 
each function from V into 3 C-iterative algebra A extends uniquely to a 
homomorphism from I into A. Standard arguments show that I is unique up to 
isomorphism over V; the following discussion yields the existence of such fret 
algebras. 

For any C-iterative X-algebra A, each TE C induces n k-ary operations 
TiA:Ak +A (1GiGn) defined as follows: for a,,...,akcA, 

(TlAh.. . 9 akh . . - 9 ~i,A(al, . . . , ak j) is the unique solution of T with respect to 

(a+., ak). Moreover, if f is any homomorphism frtim A to a C-iterative X-algebra 
B, then, as mentioned above, f preserves all polynomials, and consequently 

(f(Tm(al,. . . 9 akh.. . $(Th(al,. . . 9 ak)) is a solution for T with respect to 

(fh), . . . ,f(ak)) in 13, and hence by uniqueness of the solution in B, 

f(%(al, . . . , ok )) = TiB (f (at), . . . , f (ak)) for 1s i ,< n. This means that each such 
T E C induces n k-ary operations on each C-itci’ative X-algebra, and that the 
E-homomorphisms also preserve these new operations. 

Let Cc >C be the type obtaineld by adjoining to C, for esch T E C rj F’z(k, n )‘I, 
n k-ory operations T1, . . , Tn. The above discussion shows that each C-iterative 
Z-algebra can be made irto a &-algebra in such a way that E-homomorphisms 
between C-iterative .C-algebras are also &-homomorphisms. In fact, we can recog- 
nize the &-algebras so obtained: 

Let Kc be the class of all SC-algebras which satisfy the following identities and 
implications for all T = ( tl, . 1 . , t,I ) F C and I s i s n 

(#) Ti(Xl, l v e ,Xk)‘fi(X1y l l l 7 Xky T~(xI, e l l 9 Xk)r m n l 9 T,!(X), l * * 9 XL!), 

(##I ( /)f\ tj(xl,.-.,xk,yl,~~~,y.)‘yI)~yi=~(~~,...,x,). 

l-:l-?n 

Here, fi stands for logical conjunction, The identities (#) ensure that, for an 
algebra A E K, the elements F&A(a1, . l . , ak) provide a solution of T with respect 
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to(u),*.., a&) and the implications (##) ensure that this solution is unique. Thus, 
the class of C-iterative Z-algebras is precisely the class of underlying C-algebras 
of algebras in Kc, and the Z-homomorphisms and &homomorphisms coincide 
for these algebras. 

However, Kc is a class of &-algebras which is closed under formation of 
subalgebras and products. and is non-trivial by Example 4 of Section 2.2, and 
hence has free algebras (Birkhoff [l]). In view of the preceding paragraph, we know 
that (the underlying Z-algrebra of) the free &-algebra over a set V is the free 
iterative Z-algebra over V, yielding the following result. 

Theorem 1. FQ~ any set V, and any set C of iterative systems, the free C-iterative , 
algdh over V exists. 

Note that the same argumen;s pri,ve a stronger result: we could, in addition to 

Aterativeness, also ask that our algebras satisfy certain Z-equations; this again 
will yield a class of &-algebras closed under subalgebras and products, which then 

has free algebras. Thus, for any equational class K of algebras of type X and any 
set Cof iterative systems of polynomial equations of type C, the class of all C-iterative 
algebras in K has free algebras. 

Let us conclude this section by considering algebras of type C which have solutions 
of all iterative systems of Z-equations, but the solutions need not be unique. These 
zilgebras can also be realized as reducts of algebras of an expanded type; however 
Gncc the solutions need not be unique, the E-homomorphisms need not preserve 
the added operations. Indeed, here the analogy breaks down: such classes of algebras 
need not have free algebras. For example, let C consist of one unary operation ‘u, 
and let A = w w {a, 6) where a, b I$ O, with the operation CT defined as the successor 
operation in w and a(a I= a, g(b ) = b. 

This yields an algebra with solutions to all iterative systems of .&equations: if 
WC I WC ani iterative system T = (t ,, . . . , t, ) E FE (k, n 1” and some tj E F’x{x 1, . . . , Sk), 

then the jth equation is of the form y, = &‘(xi) and may be dropped to yield a 
skortzr equivalent system. Thus we need oilly consider iterative systems with no 

x, appearing at all, and then y, = a for all j yields a solution in A. 
XOW, let k be the class of all E-algebras with solutions of all non-trivial iterative 

E-equations, and suppose K has a free algebra F over the singleton set 

there is a unique homomorphism 11: F --, A with /Z(C) = I. Now define 

gt:A-+A by g(n)=n for all tz ECU, g(a)=b, g(b)=a. Then I;: is a homomorphism, 

is a homomorphism from F to A. Since gh (v ) = 1, it follows that gh = h. 
thcrcs exists some element II E F with II =rr(rr), and hence h(u)=a(h(u)) 

pii~ that It (u j is either CI or b. However, since ~12 = 12, it follows that 

o (rr 1, which contradicts the definition of .c. 

‘i”hus, if the solutions (to iterative systems ure not required to be unique, there r:eed 
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L3 4. Reduction and other theorems for iterative systems . 

Recall that an iterative system T = (tI, . a . , t,,) is degenerate iff it is uniquely 
solvable in every X-algebra, trivial iff there exists ii, . . , im with PiI = yi,, tiz = 

Y&9 l l l 9 ti, = yil, and ideal iff each ti has complexity 2 1. Further, for each n, let 
Cn be the set of all iterative systems such that each componerjt has complexity n, 
and L, consist of all iterative systems of length n (i.e. with n components). 

Note first of all that permutation of the order of the equations in an iterative 
system does not affect the solvability. For example, if C has a binary operation + 
and T=(x1+yI,xZ+y2,(y1+yz)+y3) then for a 1, a+A, (bl, b2, b.t) is a solution 
for T with respect to (aI, a*) iff 

b2=a2+b2, 

Let IT be the permutation of {1,2,3} with n(l) ~3, ~(2) = 1, 7r[3)=2, and let 
T, = (( y2 + y3) --t yl, x1 + y2, x2 + y3); then (cl, c2, c3) is a solution for 7‘, with respect 
to (al, a2) iff 

c3 =a2+c3. 

Clearly (bl, b2, 63) solves T iff (63, b 1,62) solves Tn. 
The following lemma, which will be used several times in the remainder of this 

section, covers this phenomenon in full generality. 

Lemma 1. Suppose T = (t 1, . . . , t, ) E F=(k, n )” is an iterative system and ST is u 
permutation of (1,2, . . . , n ). Let h :FE (k, n ) + F=(k, n ) be the homomorphism with 
h(xi) =xi for all i Gk,‘h(yi)=yr-l(i, for all jsn. Then for any Z-a/gelbra A and 

ab.., a,tEA, h..., b,, ) is a solution for T with respect to (a lr . . l p ak 1 r;r) 

@ 77(l)* l ’ - 9 b,,,,,,) is a solution for T= = (h(t,,J,. . . , h(t,&), with respect to 

(ah.. . , ad. 

