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1. Introduction

The problem of finding suitable environments, in which so-called ‘iterative
equations’ have solutions, occurs frequently in connection with the theory of
computing and programming languages. Tiic equations, or rather sets of equaticas,
which are to be solved, are of the form y;=t(x1,..., Xk Y1,...,ya) (1 <j<=n)}, for
polynomials #; and ‘fixed’ x;. Such equations occur, for example, when modelling
loops in flow charts or when studying formal grammars.

Elgot [4] has proposed iterative algebraic theories as models in which such
equations have unique solutions, and the existence of free iterative theories was
established in Bloom and Elgot [2]. Subsequently, Ginali [S] gave a construction
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of the free iterative theory using regular trees, analogous to the familiar construction
of ordinary free algebras which uses finite labelled trees.

Now, algebraic theories were put forward by Lawvere [6]); they provide a
homogeneous approach to (not necessarily finitary) universal zlgebra via category
theory. However, iterative theories are not entirely homogeneous, and Bloom and
Elgot [2, abstract] suggest that this is the obstacle to proving the existence of free
iterative theories from ‘general algebraic considerations’.

This paper outlines a new approach to modelling unique solutions of polynomial

equations, namely that of iterative algebras. These are algebras in which some,
or all, iterative equations are uniquely solvable. This approach has the advantage
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that it is simpler than Elgot’s, dealing oniy with the familiar notion of poly-
nomial, has Elgot's results a: corollaries, and is applicable to some situations
that do arise in computer science which do not fit into the framework of iterative
theories.

Iterative algebras are introduced in Section 2.2, and general algebraic consider-
ations are seen to indeed directly yield the existence of free iterative algebras
tSection 2.3). This fact, together with some general propertics of iterative systems
of equations (Section 2.4) then has as a corollary the exisience of free iterative

thonrioc (Costinn 4 1\
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This apgproach is more general than that developed by Elgot et al., not only
because their results are consequences of the ones presented here, but also
because this approach lends itself to a consideration of algebras where there
are unique solutions, not to all iterative systems of polynomial equations,
but to specified subcollections. The existence of free algebras of this sort also
follow from general considerations (Section 2.3), the point always being that the
required solutions can be viewed as additional operations, and the algebras in
question are then realized as an implicationally defined class of algebras of an
expanded type, in much the same way that torsion-free divisible abelian groups
may be viewed as vector spaces over the field of rationals. This approach does
not vork in case the solutions are not required to be unique, and an example
to show that free algebras need not exist in this situation is given at the end of
Secticn 2.3,

The free iterative algebra is explicitly constructed in Section 3.1 as the collection
of all regular trees, and free iterative algebras with respect to certain subcollections
of equations (including the one related to context-free grammars) are realized as
subzlgebras of the algebra of regular trees in Sections 3.2 and 3.3. In Section 3.4
we see that, in contrast to the situation for theories (Bloom, Ginali and Rutledge
{3]h. an algebra may have unpique solutions to all single polynomial equations but
still may not be iterative.

All of the material on algebraic theories is postponed until Section 4, where the
general existence results claimed above are proved and some examples from Elgot
[4] are discussed. Although this chapter is independent of the explicit constructions
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given in Section 3, when combined with 3.1 it yields Ginali’s explicit description
of the free iterative theory.

2. Definitions and busic results

In this section, the definitions of an algebra and a free algebra of a given type
are recalled, and the notion of an iterative algebra is introdi:ced, analogous to the
iterative theories of Elgot [4], Bloom, Ginali and Rutledge "3] and Ginali [5]. In
addition, basic results from universal algebra are used to estabiish the existence of
free iterative algebras.

2.1. Algebras and free algebras

As usual, a type of algebras is a set £ (of ‘operation symbols’) together with a
function which assigns to each o € ¥ a natural number |c| called the arity of o. An
algebra of type X is a set A together with, for each o € X, a |o’|-ary operation on
A, i.e. a function a-A:A"’l > A. A homomorphism f: A > B between algebras A and
B is a function from A to B such that, for all €2 and all a,,...,a,,€ A,
floalay,...,ae))=0op(fla1),...,f(a.)). For a set V (of ‘variables’) the frce
algebra F (word algebra) of type 3 over the set V' is characterized (up to isomorph-
ism over V') by the property that V c F, and every function from V into an algebra
A of type ¥ extends uniquely to a homomorphism from F into A. The existence
of this free algebra is well known, as is the following explicit description as a
collection of finite trees with labels from X U V': let w* be the set of finite sequences
of natural numbers =1. A V-labelled 3-tree is a partial function t: w* -3 U V with
non-empty domain, dom(¢), such that

(1) for all u e w™, k € w, if uk edom(z) then u € dom(z) and t(u)=c for some
o€l with |o]|=k;

(2) if t(u) =0 then uk e dom(t) for all k <|o|.

The set of all such trees forms an algebra TV, where the operators are defined
by

(TT,-V(tl’ vy t](r!)(ﬂ) =a,
O'T}_»V('h ey l{,,(}(ku)=lk(u) forall u Ew*, all1=k §‘0|

Also, the function which assigns to each v € V the partial function ¢ with domain
{@}, such that #() =v, gives an embedding of V into TyV. The camplexity (or
degree) of an element t € TV is the number cf opcration symbols appearing in 4,
i.e. the number cf sequences u € w* with r(u) € 3; the complexity can «f course be
infinite.

Examples. X has a binary opcration -,
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domain of s ={0, 1, 2},

domainof r=1{0,1,2,11,12,111,112,1111, 1112, .. . }

= gll sequences containing at most one 2, which must occur at
the end,

domaincis+r=10,1,2,11,12,21,22,211,.:2,2111,2112,...}
= {0} u{luju e dom(s)} u{2u|u € dcm(r)}.

The subset FsV of TsV consisting of all finite trees (i.c. 21l trees with finite
domains) is clearly closed vnder tise $-operations, and hence is an aigebra; it is
well known that this algebra is the frec 3-algebra over V. Mc:zover, if U < V then
the subalgebra of FsV generated by U is FxU.

'"f U={uy,...,uns} is an m-clement set then the elements of FsL™ are called
.n-ary palynorials. For each algebra A of type X, each t € FzU induces an m-ary
operation 14: A" > A; for ay,...,an €A, talay,...,an,) is the image of r under
the unique homomorphism FsU > A mapping u; to a; for each i <m. Note that if
t=u, then t4.:A™ > A is just the ith projection, i.e. tala;,...,an)=a; and if
t=luy, ..., u,)forocel thenty =0oa.

Each homomorphism f: A-> B between algebias A and B preserves 2!l these
polynomials, i.e. foreachre Fy{u,....u,}andforalla,... a,€A

[(IA.(alqv .. 1am))=tﬂ(f(al)9 LI sf(anl))-

This fact is well known, and in any case not difficult to provc; one merely shows
that the set of all r€ Fy{u,, ..., u,} which are preserved by f contains u,, ..., U,
and is closed under all the 3-operations, and uses the fact that Fs{u,,..., un} is
geaerated by {uy, ..., u.}.

Actually, since Fy{uy,...,un}<sFs{u,,...,u,} whenever m<p, each te
Fylu,. ..., u,} induces a p-ary operation A” » A for each p =m, which, of course,
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does not depend on its last p —m arguments. Thus, strictly speaking, our notation
‘t4’ is ambiguous and should also include the ‘m’; however this will normally be
clear from context.

2.2. Iterative systems and their solutions

The main concern of this paper is algebras in which certain syst.2ms of polynomial
equations of the form

Vi=t(X1, oo s Xis Y1y oy ¥n)

ya=taX1,. ooy X Yiso vy Ya)

Va=ta(X1ye ey Xes Y1y e ooy V)

have, for each choice of the x;, unique solutions y1, ..., y.. Since the x; and y; really
play different roles, it will be convenient to introduce two disjoint sets of variables
for them, and so we make the following definition.

For the rest of this paper, let X ={x;|1<iew}u{y;|1<iew} be a countable
set, where x; # y;, and for i #J, x; # x; # y; # y;, and let FxX be, as described above,
the free algebra of type I over the set X. For each pair n =1 and k of natural
numbers, let Fx(k, n) be the subalgebra of FsX generatedby{x1,...,Xi, Y15+« . Yul}
Further, for each te€Fs(k,n) and each X-algebra A, let 14 be the (k +n)-ary
polynomial on A induced by ¢ such that ta(a,,..., aw by, ..., b,) is the image of
t under the homomorphism from Fs(k, n) to A mapping x; to a; for 1<i<k and
y; to b; for 1 <j < n. (Note that k may be zero.)

An iterative system is, for some n =1 and k, an n-tupie T = (1), . . ., t,) of elements
of Fs(k,n); T is called uniquely solvable in A {(for a X-algebra A) iff

(*) for all a;, ..., a, € A there exists unique b, ..., b, € A such that

b,'= ]'A(dl, ...,(lk,bl,....,b") forlSan.

An iterative system T is called degenerate iff it is uniquely solvable in every
S-algebra. T =(ty,...,1t,) is called trivial iff there exist i1,...,im€{1,2,...,n}
such that 1, =y, i, = Vi, ..., L, =y;. Note that a solution in A for the system
T =(y2,¥3 Y4 - .-,V y1) consists of elements b,,...,h, €A, such that b, =b, =
by=---=b, and hence for any element b€ A, b = b, =b,=- - = b, provides such
a solution. Thus, f this system is uniquely solvable in A, it follows that A is the
trivial (= one-element) algebra.

Further, T is called ideal if t;¢{x1, ..., Xk y1,...,ya} forall j=n;ie, if each
has complexity =1; the ideal iterative systems are the analogucs for algebras of
the ideal morphisms of Elgot [3]. Clearly every ideal system is non-trivial; we will
see below that from the point of view of solvability these notions are equivalent.
First some examples.
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Example 1. Suppose X has one binary operation + and let T =(x1+y2 y1)€
Fs(1,2)% then T is non-trivial but not ideal. T is unigely solvable in an algebra
A iff for all a € A there exist unique b;, bo€ A with by =a +b, and b, =b,. This
is clearly equivalent to the existence of a unique b € A with b =a +b, and hence
the solvability of T is equivalent with the solvability of the idcal system T=
(xi+yeFs(1, 1)

Example 2. Let T = (x,,y;) e Fs(1, 2)?; then T is uniquely solvable in A iff for all
a€A there are unique b; and b, in A with by=a, b,=b,. This system T is
degenerate; for any A and a € A, the unique solution for T is given by b, =b,=a.

Example 3. For any type I, let 25 be the algebra whose elements are 0 and 1,
with operations defined by

0 ifa,=0for somei=<l|ol,

@y @) F Y e wise

We will see in Section 2.4 that an iterative system is uniquely solvable in 25 iff it
is degenerate, so that 2, is a ‘test object’ for which systems are always uniquely
solvabic.

Example 4. For any type £ and any set V, let F3V be the Z-algebra obtained by
adjoining one new element * to FsV and defining the operations to act as usual
in F1V and to take value * otherwise, so that o(ay,. .., a,,) = * whenever a; = *
for some i =|o|. Then FIV is a Z-algebra in which every non-trivial iterative
system is uniquely solvable; this is shown by the following discussion.