Proof. Let f, g: FE(k, n )) + A be the homomorphisms with f(xi) = g(xi I== a, for 1 c 

isk andf(yi)=bi, g(yi)=b,(i,. Then f and the composite gh coincide on all the 
generators of FE (k, n ) and hence are equal. Thus, if bi = tiA(a 1, . . . , ak, /!I 1, . , . , b,, 1 

for all jsfz then bi=f(ti)=gh(ti)=h(,t~)A(al,,..,ak,b,,,,,...,h,,,,,) for all j$ II 
and hence b,(j) = h(t,&(al, . . . , ak, bsn,,,, . . . , b,,,,,) for all jsn. The convsrse 
is also true, thus yielding the claim. 0 

A similar, easy argument yields the following lemma, which will alss be useful 
in the remainder of this section. It states formally the intuitively obvious fact that 
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in dealing with iterative systems T fz (t 1, . . . , t,), if some ti belongs to the subalgebra 

generated byxl, . . . , xk, then the jth equation can be dropped to yield an equivalent, 

shorter, system. 

hmna 2. Suppose T = (21,. . . , t&s F,;(k, n)” is an iterative system with tn E 

&(nl, l l l I %k). L.et h : Fs(k, n ) + Fs(k, n - 1) be the homomorphism mapping all the 
x1 avrd all yI with j s n - 1 identically, wfth h ( y,,) = tn. Then for any X-algebra A 

and Ca ,,.. l ,akkA, (61,. . ., 6,-l) is a solution for 5(= (h(t), . . . , h(t,,-1)) with 

respectto lag,. . . , a&ff (bl, . l . , b,,-1, t&al, l . . , ak )) is a solution for T with respect 

20 lal, . . ..a& 

For example, if T=(y,+yz,xl+xz) then F=(yl+(xt+x.~)); a solution to T in 
A with respect to (al,az) consists of bl, b+A with bl=bt+b2 and b2=al+az, 
which is clearly equivalent to having b I= b I+ (a 1+ a 2). 

Recall that the algebra 22 was defined in Example 3 in Section 2.2. 

Propc&ion 1. For an iterative system T the following are equivalent : 
Q 1) Tis uniquely solvable in 22 ; 
r2; Tis degenerate, i.e., uniquely solvable in every X-algebra ; 

t3, T i-s non-trivial and solvable (not necessarily uniquely) in every .Salgebm. 

Plcpaf. Let T=ct,,...,t,,)~F~(k,n)“. 
Nate that if fi E Fr(xI, . . . , x,} for all j <n then T is degenerate; in this case, for 

anyalgebraA anda ,..., akEA,bi=ti(al ,..., ak ) provide the required unique 

wlutians. 

d I)-* (3). Assume T is uniquely solvable in 2x. First we prove that T is solvable 

in every z-algebra. By Lemmas 1 and 2 we may assume tj & Fr(x 1, . . . , xk} for all 

j @- n. But now, let !I : Fx(k, n ) -, 2r be the homomorphism with h (x,) = 1 for all i s k 

and ill ys ) = S& aii j’ 5 rz ; it is easy to check using the definition of the operations 

in & that Fz(xI,. . , x, 5 w {t E Fz(k, n) 1 h(t) = 0) is closet! under all the operations 

and hence, bccuase it contains all the generators, must b:qual FE(k, n). From this 

it foDlow”s that ;I it, ) = 0 for all j 5 n and hence b I = b2 = . . . = b,, = 0 provides a 

utionforthecquationsb,=I,(1,1,...,b,,...,h,).Sinceb,~=bZ=...=b,,=1 
provides a solution, this means that M = 0, i.e. that T is deg.enerate, and thus 

~~~v~b1~ in every E-algebra. 
~~x~~ ~u~~~sc T is trivial. Then there exists j!, jz, . . . , jm E { 1, 2, . . . , n} such that 

.” y _, . . . . t,,_ = v,.!. Define sets U,, z U, E . - - & { 1 l 2, . , . , n) as iollows: 

1 i 1 Ii* * 1 ifi ~I,,(I,? = 0 where h,: Fl(k, n )-i 22 is the homomorphism with 11 (xi) = 1 
ii* t !Z.J J,) == (1 if j f UP, lIP( J.,) = 1 otherwise. 

otc that Usrtz cb; by the above identities, and r/, E c/r, _ 1 implies i/‘,, + 1 i Up t z 

ausc af the way the operations are defined in 22. Thus for some p, UP = &,+I. 
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But then, for this p, h&) = 0 implies j E Up+1 == L-i which implies h,( ]ri) = 0, and 
conversely h, ( yi) = 0 implies j E: UP = &,+I which iml%es A,(dj) = 0. Thus, for all j G n 
we have hp(fj) = h,,( yj) and conseequently (h,( y I), . . . , h,( y,)) is a solution for T 
with respect to al=a2=.*=ak = 1. Since hp(yj) = 0 for all F’ e U this shows that 
T &not uniquely solvable in 22. Thus if T is uniiquely solvable in 22 it follows that 
T is solvable in every X-algebra and T is non-trivial. 

(3) + (2). Suppose T = (tl, . . . , tn) E F’&, n)” is non-trivial, non-degenerate, and 
solvable in every Z-algebra A. Using Lemmas 1 and 2, we may assume without 
loss of generality that no tj E Fr{x 1, . . . , xk}, and since T is non-degenerate, n 2 1. 
Since T is solvable in every algebra, T is solvable in &(x 1, . . . , xk}, and hence 
thereexist&. . . ,b, EFx{xl,. . . ,Xk}SUChthatbi=tj(X1,. l . ,Xk9b19.. . ,b,)fWall 

i =s n. Let j1 have the property that bj, has minimum complexity among b 1) 62, . . . , h,,. 

SinCe bj,=tj,(A1, l l l ,Xk, 61, l l l 9 6,) and tj,@Fx{Xl,. . . , Xk}, it fdbwS that tj mUSt 

really depend on one of its last n arguments, say ~‘2, and then because b,, has 
minimum complexity it follows that til = yj, and hence 6j, = bi,. But now bj2 has 
minimum complexity too, and the argument can be repeated. Eventually we obtain 
a cycle tjl = y,_. tj2 = Yj,, . . . , tj,, = yjl, which implies that T is trivial, a contradiction. 

(2) -9 (1). Thrs is trivial. CJ 

Corollary. There is an effective procedure to determine, given an iterative system 1: 
whether or not T is degenerate. 

Proof. There are only finitely many cases to check to see whether T is uniquely 
solvable in 21. 

Proposition 2. T/2ere is an effective procedure vvhich, given a non-trivial, non- 
degenerate iterative system T = (t 17 . . . , t,, ) E F=(k,, n ).‘-‘, produces an ideal iterative 
system II== &,. . . , i,)E Fx(k, m)in for some m s ti &ch that, for every Saigebra 

A and aI, . . , ak E A, T is uniquely solvable in A with respect fo (a 1, . . 4 , ak ) lff T 

is. 

Proof. Two procedures will be described which, when applied alternatively, will 

eventually produce the desired result. 

Suppose T = (tl, . . . , t, j E Ff-(k, n)” is nontrivial and non-degenerate. 

Procedure 1. Apply when some t, E {x 1, . . . , xk). 

In this case n z 1. since otherwise T would be degenerate. Thus WC may apply 
Lemmas 1 and 2 to get an iterative system Y? with IOrne fewer component than T, 
whose solvability is equivalent to that of T. 

Procedure 2. Apply when some tj E { y 1, . . . , y,& 
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By Lemma 1, we may assume j = n, so that tn = y, for p s n - 1. Now let 
h:&(k, n)-+“(k, n - 1) be the homorphism with h(xi) =xi for i s k, h( yi) = yi for 

n-1 andh(y,)=y,.ThenforanyalgebraA andal,...,ak,b1,...,6,-IEA, 

(b !,. . . , b, _ ,) is a solution for T’= (h(t,), . . . , h(t,,-1)) with respeci to (al,. . . , ak) 
iff ($I,...,& n _+ bP) is a solution for T with respect to (at, . . . ‘, ak). In particular 
7” is non-degenerate. 

Now simply apply procedures 1 and 2 until neither apply any more to yield the 
desired r II 

Corolky. For any Z-algebra A, if every ideal iterative system is 
A then every non-trivial iterative system is uniquely solvable in A. 

uniqely solvable in 

Rem, ,The proof of Proposition 3 actually produces more than is cla,imed: given 
T==(I , ,.,., l,,)theprocedureprduces%(il,..., i,),distir,ctjl,..., j,,.+nand 
for each j&(i19.. . , jm} a polyno,mial sj EF’&, m) (which always has complexity 
zero! such that for any algebra A and a 1, . . . , ak E A : _ 

(i) If [bl, . . , . , h,)isasolutionforTwithrespectto(al,. . . ,a,jthen(cl,. . . ,cn) 

is a solution for T with respect to (a 1, . I . , ak) where cjl =bi for isrn and ci= 

qa .~~~.a~,6,,...,6,)forj~(jl, . . ..jm}.and 
Cii) if (cr, . i . , c,) provides a solution for T with respect to (al,. . . , ak) then 

(qgr l l l 9 c,, ) ii a solution for r with respect to (a 1, . . . , ak) qnd moreover ci = 
d,C[l I ,=*., ar q, 9 . . . . .Cjm)fOT j&{jr,.. .,j,n}. 

This will be used in PropodGon 5. 

hpmhion 3. There is an effective procedure which, given an ideal T = (t 1, . . . , t,,) E 

I;; ck, n I”, produces T = (iI, . . . , i, ) e Fx( k, m )” for some m 3 n and polynomials 
S 1 t l l 9 *%, ,, E FL ck, n 1 such that each ij has complexity one, and for every 25aigehra 
A nnda 19 l l l dk EA, 

w If (61, . . . , 6,) iS a SOhtiOn for 7’ wtth respect t0 (a 1, . . . , ak) th 

cb,, _ - ..b,,.~~n~a~,...,ak,b~,...,b,) ,..., S~m-,,)A(U1,...,ak,b,,...,b,)) is a 
Sdl~tiOli for F with respect to (a 1, . . . , ak ), and cowersely, 

(ii) If (61,.*.,bm) is a solution for %ith respect to (a 1, . . . , ak ) then (61, . . . , b,,) 
is Solution for T with respect to (a I, . . . , ak) and in addition b,, +i = 
q,Ja Ir . . . , al, hl, . . I , b,, ) for all i 5 m. 

Proof. For any ideal T = (tl, . . . , t,)E Fz(k, n)“, define the overf!cw of T by 

c&q 7-9 = 
t 

i complexity of t, - n. 
f--l 

WC wit1 construct T by induction on OW T) 
If Q)Vr 73 = 0 then take F = T. 
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Assume now that OV( T) a 1. Then for some i G n, the complexity of fj is at kast 
2, and SO Zj ‘=C(Sl, . . . , qa$ for some o EC and Si ~F’s(k, n), and for some p 6 )rrl, 
s, has complexity 21. 

Define ?i c F&, n + 1) as follows: 

fi z ti forj#iGn, 

ij =u(s*, . . . , sp-1, Yn+l, Sp+l, l l ’ 9 &I), 

i n-t1 = sp. 

Then the total complexity of T = $1, . . , , &,+1) is the same as that of T, and 
hence OV(F)= OV(T)- 1. , 

Now, let c3, be any X-algebra and suppose that (61, . , . , b,, 1) is a solution for T 
with respect .fo (al, . . . , ak). Then 

and so -I 

bi = uA(sIA(aI, . . . , ak, 61, . . l , b,,), l l . . ,6,,+1, . . . 9 

sjuIA(alt.. . 9 ak, 61, l . . 9 bd) 

=f,&rI,. . . , ak, bl,. . . ,6,). 

Alsoforj#isn 

bi = ?iA(a 1, . . . , al‘, b/l, . . . , bn+l) x tiA(a 1, . . . - ak, b 1, l l ,6,, )* 

Thus (bl, l . . ,6,) is a solution for T with respect to (al,. . . , ak)* 

Conversely, if (6 1, . . , , 6,) is a solution for T with respect to (al,. . . , ak) then 