For any non-trivial and non-degerate iterative system T = (¢4, .. .., t,) € Fx(k, n),
if some 1;€ Fy{xy,..., x.} then we may drop ¢; from T and obtain an equivalent
system (see Lemmas 1 and 2 in Section 2.4), and so we may restrict our attention

to those iterative systems T with no components in Fs{x,,..., x;}. But for any
such T and a,,...,a € F%V, by=b,=---=b, == provides a solution to T with
respecttoa,. ..., a.

Finally, we verify that this solution is unique. Suppose b, .. ., b, is any solution
for T with respect to ay, . . .. ax and choose p; <n such that b, # ¥, and among all
the j- n with b, # %, b,, has the minimum complexity. Since t,, € Fs{x,,..., £},

there exists p, with v, in the image of ¢, , and thus because of the way the operations
are defined in F3V, b,,##, and so the complexity of b,, is = the complexity of
b,,. But b,, =1, (as,...,aib,,...,b,) and hence t,, =y,, and b,,=b,,. Now we
may repeat the above argument with b, replacing b,,, and eventually yield a cycle
with 1,, = v, 6, = Voo . . ., I, = ¥p,, cOntradicting the non-triviality of 7. It follows
that b, = bh, =--- = b, = = is the only solution for T, as required.

Fxample §. If S is a commutative semigroup containing a ‘zero element’ z such
that y = xv for x, y € § iff y = z, then every non-trivial iterative system, for the type
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X consisting of a single binary operation, is uniquely solvable in §. This is not
difficult to prove, using the results which will be sstablished in Section 2.4. Moreover,
every commutative semigroup S in which cvery non-trivial iterative system is
uniquely solvable is of this form: since y = yy is uniquely solvable in S, there is a
unique element z € S with z = zz. Now for any x € § therc¢ is a urique £ €S with
X =x%%, and then XX =xXX which implies that ¥ =% LUy the uniqueness
of ¥) and hence X = z (by the uniqueness of z). Thus, fo: all x €, z is the unique
element of S with z = xz.

2.3. Iterative algebras and free iterative algebras

Let C be any set of iterative systems of type X, i.e. C is any subset of
Uk.ne‘o‘nZI Fs(k,n)".

An algebra A of type X is called C-iterative iff every T € C is uniquely solvable
in A. A is called iterative iff every non-trivial iterative system is uniquely solvable
in A.

A C-iterative algebra I is the free C-iterative algebra over a set V iff V </, and
each function from V into a C-iterative algebra A extends uniquely to a
homomorphism from I into A. Standard arguments show that I is unique up to
isomorphism over V; the follcwing discussion yields the existence of such free
algebras.

For any C-iterative X-algebra A, each T eC induces n k-ary operations
Ta:A* > A (I1si<n) defined as follows: for ay,...,ay €A,
(Tyalay, ... ak), ..., Thalay, ..., ay)) is the unique solution of T with respect to
(ay, ..., ax). Moreover, if f isany homomorphism from A to a C-iterative X-algebra
B, then, as mentioned above, f preserves all polynomials, and consequently
(f(Tyalay, ... ak)), ... .f(Thalay,...,ac)) is a solution for T with respect to
(f(a1),...,f(ar)) in B, and hence by uniqueness of the solution in B,
f(Tialay,...,ar))=Tig(f(ay),...,f(ax)) for 1<i<n. This means that each such
T € C induces n k-ary operations on each C-itcrative X-algebra, and that the
3-homomorphisms also preserve these new operations.

Let X 23 be the type obtained by adjoining to X, for each T e C n Fx(k,n)",
n k-ary operations T, .. , T,. The above discussion shows that each C-iterative
J-algebra can be made irto a 3.-algebra in such a way that $-homomorphisms
between C-iterative X-algehras are also I--homomorphisms. In fact, we can recog-
nize the 3--algebras so obtainad:

Let K¢ be the class of all ©c-algebras which satisfy the following identities and
implications forall T =(¢;,. ..,f,)fC and 1 <i<n

(#) Tix1,...,x)=ti{x1, ..., X, Ti(x1y ey Xi)eeons Tolxy, ..., x}),
(##) (1 /)(\ Xty e oy Xby Yiy e ey V) = y,)—>yi =Ti(xy, ..., X).
in

Here, M stands for logical conjunction. The identitics (#) ensure that, for an
algebra A e K, the elements Tia(ay, ..., ax) provide a solution of T with respect



74 E. Nelson

to (a,, ..., ax) and the implications (##) ensure that this solution is unique. Thus,
the class of C-iterative X -algebras is precisely the class of underlying X -algebras
of algebras in K¢, and the -homomorphisms and 3 .-homomorphisms coincide
for these algebras.

However, K¢ is a class of 3c-algebras which is closed under formation of
subalgebras and products. and is non-trivial by Example 4 of Section 2.2, and
hence has free algebras (Birkhoff [1]). In view of the preceding paragraph, we know
that (the underlying 3-algrebra of) the free Zc-algebra over a set V is the free
iterative S-algebra over V, yielding the following result.

Theorem 1. For any set V, and any set C of iterative systems, the free C-iterative
algebra over V exists.

Note that the same argumens prove a stronger result: we could, in addition to
C -iterativeness, also ask that our algebras satisfy certain 3-equations; this again
will yield a class of 2 -algebras closed under subalgebras and products, which then
has free algebras. Thus, for any equational class K of algebras of type X and any
set C of iterative systems of polynomial equations of type X, the class of all C-iterative
algebras in K has free algebras.