(bl,..., b,, SpAh . . . 7 a, bl I . . . 9 b,, )) is a solution for T with, respect to 

~~l~~*~7ak)~ 

Now if the above process 4s repeated, after finitely many steps we obtain a $ 
with overflow equal to zero, 8s required. Is1 

Corollary. An algebra of type C is iterative if it is Cl -iterative. 

Remark, The process, outlined in Section 2.3, of adding operations to provide 
solutions of iterative systems can 05 course be repeated. However, if we add solutions 
for all non-trivial iterative systems of type C, then in any iterative X-algebra WC 

already have unique solutions to all non-trivial iterative systems of the expanded 
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tyrle, and moreover these solutions are provided by polynomials of that type. This 
fact is explicitly laid out in the proposition below; first an example. 

Exaa@e. Suppose C consists of one binary operation +, and g 2 C is the type 
obtained by adding to Z, for each non-trivial iterative system T E F’_(k, n)“, n new 
qerations T1,. . . , T’,, which provide the solutions to T in every iterative X-algebra. 
Consider the iterative system T = (t,, t2) = (x1 + y2, x2 + y 1). The s contains binary 
operations Tl and T2 such that in every iterative algebra A of type 2, for all a 1, 
a2~A, 

Now consider the s-iterative system TI(xI, y ,j E Fs (1,l). Suppose A is an iterative 
algebra of type C and a 1 E A. If the latter system L l C zc!vable in A then there is an 
element 61 E A with b I= T1,&zl, b,), and consequently we have 

Thus (hr, T&z I, bt )) provides a solution to the iterative system S = (X I + ~2, y I + y I) 

with rmpect to aI. Conversely, if (bl,b2) is a soiution to S with respect to ul, 
then bl =a1 +b2,62 = 61 +b1 and hence b1= Tl(al, 61). 

ow, in f there are unary operations S1 and S2 providing the unique solutions 
oi S in every iterative Z-algebra, and we see from the above that 6 1= &A (a 1). 
‘Torus the unique solution to the iterative s-system y l = T1 (x 1, y 1) is given, in any 

iterative Z-algebra, by y 1 = S1 (x ,). 

Ptopoerltion 4. Let 2 be the type obtained from C by adding operati’ons to give solutions 
for ai& non&Gal systems of type C. Then for any non-trivial iterative system T E 

Fs (k, n 1” there exist %polynomials u 1, . . . , u,, E Fr (x 1, . . . , x/J such that, for any 
iteratiue~-algebraAandanyaI ,.... akEA,(ut(al ,..., a&. ..,~,,(a* ,..., a&is 
the unique soh4tion to T with respect to (a 1, . . . , ok ). 

Pmok Let T=lt,,,..,tn). 
If T is degenerate then it is uniquely solvable in Fs(x I, . . . , xk} and hence there 

cFst ~1,. . . , u,, E Fs{xl, . . . , x2} with 

N,tXl, . . , &) = &ix,, . . . , xk, &(x1, . . . , xk), . . . , &(x1, l . . , xk)) 

and then these are the required polynti&nuals. 
Assume T is non-degenerate. It follows from Proposition 4 and the remark 
llowing Proposition 3, applied to 2 rather than C, that it is enough to prove the 

crSaim in the case that all tj have complexity 1. 
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number of operations 
claim by induction on 

Iterative algebras 

Define the ‘overcomplexity’ OC(T) of T to be the total 
appearing in T which are not Z-operations. We prove the 
OC(T). 

If OC( T) = 0 then tj E Fz(k, n) for each j, and the result follows from the definiton 
of 2. 

Suppose tn & F=(k, n); then t,, involves one of the new %operations, and hence 
there exists a non-trivial iterative system T# = (tf, . . . , tX> E Fs(p, m)” such that 

t?l = Ti# (zl, . ..,z,)forsomejsm andsometl,...,z,E(X1,..., xk,y1,..., yn). 
By suitably permuting the equations in T” we may assume j = 1, so t,, = 

T: (~1 ,...,zp). Let h:Fz(p,m)+Fx(k,n-l+m) be the homomorphism with 
h(Xi)=Zi for isp and h(yj)=y”-l+j for j < m. Consicier the system S = 

!t 1, 1 . . , t”-&tr), . . . , h(t$)), whose solutions are of the form 

y1= hh, l - l 9 Xk, y1, l l l 9 Y,) 

yn-1 =&-1(x1,. . . , xk, yl, n l l 9 Yd 

Yn = h(t;(t)(x 1, l . l 9 xk, )‘I, l l 9 3 Yn) 

= tY(z1,. * - , z,, yn, Yn+l, l l ’ 9 yn-l+m) 

Ym = W:)h, 9 . l , xk, YI, . . * 3 )‘,I) 

= g&l,. 
l l 9 Zp, Ym Yn+l, l l l 9 Yrz-l+rn)m 

Note that OC(S) = OC( T) - 1. Also, in an iterative E-algebra A, if (14 1, I, . . , b,, . . I+ ,c, ) 

is a solution for S with respect to (al,. . . , ak) then (bl, . , . , 6,) is a solution for T 
with respect to (al, . . . . &). Now we may use the techniques of Propositions 3 and 
4 to produce a %ystem equivalent to S, with the same overcomptexity, each of 
whose components has complexity 1; the inductive hypothesis mav now be applied _ 

to this system, yielding the desired result. 0 

It follows from this result that 2 has the kind of homogeneity found in the 
‘iterative theories’ of Elgot [4]: everything has iterative solutions within the syste,m. 
It is precisely this homogeneity which allows Bloom, Ginali and Rutledge [3] to 
prove that “scalar iteration implies vector iteration”. The analogous result for 
algebras would be that every L1-iterative algebra is iterative. If Proposition 5 were 
still true when s is replaced by &, then the proof in [3] would carry over. However, 
this analogue is not true: we will see in the next section that there are Ll-iterative 
algebras which are not iterative when C consists of a single binary operation. The 
farthest one can go in this direction is the following. 

Proposition 5. If c clonsists exclusively of unury operations then every L dterutr’ve 
Zulgebru is iterutive. 
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Rodf. Assume A isL1-iterative, and let T==(tl, . . . , t,) ~Fx(k, n)” be a non-degen- 
erate iterative system where each Cj has complexity 1. By Lemmas 1 and 2 we may 
assumer,&F~{~t ,..., x~).Thust,=~(~j)forsomej~n,andsome~~~. 

n - 1 then we may use Procedure 2 of Proposition 3 to reduce T to a 

&mtea, equivalent system. 
ff j = n, then tn = V( y,). Now, A is &-iterative and hence the equation y =u( y ) 

has a unique solution b E A. Let h : FE (k, n ) 3, F’(k + 1, n - 1) be the homomorphism 
with h(si)=xi for isn, h(yj)=yj for @n-l and h(y?)=~k+l and let T= 
fkW, l l l 9 h(t,. 1)). Then (61,. l . , 6,) is a solution for T with respect to (a 1, . . . , ak) 

iff 6,, =,6 artd(h,..., 6n-1) is a soh.Hion for F with respect to (al,. . . , ak, 6). 
Thun we reduce T to an equivalent system of length 1 which is uniquely solvable 

hy the L 1 4terativeness of A. Cl 

3.~ ‘he cons&actions of free iterative algebras 

In the preceding section, standard results from ur$versal algebra were used to 
prove the existence of free C-iterative algebras. Here we will give concrete descrip- 
tion free CXterative algebras, for certain C, as algebras of trees. 

3. I. Regular trees 

RN a type 2. the algebra TxV of all V-labelled C-trees was defined in Section 

2. I ; here we will deal with those trees in TXV that have essentially only finitely 
many subtrees. 

For 8 tree t E TzV and u E dom( t ), define t lu., the subtree of t at u, by 

Were, for sequences u, c; E o*, uu is the concatenation product of u and v. 
A tree t is called regular iff {flu 1 u E dam(t)} is finite. Alternatively, we may define 

an equivalence relation on dam(t) by: u -v iff tlu = tlu (iff t(ux) = t(ux) for all 
o*); then t is regular ifi the equivalence relation - has finite index. The regular 

trees are exactly the same as the regular = algebraic trees of Ginali [S], but the 
above definition is simpler and easier to work with. 

bt &V be the set of all regular trees in TEV; then Rx V is clearly closed under 

all the E-operations as defined in TEV, rnd contains FrV. We are going to prove 

that &V is the free iterative Z-algebra over V. 
To keep notation to a minimum, we will write, for each polynomial t E Fx(k, n ), 

simply ‘t* iristead of Y R+’ for the polynomial function induced by t in REV. Note 
Omt, for each C+z&(k,n)andrr ,..., rk,sl ,..., s,E&V,wehave 

t(u) ift(u)EC, 

rf6-8 51, * ..,. s,,)(u)= r,Cz.l) ifu =wt! andt(w)=xi, 

s,(c) if u = cw and t( u’ ) = yI. 
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Note that if t(w) = xi or yj for some w such that u = WV then w.’ is uniquely 
determined, and is a ‘leaf’ in dam(f). The proof of the above equality is a straight- 
forward induction on the complexity of t. 

Example. Suppose C has a binary operation + and one unary operation A. 

Xl Yl 02 0 2 

th, yl, y2) 4x1 +ylj+(y2+-d r1 =v+v2 Sl =A(vd s2 = 01 +A (v*) 

m* Sl, s2) 

Proposition 6. REV is an itwa!ive E-algebra. 

Proof. By Propositions 3 and 4 it is enough to prove that every non-degenerate 
iterative system in C1 is uniquely solvable in RXV. 

Let r=(f19 . . , t,,) E &(k, n)” where each fi has complexity 1; then for each i, 
li(B)=gjEX. l,et rl, . . . , rk ER~V. 

Define sj E &V for 1 s j s n, specifying sj(u) by induction on the length of U, as 
follows: 

rj(ti) if m s Fuji and tj(.m) =xi, 

s,(m) if m s Icql and lj(m) = yp. 

Then for all j d 8’1, each subtree of si is either a subtree of some ri (i d k ) or is equal 
to some s,, and hence each si is regular. 

Moreover, by the identities (*) preceding the proposition, we have s, = 
rj(rl,. . . ,rk,sl,. . . ,s,)foreach@n.Thus&, . . . , s,*) is a solution to T (Jvith respect 
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00 h e .r;,) in &V. Moreover, a straightforward induction using thg identities 
to t&t#iat~ t&, . . v , rk, s1, . . , , s,)(u) for u E o* show that the Sj are uniquely 

determined. 13 

Tbconsr 2. &V is the free iterative E-aigtzbrr, over V, for any set V. 

H. Let f: V + B be any function into an iterative E-algebra B ; we must show 

that f extends uniquely to a homomorphism f: RsV + B. 
1Rt(EREV;thenthereexistvt,...,ukwithtERy(v1,.~.,vk}.Wemayassume 

rkV.Letu fr . , . , u,, be a eYet of respTesentatives for the non-trivial subtrees of t (i.e. 

th with complexity b i), so that for all u E dam(t) either flu = tluj for some j s n 
or t(u) = vi for some i s k. For each j s n, let nj = t(uj) E C. 

Define Ii,. . . , tn E Fx (k, n ) as follows: 

fj(8) = u& 

I yP 
f,irnl== 1 

if t!ujm = flu,, 
xi if t(ujm) = vi 

for all m d ]Cjle 

that if we choose ui, l . . 9 ui ho* such that tluj = flui for each j s n, and 

substitute ui in the above definition of ti we get exactly the same tree tj. 

In B, there exist (unique) 61, . . . , 6, such that b, = tj( f(V I), . b l , f(uk 1, b I, b . - , 6, )- 
Define T{(r) = bp where p is the unique number sn with t = flu,. 
It may seem that this definition depends on the order chosen for the representa- 

tives NI , . . , , &l,, of the different subtrees of t. However, it follows from Lemma 2 

that even if WC order them differently, since this only amounts to permuting the 

equations, we still end up with the same element of B for f(t), and hence 

fi Rx V + B is well-defined. 
Wxeover, if f is a homomorphism, then the following discussion shows that it 

is unique: For each j s n define si = tlui E Rr{vl, . . . , uk}; then t = s,. Moreover, for 

ch jctl, .~,=fi(V~,...tvk,Sl,. . . , s,); this follows from the identities (*). Thus 
tt * . . , .c, ! is the solution for T = (tl, . . . , t,) with respect to (u 1, . . . , uk) in RXV. 

Sinse homomorphisms necessarily preserve such solutions, T((r j = f(s,, ) must be b,. 
‘v”hus all that remains is to verify that f is a homomorphism. 
Suppose I = n(r,, . . . , rla,) for some CT E 2 and ri E RXV. Let ul,. . . , un be a set 

af representatives for the non-trivial subtrees of t, and T = (tl, . . ’ , tn) 62 Edk n )‘I 
the corresponding iterative systems as defined above. Let b l, . . . , b, be the solution 

n R far T with respect to f( I_J 1 ), . . . , f(ok ), so that f(t) = b, for the p S n with f = f 1u,. 

Since rt is a subtree of t, we known that among the ui are a set of representatives 

P the non-trivial subtrees of rl. If rl is itself nontrivial, then we may assume 
ith~ut IOSS of generality that ui = 1 wi for j s m and that wl, , . , , w, E dom(r;) are 

of rcprcsentatives for the non-trivial subtrees of rl. Let ?= = (‘i,, . . . , &,,) be 

EC ~~~r~!~~~~ system produced as above from rl and these w 1, . . . , w,. Sinze rl( w ) = 
o*, it ic~llows that 7, = t, for all j 5 m and hence (b ,, . . . , b, 1 is a 

th respect to ( f sI v I), . . . , f (uk )) in .B. 
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All together, this shows that if rl is non-trivial then f(rl> = b,, for the unique 
p1 G n with rl = t(up,. Of course if rl is trivial then rl = Ui for some li and then 

fCr1) =f(ui)* 

Similarly, for those other r, that are non-trivial, f((r,) = b,,,,, for the ?rnique P,,, s n 
with r,,, = t(up,. 

??oYY suppaise f = ti+ Then bP(0) = Q, and for each m s 1~1, i p+,m = r,,,. Thus 

?P =&I,..., q,l) where for m 6 1~1, 

1 YP?n if r, 
zm = 

= 4Up, 

Xi if r, = 21i* 

Since (61, . . . , 6,) is a solution for T in B with respect to iF(u I), . . . , f( uk 1 it follows 
that 6, =a(~~, . . . , q,l) where 

6 
cm = f[ii) 

if zm = ypm, 

if Zm = Xi. 

But by the above remarks, cm =f(rm) for each m G 101 and hence 70) = 

(+(f’<l,), l 
. . , f(~,l)), as required. Cl 

3.2. Application to context-free grammars 

For certain sets C of iterative systems, the free C-iterative algebra can bc 
described as a specific subalgebra of l&V. In this section we will describe a collectiorr 
CF of iterative systems that come from context-free grammars, and the appropriate 
trees making up the free CF-iteirative algebra. 

Consider a context-free grammar G = (N, V, P, S) where N F { yl, . . . , y,) is the 
set of variables (non-terminals), V is the terminal alphabet, S 1~ N is the ‘start’ or 
‘axiom’ symbol, and P E: N x (N u V)’ is the set of productions (rewrite rules). 
Here, (N u V)’ is the set of neon-empty strings of letters from N u V, SO we do 