Let us conclude this section by considering algebras of type £ which have solutions
of all iterative systems of 2-equations, but the solutions need not be unique. These
algebras can also be realized as reducts of algebras of an expanded type; however
since the solutions need not be unique, the £-homomorphisms need not preserve
the added operations. Indeed, here the analogy breaks down: such classes of algebras
need not have free algebras. For example, let £ consist of one unary operation o,
and let A = w U{a, b} where a, b € w, with the operation o defined as the successor
operation in w and o(a)=a, o(b)=b.

This yields an aigebra with solutions to all iterative systems of Z-equations: if
we ! ave aniterative system T = (f,...,1,)€ Fs(k,n)" andsome t; € Fx{xy, ..., X1},
then the jth equation is of the form y, =o"(x;) and may be dropped to yield a
shortzr equivalent system. Thus we need only consider iterative systems with no
¥, appearing at all, and then y; = q for all j yields a solution in A.

Now, let k& be the class of all Z-algebras with solutions of all non-trivial iterative
systems of X-equations, and suppose K has a free algebra F over the singleton set
{r}. Then there is a unique homomorphism /#:F > A with h(v)=1. Now define
2:A—-~Abygn)=n forall n €ew, gla)=b, g(b)=a. Then g is a homomorphism,
so gh is a homomorphism from F to A. Since gh(v) =1, it follows that gh =h.
Now, there exists some element « € F with u =a(u), and hence h(u)=o(h(u))
which wmplics that hu) is either ¢ or h. However, since gh = h, it follows that
ghey = iy, which contradicts the definition of g.

Thus, if the solutions 10 iterative systems are not required 1o be unique, there 1.eed
not be free algebras.
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2.4. Reduction and other theorems for iterative systems

Recall that an iterative system T = (fy,...,,) is degenerate iff it is uniquely
solvable in every X-algebra, trivial iff there exists i1,..,im With t;,=y,, ti,=
Vi - - - » ti,, = ¥iy, and ideal iff each #; has complexity =1. Furtber, for each n, let
C. be the set of all iterative systems such that each componernt has complexity n,
and L, consist of all iterative systems of length n (i.e. with n components).

Note first of all that permutation of the order of the equations in an iterative
system does not affect the solvability. For example, if 3 has a binary operation +
and T =(x;+yy,x2+y2 (y1+y2)+ys) then for ay, ar€ A, (b, b2, b3) is a solution
for T with respect to (a;, a,) iff

b1 =(11+b1,
b2=a2+b;,
b3= (b1+b2)+b3.

Let = be the permutation of {1,2, 3} with #(1)=3, #(2)=1, #(3)=2, and let
T, =((y2+y3)+yi1, x1+vy2, x2+y3); then (cy, ¢, ¢3) is a solution for T, with respect
to (ai, a,) iff

ci=(c2+c3)+cy,
crx=a;+c,,
C3=as+cs.

Clearly (b1, b2, b3) solves T iff (b3, b1, b;) solves T,.
The following lemma, which will be used several times in the remainder of this
section, covers this phenomenon in full generality.

Lemma 1. Suppose T =(t,,...,t,)€ Fs(k,n)" is an iterative system and = is a
permutation ¢f {1,2,...,n}. Let h:Fs(k, n)-> Fs(k,n) be the homomorphism with
hix;))=x; for all i<k, h(y;)=y.-1 for all j<n. Then for any S-algebra A and
ai,...,ax€A, (by,...,b,) is a solution for T with respect to (a,,...,ax) iff
Bty -+ - s bwuny) is a solution for T, =(h(tyn),...,h(t.)), with respect to
(a,, ey ak).

Proof. Let f, g: Fs(k,n))> A be the homomorphisms with f(x;) = g(x;) =a; for 1
i<k and f(y;)=b;, g(v;)=b . Then f and the composite gh coincide on all the
generators of Fs(k, n) and hence are equal. Thus, if b; = t;iala, ...,k b1, ..., ba)
for all j<n then b, =f(t;)=gh(t;)=hitj)alar, ..., Ak, brcrys ..o by for all j=n
and hence b, =h(toj))al@1 ..., 8k 0 nityy o o o2 Dy for all j<n. The converse
is also true, thus yielding the claim. [

A similar, easy argument yields the following lemma, which will also be useful
in the remainder of this section. It states formally the intuitively obvious fact that
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in dealing with iterative systems T = (¢y, . . ., #,), if some ¢; belongs to the subalgebra
generated by x;, . . . , X, then the jth equation can be dropped to yield an equivalent,
shorter, system.

Lemma 2. Suppose T =(t1,...,t,)€Fx(k,n)" is an iterative system with t,¢€
Fsixy,...,xi}). Let h:Fs(k,n)- Fs(k, n — 1) be the homomorphism mapping all the
x, and all y; with j <n —1 identically, with h(y,)=t,. Then for any X-algebra A
and (a,,...,ax)€A, (by,...,b.-y) is a solution for T=(h(t),...,h(t._,)) with
respectio (ay, ..., an)iff (b1, ..., bn_1,thalas, ..., ax))isasolution for T with respect
o (ay,...,ax).

For example, if T =(y;+y,, x;+x,) then T = (y,+(x; +x,)); a solution to T in
A with respect to (a,, a;) consists of by, b€ A with by =b,+b;, and b,=a;+as,
which is clearly equivalent to having b, = b, +(a; +a.,).

Recall that the algebra 25 was defined in Example 3 in Section 2.2.

Proposition 1. For an iterative system T the following are equivalent:
(1) T is uniquely solvable in 25
(2} Tis degenerate, i.e., uniquely solvable in every 3-algebra
(3) Tis non-trivial and solvable (not necessarily uniquely) in every X-algebra.

Proof. letT=u,,...,t,)eFs(k,n)".