not allow erasing productions. (5 is called cycle-free if there is no G-derivation of 

the form 

yi, + yi, + ’ ’ ’ + yim + Yi, * 

As is well known, every context-free grammar is effectively equivalent to one which 
is cycle-free. 

With each such grammar G we associate iterative systems as follows. For each 
u = VI212 l * l vk E (N u V)’ let u’ = ( l l = ((vl X vz) X un) X l l * X ok). Then, for each 
choice of j s n, suppose ul, . . . , urn E (N u V)’ are all sequences u with ( y,i, ~4) E P, 

arrd let 

ti = ( l l ’ (i&+&T)+* ’ l +&). 

Then T = (tl, . . . , t,,) is an iterative system of type C where C consists of two binary 
operations + and X. Of course the definition of T depends on the order we chose 
for the ui and so with each G we associate all iterative systems obtained as above. 



86 E. Nelson 

I&t CF be the set of all iterative systems obtained in this way from all cycle-free 
context-free grammars over the terminal alphabet V = {VI, . . . , vk}. 

bet Pv” be the set of all subsets of V’, furnished with the structure of a X-algebra 
by defining + as set union, and i b) 

S~T={UV~UES,VET} 

Then the following discussion shows that PV’ is a CF-iterative algebra. 
For G = (N, V, .?, S) with N = {y ,, . . . , y,}, define T = (tl, . . . , t,,) as described 

~XW~L RN each j 6 n, let U’ = {U 5 V’ 1 yj -, g u}, i.e. Uj consists of all words in the 
inal alphabet that are derivable from yj using the rewrite rules in G. Then 

Ir.. . , L&) is a solution for T with respect to ({VI}, . , . , {vk}). Moreover this 
uticvn is unique: if ( U’, , . . . , C/k) is any other solution, then an inductive argu- 

*Fed on the length of u E V’ and using the fact that G is cycle-free, shows 
Us iffuECji foralljsn. 

ext, we wilrJ see that a suitable subset of REV forms the free CF-iterative 
bra: let C&V e_ RXV consist of all trees t E Rx V such that: 

Qi#) for all 1~ Sk S and u EW*, if rlu = tluv then t(uw) = x for some prefix w of v. 

I(0 = rl 1 = tl 1 1 slB=sjll =slllll 

firnotinG& s is in G$, 

Ikmrn 3. G, V is the free CF-i=eratir:e algebra over V. 

liEto& Ot is clear that GxV is closed under the operation X. Suppose r, 1 E GxV, 

OF~+S and tlrc= tjrrc; we must show t(w) = X for some prefix w of 0. If u Z 0, 
say N = lrr”, then rtrr’= t = rlu’v and the result follows from the fact that 
d r; C&I’. If u = 8 then w ssume without loss of generality that v = 1 v’, SO 

c.‘, and hence r = :I’ 1 -rIdI. Since rc GEV, there is a prefix w’ of v’l 
% _ If Ic” - $1 then replace w’ with 0, so that w’ is a prefix of v’ and 

” A, nut rhcn I+’ = I W’ is a prefix of t’, and I(W) = r(k) = X, as required. 

see that, for any T = (I+: . . . , t, ) E F&, n )” with 7’ E CF and any 
fg, * * * 9 E 472 V, fhe solution (s,, . . . , s,,) to T with respect to (I’;, . . . , rk 1 in REV 

dEy cwnsist~ of members of G& which implies GEV is iterative. 
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Using either standard arguments from language theory, or the techniques of 
Propositions 2 and 3, we can verify that it is enough to prove the claim for 
T=(t l,*.*, t,) E CF with each tj having complexity one (the reduction to such a 
system will not indroduce cycles if the original grammar is cycle-free,, and so will 
itself be cycle free). Now, let rl, . . c , rk E G=V, and consider 3 l, . . . , sn, as defined 
in Proposition 6, ihe solution to T in RXV with respect to (rl, . . . , rk), 

Suppose for some j c n and u, v E w * that sjlu = sjlctv ; we mu:; show for some 
prefix v’ of v that sj(uv’) = X. Because the ri E GzV and the tj have complexity 1, 
it is enough to deal with the case u = 0. 

Suppose v = ~IIIRZ~ l l l mq EU+, jl s n and Sj, =s~~(u, but Sj,(ml l 9 l RIG*) # X for 
a9l-y q kg. Wemayassumethatqan+l. 

* If tjl(ml) =,Q for some i then sjIlml = ri and hence ri = rilmz * l l m,m 1. Since 
ri E G,V this implies that ri(m2 l * l m,p) = x for some q’ aq and then 

Sj,h, . . . , mJ = X, a contradiction. 
Thus tjl (m 1) = yj, for some j2 6 n and hence in the grammar G from which T was 

derived there is a production yj, + yj,. Moreover we have .sj,(m 1 = Sj2 antf hence 

Si, 
II 

= Sj,lt?Z2 l l l mqml. Using the argument in the preceding paragraph again, we see 
that tj2(m2) = yj, for some j3 s n and hence G has a production yj, + yi,. Proceeding 
in this way, because q s n + 1, we eventually produce a cycle in G, which is a 
contradiction. q 

Remark. The image of GEV, under the homomorphism to PV’ Iwhich malps each 
u E V to {u}, is the set of all context-free languages over the alphabet V which do 
not contain 0. 

3.3. Irredundant iterative systems 

In this section we consider algebras with unique solutions to systems T = 

(tt, * l 
. , tn) E F&, n)” where each ‘variable’ yj is linked to at least one of tile 

‘constants’ xi. Such systems of equations arise when considering context-free gram- 
mars in which each ‘variable’ or ‘non-terminal’ has a derivation to a terminal word. 
Thus for example we do not insist on either the existence or uniqueness of solutions 
to systems such as 

Y=Y+Y 

but for each element a of the algebra in question, there is a unique & with h = b + a. 
More precisely, for an iterative system T = (tl, . . . , t,*), define a binary relation 

+TonZ={X1 ,..., xk,yp ,..., yn}u{~EE~~cr~=O}a~follows: yj-)TZ if2 =tj(lfffOr 

some u Eo”. Let-, F be the transiti*.‘e closure of + T; then we say that T is 
irredundant iff for all j s n, yj + gz’ for some z k ZO = {x 1, . . . x,) u {u E 2 Ilcrl= 0). 

Let IW be the set of all irredundant iterative systems. W’e will describe the free 
R-iterative algebra: rlet &V c_ &V consist of ‘those trees t E RXV such that 

for all u E dam(t) there exists v E W* with t(uv) E 20. 
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TImmm 4. Is V is the free IR-iterative algebra over V. 

Proof. The fact t’hat I2_V is closed under the Z-operations is clear, and that it is 
lR-iterative comes from the construction of iterative solutions in 7’s ?,nd the 
definition of IR. The fact that set maps from V into IR-iterative algebrasextend 
uniquely to homomorphisms follows from the same arguments as in Theorem 2, 
the point being that, given a tree t d”V, the corresponding iterative system 

constructed from it is in IR. El 

3.4. L j -iterative algebras 

In this section we will descri’be a subalgebra of Rx V which is &-iterative but 

not iterative, as promised in Section 2.4. 
Ixt V=(v) be a singleton, anid define subsets A, s R=V as follows: 

A, + 1 is the subalgebra of REV generated by the elements of A, together 
with all scklutions in REV to single iterative equations with constants 

fratn A,. 

Then define A = U A,, in E w ); then ,-4 is an L l-iterative subalgebra of RpV. 
Suppose C consists of a single binary operation +. We will show that A is not 

itWitk. 

If A is iterative, then there exist .I:~, s2, s3 E A with 

S2 = St+-S2, 

$3 = v +s1. 

Since A is a subalgebra of RIV, and the latter has unique solut\,ans to iterative 

systems, it follows that sl, z2 and s3 are precisely the solution to this system in RxV. 
Let n be the smallest natural number such that one of sl, s2 OY s3 is a subtree 

of a tree in A,. Since each of sI, ~2, s3 is a subtree of each of the others, it follows 

that they all occur for the first time in A,. 
Thus there exists f E F&, 1) and rlT . , . , rk E A,_1 with s1 = t(rI, , . . , rk, ~1). Since 

each r, is a subtree of s 1 and belongs to A, _ 1, and since the only non-trivial subtrees 

of.~~ares,,s~ands~,itfollowsthatrj=cforalli~k,andhences~=~(u,tl,...,u,s,). 

Rut then dam(r) is a subset of domIsI), and zri E dom(r j iff 24 2 E domt, and for all 
am(t), either s& is trivial or s ,lu = sl. However, sl is pktured below; the 

hek 1, 2, 3 indicate the nodes, which are all labelled +, who: e subtree is sl, s2 

rcspcctivcly, and it is easy to see that the above is impossible. 
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This leaves open the (fairly plausible) conjecture that A is actually the free 
Lr-iterative algebra on V. 

4. Iterative theories 

4.1. Existence of free iterative theories 

In this section, we will see how the existence of free iterative theories, proved 
by Bloom and Elgot [2] and Ginali [S], follows from the existence of free iterative 
algebras. The explicit description of free iterative algebras given in the preceding 
chapter is not needed at all here; we will only use Theorem 1 and Propositions 2 
and 4 of Section 2. However, Ginali’s explicit description of the free iterative theory 
can also be accomplished using the arguments given here together with the results 
of Section 3. 

The definitions of an algebraic theory and iterative algebraic theory can be found 
in Elgot [4], but are repeated here for the convenience of the reader. Briefly, an 
algebraic theory is a category Z”, with countably many objects [O], [l], [2], . . . , in 
which [n] is the nth copower of [l]. The coproduct injections [I]-+ [n] (called ‘base’ 
morphisms by Elgot) are ambiguously denoted 1,2, . . . , n, and [n] being the nth 
copower of [l] means that for all k and morphisms fl, . . . , f,, : [l] + [k] there is a 

unique morphism fI f2 U ’ . l f,,:[n]+[k]such that(f,U* l -U~l> y’-fi foralljsn. 
(Elgot writes (fr, . . . , f,,) instead of f 1 U l l l Uf,,) A morphism f:[m]+ [n] in T is 
called ideal if? for all i s m, f l i:[ l] + [e ] is nota coproduct injection. An ideal theory 
is an algebraic theory in which the composite g . f is ideal wheneverf is ideal. Finally, 
an iterative algebraic theory is an ideal theory T in which, for every ideal morphism 

f: [n]+ [n + m] in T there is a unique morphism f#: [n]+ [m] such that f” is the 

composite 

c 1 
f id,, LJ f* 

n -[m +n] c 1 m 

(Here, id, is the identity morphism on [ml.) 
Now, suppose T is an algebraic theory, and that for each a EC we are given a 

morphism 6: [ 1] -, [lg]] in T. F or each natural number m, we make Tm, the set of 
all T-morphisms from [1] to [m], into a S-algebra in the obvious way, namely: 
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For each natural number m, there is a unique X-homomorphism from Fs{v 1, . . . , v,} 
to Tm which maps vi to the ith coproduct injection [l]+ [ml; for each t E 

E&l, l l * 9 v,,,) let 7 E T be the image of t under this homomorphism. A simple 
inductive: argument on the complexity t then shows that for all t E Fx{vl, . . . , v,,} 
ndallf~,...,/&Tm 

m. 

n 7. If T is an iterative algebraic theory and if for each CT E C, c? : [I] + [ lal] 

I morphism in Tm, then Tm is an iterative E-algebra for all natural numbers 

f. If T is an iterative algebraic theory then it is ideal, and then an inductive 
rgument based on the complexity of t shows that if C? is ideal for each ct EC then 

! is ideal for all I E F.{ v ,, . . . , v,} of complexity 2: 1. 
it T= (I,, . . . , r, ) E FE (k, n )” be an ideal iterative system, and let fl, . . . , fk E Tm. 
s&&r the morphism t: [n] + [cz + m] which is the following composite: 

I I 

tE=s.[n] *tti”“w’n [k+n] 
if, il.* * -Lafk,)+ici, 

--Em -I-n] 

where k& is the identity morphism on [n]. 
f, is an ideal morphism, and T is ideal, it follows that F is ideal, 

and hence there exists a unique morphism t#: [n]* [m] with t# = (id, U t”) l t. But 
l l LJ fz for unique I;“, . . . , 1,” E Tm, and for each j s n 

= (id,,, U t#) l t l j 

= t;“. 

us t:,.. _ , t,” provide a solution in Tm for T with respect to (fl, . . . , fk). A 
similar computation to the one above, using the uniqueness of t#, shows that this 

ICukn is unique. Hence, by the Corollary to Proposition 2, ‘rm is an iterative 
Salgebr 3. 

!%=-9w, for v = cc*, C’2, . . . } a countable set, suppose that AzV is the free iterative 

ra over V, whose existence is provided by Theorem 1. For each natural 

r n, let &n be the sub-iterative algebra of AzV generated by {VI, . . . , II,}; 
en Azn is the free iterative algebra over {ul, ~2, . . . , u,,}. Construct an algebraic 

ry cl from &V ;JS follows: for each m, the A-morphisms from [ 1] to [m] are 
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the elements of Axm, and the morphisms [n]+ [m] are n-tuples of morphisms from 
[1]to[m].ForA-morphismss~,...,s,:[l]-*[k]akdf~,...,t,:[l]~[m],thecom- 
posite (sI, . . n , s,) l (tl, . . . , t,):[n]+[k) is the n-tuple (Q, . . . , r,,) where xi is the 
image of tj under the unique homorphism from Axn + Ask which malx v:, to si for 
lGsm.AsinSection 1.1 wewriterj=tiArk(sl,...,sm!. 

It “Is straightforward to check that this yields an algebraic theory, i:r which the 
ith coproduct injection [l]+ [n] is just vi. Moreover, judicious use G; ;lomomorph- 
isms from &V into the algebra described in Example 3 of Section 2.4 will show 
that this theory is ideal. It follows from Proposition 
theory. Cl 

4 that b is an iterative 

Thewem 5. A is the j?ee iterative theory generated by C. 

Proof. Suppose T is an iterative algebraic theory and for each c E 6, CT: [l]-, [ial] 
is an ideal morphsim in T. By Proposition 7, for each m, Tm is an iterative X-algebra 
and hence there is a unique homomorphism Ql,,, from Azrn = Am into Tm such 
that ($J~ (vi) is the ith corproduct injection [ 1] + [m] in T. But then C$ = (&,, ),,,c,,, 
provides the desired functor from A to T. Cl 

4.2. Further examples 

In this section, Elgot’s examples [4] of iterative theories are discussed, and put 
into the framework of iterative algebras. Since morphiszs [n]+ [p] $I an algebraic 
theory are essentially just n-tuples of morphisms [l)+ [p], only the latter will be 
described. 

The first example concerns ‘timed terminal behaviour’ of machines, Hen:, X is 
the set of external states (tape configuration plus position of reading head for a 