Note that if ;€ Fs{x,, ..., x,} for all j <n then T is degenerate; in this case, for
any algebra A and a,,...,ac€ A, b;=t(a,,. .., a.) provide the required unique
solutions.

(1}=(3). Assume T is uniquely solvable in 23. First we prove that T is solvable
in every S-algebra. By Lemmas 1 and 2 we may assume ;€ Fs{x, ..., x;} for all
f = n. But now, let si: Fx(k, n)~> 25 be the homomorphism with h(x;) = 1forall i <k
and fity,) = Gfor ali j=n: it is easy to check using the definition of the operations
in 2. that Fi{x,,..,x.»u{reFxs(k,n)|h(t)=0} is closec under all the operations
and hence, becuase it contains all the generators, must 2qual Fs(k, n). From this
it follows that /1(r,)=0 for all j=n and hence b, =b,=---=b, =0 provides a
solution for the equations b, =1,(1,1,....b,,...,b,). Since b;=by=---=b, =1
also provides a solution, this means that n =0, i.e. that T is degenerate, and thus
solvable in every $-algebra.

Next, suppose T is trivial. Then there exists 1, j2, ..., jm €{1, 2, ..., n}such that
foovet, ey oo =y, Define sets Uy Uy c---<{1,2...., n} as rollows:

(‘f'“ = ‘ﬂ"f' j_» ..... /crrlf'

p< Uyl byt =0 where h,: Fy(k, n)~ 2y is the homomorphism with A(x;) = 1
forall i K hyv)=0if je U, h,tv,)=1 otherwise.

Note that U/,< U, by the above identities, and U,,'g U, ., implies U,.;=U,.>
because of the way the operations are defined in 25. Thus for some p, U,=U,.:.
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But then, for this p, h,(¢;) =0 implies j € U,., == U, which impiies h,(y;) =0, and
conversely h,(y;) = 0implies j € U, = U, ., which implies /,\;;} = . Thus, forallj <n
we have h,(t;) = h,(y;) and conseequently (h,(y1),..., hp(y,)) is a solution for T
with respect to a; =a,=---=a; = 1. Since h,(y;) =0 for all / < U this shows that
T is,not uniquely solvable in 2s. Thus if T is uniquely solvable in 25 it follows that
T is solvable in every Y-algebra and T is non-trivial.

(3)» (). Suppose T =(t4,...,t,)€Fz(k,n)" is non-trivial, non-degenerate, and
solvable in every X-algebra A. Using Lemmas 1 and 2, we may assume without
loss of generality that no t;€ Fs{x1, ..., x«}, and since T is non-degenerate, n = 1.
Since T is solvable in every algebra, T is solvable in Fz{x,,..., xx}, and hence
thereexists by, . . ., b, € Fx{x1, ..., xx}such thatb; = t;(x1, ..., Xk, b1, ..., b,) forall
j <n. Letj; have the property that 5;, has minimum complexity among by, b, . . . , bn.
Since b;, =t;,(x1,..., Xk, b1,...,b,) and 1; € Fs{x, ..., xc}, it follows that ¢; must
really depend on one of its last n arguments, say j,, and then because b;, has
minimum complexity it follows that ¢, =y;, and hence b;, =b,,. But now b;, has
minimum complexity too, and the argument can be repeated. Eventually we obtain
acycle t, =y,. t;, =Y - - - » tjn, = ¥j1» Which implies that T is trivial, a contradiction.

(2)-(1). Thus is trivial. [J]

Corollary. There is an effective procedure to determine, given an iterative system T,
whether or not T is degenerate.

Proof. There are only finitely many cases to check to see whether T is uniquely
solvable in 25.

Proposition 2. There is an effective procedure which, given a non-trivial, non-
degenerate iterative system T =(t,,...,t,)€Fs(k,n)’, produces an ideal iterative
system T=(@,,...,1m)€Fs(k,m)™ for some m<n such that, for every S-algebra
Aand ay, ..,a.€A, T is uniquely solvable in A with respect 0 (a\, ..., ax) iff T
is.

Proof. Two procedures will be described which, when applied alternatively, wiil

eventually produce the desired result.
Suppose T =(t1,...,t,) € Fs(k.n)" is non-trivial and non-degenerate.

Procedure 1. Apply when some ¢, €{x,, ..., x«}.
In this case n # 1 since otherwise T would be degenerate. Thus we may apply
Lemmas 1 and 2 to get an iterative system T with one fewer component than T,

whose solvability is equivalent to that of T.

Procedure 2. Apply when some t;€{y1,..., yu}
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By Lemma 1, we may assume j=n, so that 7, =y, for p<n—1. Now let
h:Fx(k,n)-> Fy(k, n - 1) be the homorphism with h(x;) = x; for i <k, h(y;) =y, for
j<n-1and h(y,)=y,. Then for any algebra A and a,,...,ax,b1,...,b,1€A,
(5s,...,b,y) is a solution for T' = (h(ty), ..., h(t._1)) with respect to (ay, ..., ax)
iff (by,...,bn_1,b,) is a solution for T with respect to (ay, ..., ax). In particular
T’ is non-degenerate.

Now simply apply procedures 1 and 2 until neither apply any more to yield the
desied T. O

Corollary. For any 2-algebra A, if every ideal iterative system is unigely solvable in
A then every non-trivial iterative system is uniquely solvable in A.

Remark. The proof of Proposition 3 actually produces more than is claimed: given
T =(ty,...,t,) the procedure praduces T = (I1,..., 1), distinctjy, ..., jm=<n and
for cach j&{j,,...,jn} a polynomial s; € Fs(k, m) (which always has complexity
zero) such that for any algebra A and a,,...,a, € A: -

(i) If(by,....,b.)isasolutionfor T with respectto(ay, ..., a;)then(cy,. .., c,)
is a solution for T with respect to (a,,...,as) where ¢;, =b; for i<m and ¢; =
sia,...,ax, by, ..., by)forje{j;,...,jm}, and

(i) if (cs,...,c,) provides a solution for T with respect to (ay,...,a:) then
{€)s- . ,C;,) i5 a solution for T with respect to (ay, ..., a;) and moreover ¢, =
LA PV PR IR (] -2 F TS oy 5

This will be used in Proposition 5.

Propnsition 3. There is an effective procedure which, given an ideal T =(t,, ..., t,) €
Fsytk,n)", produces T=(i,,...,t,)€ Fs(k,m)™ for some m=n and polynomials
$1s-« - +Sm € Fatk, n) such that each t; has complexity one, and for every 3-algebra
Aanda,,...,a, €A,

W If (bs,...,b,) is a solution for 7' with respect to (a,,...,ac) then
(hy,....bss1alay,...;a,b1, ..., 0,),. .., Sim-mal@iy..., a4 b1,...,b,)) is a
solution for T with respect to (a, . . ., ay), and conversely,

(i) If (by, ..., b,) is a solution for Lwith respectto (a., ..., ay) then (by,...,b,)
is solution for T with respect to (a,,...,a;) and in addition b,.;, =
salay,....a, by, ..., b,) foralli =m.

Proof. For any ideal T =1y, ..., 1t,)e Fs(k,n)", define the overflow of T by
OV(T) = ( Y complexity of t,-) -n.
=1

We will construct T by induction on OV(T)
fOVIT)=0Othentake T =T.
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Assume now that OV(T') = 1. Then for some j < n, the complexity of ¢ is at least
2, and so t; =0 (51, - . . , S)o)) fOr some o € X and s; € Fx(k, n), and for some p <o),
s, has complexity =1,

Define f; € Fx(k, n + 1) as follows:

E,':’ti fOI'j#iSn,

ti 20'(31; s Sp—15Yn+1sSp+is e v oy slal)a

tn+1 =Sp.

Then the total complexity of T=(f1,...,E.+1) is the same as that of T, and
hence OV(T)=0OV(T)—1. :

Now, let A be any 3-algebra and suppose that (b4, ..., b,.,) is a solution for T
with respect to (a1, . . ., ax). Then

bpir =tm+nal@n ... @ b1, .. bisy)
=spalar, ..., ax,b1,...,b,)
_and so
b,-=0'A(s1A(a1,. . ,ak,bl,. . ,bn),. . ..,b,,...l, seny
S](,\A(al, ey Ay bl, ‘e ,b,,))
=0a(51a@1, .oy Qo D1y b))y Spal@ry ey Qi by by
s,,,;A(a., . ,ak,bl, . ,bn})
=tiala@r, ..., a6, by, ..., by).
Assoforj#i<n
bi=tialay, ..., 401 ..., 0ns1)=tial@y,... - A, b1y...,0y).

Thus (by, ..., b,) is a solutior: for T with respect to (a1, ..., ax).

Conversely, if (b, ..., b,) is a solution for T with respect to (a,, ..., ax) then
(biy..., buSpal@,....auby....,b,) is a solution for T with respect to
(A, ...,0dL). _

Now if the above process is repeated, after finitely many steps we obtain a T
with overflow equal to zero, &s required. [

Corollary. An algebra of type X is iterative iff it is C,-iterative.

Remark. The process, outlined in Sectior 2.3, of adding operations to provide
solutions of iterative systems can of course be repeated. However, if we add solutions
for all non-trivial iterative systems of type X, then in any iterative X-algebra we
already have unique solutions to all non-trivial iterative systems of the expanded
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tyve, and moreover these solutions are provided by polynomials of that type. This
fact is explicitly laid out in the proposition below; first an example.

Example. Suppose I consists of one binary operation +, and £ 223 is the type
obtained by adding to X, for each non-trivial iterative system T € Fx(k, n)", n new
operations T}, . . ., T,, which provide the solutions to T in every iterative Z-algebra.
Consider the iterative system T = (¢4, ;) = (x1 +y2, x2+y1). The X contains binary
operations T; and T, such that in every iterative algebra A of type %, for all a,,
a,eA,

Tialay, az)=a,+Tza(ay, as),

Taalay, azy=az+Tialay, as).

Now consider the S-iterative system T(x;, y;)€ Fs(1, 1). Suppose A is an iterative
algebra of type I and a, € A. If the latter system ic solvable in A then there is an
clement b, € A with b, = T a(a;, b,), and consequently we have

bs=Tialar, b1)=a+Tralay, by),
Taalay, b1)=b1+Tialar, b1) =by+b;.

Thus (by, Tyala,, by)) provides a solution to the iterative system § = (x; +y2, y1 +y1)
with respect to a,. Conversely, if (by, b;) is a solution to § with respect to a,,
thenby=a,+by, bo=b,+b; and hence b, = T\(a,, by).

Now, in £ there are unary operations S, and S, providing the unique solutions
of § in every iterative X-algebra, and we see from the above that b, =S,a(ay).
‘Thus the unique solution to the iterative S-system y, = T(x;, y;) is given, in any
iterative X-algebra, by y; = S,(x,).

Proposition 4. Let S be the type obtained from 5 by adding operations to give solutions
for all non-trivial systems of type X. Then for any non-trivial iterative system T €
Fstk,n)" there exist S-polynomials u,, ..., u, € Fsixy,...,x.} such that, for any
iterative S-algebra A andanya,, ....ar€ A, (uay, ..., ax), ..., up(@y, ..., ax))is
the unique solution to T with respect to (a,, . . ., dx).