Turing machine, etc.) and a morphism [l] + [n] in the theory [X l M 01 is a function 
f:X~(X~N~[p])u~0}(where[p]={l,2,3,...,p))suchthat 

f(x) = ( y, 0, i) for some x E X implies f(z) = (2, 0, i) for al! 2 E X. 

In the latter case, f is the jth coproduct injection. Such a function f is interpreted 
as the timed terminal behaviour of a machine with one entrance and 17 exits, f(x 3 = n 

means the machine has no output on input x, andf(x) = ( yr k, i, means the machine, 
given input x, outputs y at the jth exit in time k. Note that Elgot’s definition 
[4, p. 1841 of a morphisrn Cl]-, [p] is a function ii’. {X x N x [l]) u {Cl)+ 

(XxN+])u{Q such that f(0) = Cl and for each k, f(x, k, 1) determines and 
is completely determined by f(x, 0, 1) and hence we need only consider the values 
of f on triples (x, 0,l). 

The algebra A of machines is now defined as follows: the elements of A are all 
the functions f: X + (X xX x [p]) u {III) as described in the preceding paragraph. 
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, each function g: l\‘;r + (X x N’ x [n]) u(U) (where N’ = {1,2,3, . . . }) induces 

an n-ary operation a, OL A as follows: for fi: X --, (X x N x [pi]) u {Cl} (1 =S i s n), 

gr(fl ,...,fn):X +(XxNx[p])u{Ul 

where p = maximum sf pl, p2, . . . , p,, and for each x’ E X, 

if g(x)==C, 

rr,Cf 1 if g(x)-(y, k, i) andfi(y)=U, 

(0 +r,j) ifg(x)=(,y,k,i)andfi(y)=(r,r,j). 

is corresponds to connecting up the machines so that given an input x, first the 
machine g acts an it; if this produces an output at the ith exit then this is fed into 

the machine f,. 
traightforward to check that A, with all these operations, is an iterative 
analogous to Elgot’s result that the theory [X l N, 01 is iterative. 
~5; rrc;cond example is that of matrices of subsets of a monoid M which has 

function’, i.e. a function I: M + N such that I (xy ) = f(x) + I ( y ) and I (x ) = 0 
His theory [M] has as morphisms [l]+[p] all p-tuples (U,, . . . , Up) of 

ts of M such that 1 E Ui implies Uj = { 1) and Uk = 0 for k f j. Thus, besides 

roduct injections (0,0, . . . . 9 { 1), 0, . . . ,0), the morphisms are p-tuples of 

af M which do not contain 1. Alternatively, we may consider the algebra 

iib whose elements are all subsets of M not containing 1, and which has, for each 

n-tuplcS = CS,, . . . , Sn) E f@“,an n-aryoperation which maps (XI, . . . , Xn) to&Xl + 
S?X+=“’ + S,,X,,. Then fi with these operations is an iterative algebra. As a further 

alternative, we may consider fi as an algebra of type C = {+, X) where +, x are 
binary operations: + is set union and U x V = {uv 1 u E U, t’ E V}. Then techniques 

similar to those in Section 3.2 show that I@ has unique solutions to all iterative 
systems T = (I ,, . . . , I,,) of type C such that for each i s n, if ti(U) = + then there 
cgxists t with fJuc) = x. 

The third example frum Elgot 143 which we will discuss is that of sequacious 

functions, which essentially keep track of the sequence of external states attained 

in a computation. For Elgot’s sequencious funztions, x is always a prefk of f(x); 
we replace f with the function g uniquely determined by xg(x ) =f(x ). With 

reduction, the theory has, as morphisms [ 13 --* [p], all functions f: X + 

IIGX’ (where X” is the set of countable sequences from X) such that 

if f lx ? = (69, i! for somcz x E X then f(z ) = (0, i) for all z E X. 

coproduct injections which are constant with value (0, i), the 

f 1 to [p: are all functions f: X --) (X’ x [p]) uX”. The algebraic 
nsider the algebra S whose elements are ali functions f: X + 

as above. Also, for each function g:X +(X’ ~[n])uX”, S has 
;rsr-ar!:cs~rationtr, definedasfollows:forf,:X+(X*~[p,]uX”(l~i~n), 
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where p = maximum {pl, ~2,. . . , p,}, and for each x E X, 

id4 if g(x) E X”, 

Uyfi(y) ifg(x)=(uy,i)foruEAY*,qzX and 
q?(flt ’ l l l ,fnW = 

i 

fi(Y)EXm9 

(uyw, j) if g(x) = (uy, i) for u E X4, u E X and 

fi(Y)=(WS,j)- 

Just as in the example concerning timed terminal behaviour, this models the giueing 
together of the machines. It can be verified that S, with all these operations, is an 
iterative algebra. 
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Note added in proof 

Iterative algebras have also been studied in Tiuryn (IJnique fixed points VL least 

fixed points, Theorct. Comput. Sci. 13 (I 981) 229-254‘). Tiuryn uses the results of 

Ginali et al. on free iterative theories to show that the algebra of all regular trees 

is the free iterative algebra (with respect to solutions of all ideal iterative equations). 
which is the reverse of the approach taken here, in Section 4. In addition, he 

explores the connection between iterative algebras and regular algebras, the latter 

being ordered algebras where d;otutions of iterative equations are obtained as joins 

of certain w -chains. 

A related topic has beer, developed by Benson and Gucssarian (Algebraic 

solutions to recursion schemes, manuscript CS-M-079, Washington State LJniver- 

sity), namely that of algebras with solutions to recursive equations, these being 

more general than iterative. In their approach, solutions are not required to IX 

unique, but are explicitly added as extra operations. A brief doscr+tion follows;. 

A recursion scheme over a set Z of basic operations is a set S of equations 

where the Gi are new operations, and the li are polynomials in both the L’-operations 
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ares ones, i.e. elements of the free C u {GI, . . . , G,}-algebra on an 
nerators. For such a recursion scheme S, let I@ = {Gl, . . . , G, ), 

consider the class of all C u @-algebras satisfying the above equations 
hamomorphis8ms between them. Since this is just an eq,uationally 
f [universa!) algebras, the existence of free algebras is il standard 

~~~h~~ [l]]. The approach of Benson and Guessarian is essentially to 
this free algebra as a quotient of the absolutely free C u @-algebra; 

r appmach yietds a canonical form, or description, for the elements of the 
ra. Similarly, by sdding a set of operations for each recursion scheme 

one eun obtain an algebra which has solutions to all recursion schemes and 
I ajaiivcrsal, with this property. In the same way one can also obtain free 

utians t4.r Eecursive equations satisfying some additional equations, 
ion af thei*, papet. The essential Merence between their approach 

d in the present paper is that ttle solutions to recursion schemes 
e unique; hoM?ecer, since the homomorphisms are stipulated to preserve 
ions. because thc”y are added as operations, this does fall within the usual 

rk af universal a&bra. As the example at tfle end of Section 2.3 above 
ither of thi=sc ;ipproaches is followed !i.e. solutions need not be unique 
J najt added ZJ operations which must be preserved by morphisms) then 