Proct. Let T =(r,,...,1,).

If T is degenerate then it is uniquely solvable in Fs{x,, ..., x.} and hence there
existuy, ... . u,cFsix,,...,x} with

Xy, oo X )= 0Ky ey Xi (X, ey X )y ey Un Xy ey XE))

and then these are the required polyncimials.

Assume T is non-degenerate. It follows from Proposition 4 and the remark
alluwing Proposition 3, applied to £ rather than 5, that it is enough to prove the
ciaim in the case that all 1; have complexity 1.
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Define the ‘overcomplexity’ OC(T') of T to be the total number of operations
appearing in T which are not 2-operations. We prove the claim by induction on
OC(T).

If OC(T) =0 then ¢; € F5(k, n) for each j, and the result follows from the definiton
of X.

Suppose ¢, € Fs(k, n); then ¢, involves one of the new S-operations, and hence
there exists a non-trivial iterative system T% = (¢7,. .., t5) € Fs(p, m)™ such that
ta=T7 (z4,...,2,) for some j<m and some zj,...,2, €{X1,. .., Xks Y1y« +» Yn}.
By suitably permuting the equations in T® we may assume j=1, so t,=
T (zy,...,2,). Let h:Fs(p,m)->Fs(k,n—1+m) be the humomorphism with
h(x;)=z; for i<p and h(y;)=yns-1+; for j<m. Consiier the system §=
(t1y ooyt R(ET), . .., h(th)), whose solutions are of the form

y1=t1(xl’---axk9y1’---9le)

yn~1=tn—l(x1!° . 'axk; YI, .. -,)’n)
Yn=h(t;¢)(xl:- --’xk9y1a---!yn)

— # v
“"tl (219- .. ,Zp, Ym )n+!s LR sYn—l+m)

Ym =h(t:)(xh S 1D ATREE 9Yn)
=trfl(zls R ’Zp, Yo Yn+tis e aYn—H-m)-

Note that OC(S) = OC(T') - 1. Also, in an iterative 3-algebra A,if (b1,...,0n14m)
is a solution for § with respect to (a;, ..., ax) then (b;,. .., b,) is a solution for T
with respect to (ay, . . ., ar). Now we may use the techniques of Propositions 3 and
4 to produce a 3-system equivalent to S, with the same overcomplexity, each of
whose components has complexity 1; the inductive hypothesis may now be applied
to this system, yielding the desired result. [J

It follows from this result that 3 has the kind of homogeneity found in the
‘iterative theories’ of Elgot [4]: everything has iterative solutions within the system.
It is precisely this homogeneity which allows Bioom, Ginali and Rutledge [3] to
prove that “scalar iteration implies vector iteration”. The analogous result for
algebras would be that every L,-iterative algebra is iterative. If Proposition 5 were
still true when X is replaced by 3, , then the proof in [3] would carry over. However,
this analogue is not true: we will see in the next section that there are L-iterative
algebras which are not iterative when X consists of a single binary operation. The
farthest one can go in this direction is the following.

Proposition 5. If 3 consists exclusively of unary operations then every L -iterative
X-algebra is iterative.
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Proof. Assume A is L,-iterative, andlet T=(ty, . .., t,) € Fs(k, n)" be anon-degen-
erate iterative system where each ¢; has coraplexity 1. By Lemmas 1 and 2 we may
assume 1, £ Fx{x1, ..., x}. Thus t, = o(y,) for some j <n, and some o € 3.

If j=n -1 then we may use Procedure 2 of Proposition 3 to reduce T to a
shorter, equivalent system.

If j = n, then t, = o(y,). Now, A is L,-iterative and hence the equation y =c(y)
has a unique solution b € A. Let h: Fs(k, n) > Fx(k +1, n — 1) be the homomorphi_sm
with h(x;)=x; for i<n, h(y))=y; for j<n—1 and h(y.)=xi+1 and let T=
(h(ty),...,h(t,.1)). Then (by,. .., b,)is asclution for T withrespectto (ay,...,a;)
iff b, =b and (b4, ..., b,-y) is a solution for T with respect to (ay, ..., ax, b).

Thus we reduce T to an equivalent system of length 1 which is uniquely solvable
by the L,-iterativeness of A. [J

3.  Tree constructions of free iterative algebras .

In the preceding section, siandard results from universal algebra were used to
prove the cxistence of free C-iterative algebras. Here we will give concrete descrip-
tions of free C-iterative algebras, for certain C, as algebras of trees.

3.1. Regular trees

For a type 2, the algebra TyV of all V-labelled X-trees was defined in Section
2.1: here we will deal with those trees in TxV that have essentially only finitely
many subtrees.

For atree 1€ TV and u e dom(r), define t|u, the subtree of t at u, by

(tuMe) = t(ur)

Here, for sequences u, v € w*, uv is the concatenation product of u and v.

A tree 1 is called regular iff {t|u |u € dom(r)} is finite. Alternatively, we may define
an equivalence relation on dom(¢) by: u ~v iff tlu =t|v (iff r(ux)=1t(vx) for all
x € w*); then 1 is regular iff the equivalence relation ~ has finite index. The regular
trees are exactly the same as the regular = algebraic trees of Ginali [5], but the
above definition is simpler and easier to work with.

Let R;V be the set of all regular trees in TsV; then RV is clearly closed undar
all the -operations as defined in TsV, and contains FsV. We are going to prove
that R,V is the free iterative 3-algebra over V.

To keep notztion to a minimum, we will write, for each polynomial ¢ € Fs(k, n),
simply ‘1" iristead of ‘1, for the polynomial function induced by ¢ in RsV. Note
that, for eachz s Fstk,n)and ry, ..., 17, 51,. .., 5, € RsV, we have

Hu) iftu)el,
LR (T SOOI S TR s Nu)=<qr(v) ifu=wrandtiw)=ux,
s,(v) ifu=woandtiw)=y,
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Note that if ¢#(w)=x; or y; for some w such that ¥ =wv then w is uniquely
determined, and is a ‘leaf’ in dom(¢). The proof of the above equality is a straight-

forward induction on the complexity of t.

Example. Suppose X has a binary operation + and one unary operation A.

+ +
+ + + A A
/\ )
X1 V1 y2 X1 U1 U2 U vs
tHx1, v1,y2) 3 (x1+y)+(y2+xy) rn=vy+uv; s1=A(vy) $2=01+A(v3)
+

Uy (3P vy U1 Uy U2

v

(8]

t(ry, $1,82)

Proposition 6. RsV is an iterative X-algebra.

Proof. By Propositions 3 and 4 it is enough to prove that every non-degenerate
iterative system in C, is uniquely scivable in RsV.

Let T=(t;, ..,t,)€Fs(k,n)" where each ; has complexity 1; then for each j,
tj(ﬂ) =0'j€£. Let | ST 4% EREV.

Define s; € RsV for 1<j <n, specifying s;(u) by induction on the length of «, as
follows: :

B { riw) ifm<|o;|and t;(m)=1x,
sp(u) ifm<lo;|and f;(m)=y,.
Then for all j < r, each subtree of s; is either a subtree of some r; (i < k) or is equal
to some s,, and hence each s; is regular.

Moreover, by the identities (*) preceding the proposition, we have s, =
ti(riy ... Ty 815 . .., Sn) foreachj<n.Thue(s,,...,s,) is a solution to T with respect
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A
to (r;,. ) in RsV. Moreover, a straightforward induction using the identities
{#) to calculaie #(ry, ..., 7, S15. . ., S2)(u) for u € o™ show that the s; are uniguely
determined. O

Theorem 2. RV is the free iterative S-aigebra over V, for any set V.

Proof. Let f: V - B be any function into an iterative 2-algebia B; we must show
that f extends uniquely to a homomorphism f:RsV - B.

Let e R;V; then there exist vy, . . ., vx withte Rs{v,, ..., vi}. We may assume
1€V, Letu,,...,u, beavetof respresentatives for the non-trivial subtrees of ¢ (i.e.
those with complexity > i), so that for all ¥ € dom(t) either tlu = t|u; for some j<n
ort(u)=v, forsome i<k.Foreachj<n,leto;=t(u;)e 3.

Define 1y,...,1, € Fs(k, n) as follows:

',“’) = Ui,

yp if tlum =tlu,,

= Im <|oj|.
Lim {x. if tum) = v, for all m <|o;}

Note that if we choose uj,...,u, €w®* such that t|lu;=t|u; for each j<n, and
substitute u; in the above definition of r; we get exactly the same tree #,.

In B, there exist (uniquz) by, . .., b, such that b, = ;(f(v1), ..., f(vk), b1, ..., bn).

Define (1) = b, where p is the unique number <n with ¢ = t{u,,.

It may seem that this definition depends on the order chosen for the representa-
tives u,y, . .., u, of the different subtrees of r. However, it follows from Lemma 2
that even if we order them differently, since this only amounts to permuting the
cquations, we still end up with the same element of B for f(t), and hence
f:RsV > B is well-defined.

Moreover, if f is a homomorphism, then the following discussion shows that it
is unique: For each j = n define s; = tlu; € Rs{v,, . . ., vi}; then t =5, Moreover, for
each j=n, s;=t;(vy,..., U S1,...,5,); this follows from the identities (). Thus
{$y,...,5,} is the solution for T = (t,, ..., t,) with respect to (v,,..., vy) in RsV.
Since homomorphisms necessarily preserve such solutions, f(t) = f(s,) must be b,,.

Thus all that remains is to verify that f is 2 homomorphism.

Suppose 1 =a(ry,...,r,) for some o €X and r;e RsV. Let u,y,...,u, be a set
of representatives for the non-trivial subtrees of ¢, and T =(ry,...,t,)eFs(k,n)"
the corresponcing iterative systems as defined above. Let b, . . ., b, be the solution
in B for T with respect to f(v,), . . ., f(vk), so that f(1) = b, for the p <n witht =t|u,.

Since r; is a subtree of 1, we known that among the u; are a set of representatives
for the non-trivial subtrees of r(. If r; is itself nontrivial, then we may assume
without loss of generality that 4; = 1w, for j <m and that w,, ..., w,, e dom(r.) are
a set of representatives for the non-trivial subtrees of r,. Let T=(f,,...,1,,) be
the iterative system produced as above from r, and these wy, . .., w.... Since ri(w) =
tilw for all w e w®, it icllows that 7, =1, for all j=<m and hence (b, ..., b, is a
solution for T with respect to (f.vy), . .., f(v)) in B.
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All together, this shows that if r, is non-trivial then fi (r1) = by, for the unique
pis<n with ry=t|u,,. Of course if ry is trivial then r;=v; for some i and then
f(r)=f). )

Similarly, for those other r,, that are non-trivial, f(r,,) = b,,, for the unique p,, <n
with r,, = t|up,,.

Now suppose i =t|u,. Then t,(0) =0, and for each m <|o|, *[uym =r,. Thus
t,=0(z1,...,2.) where for m <|o|,

{ You if m = tlup,
Zm = .
X; ifr,, =0

Since (b4, ..., b,) is a solution for T in B with respect to f(v)), ..., f(v«) it follows
that b, =o(cy, ..., c,s)) Where

m

_ {bpm if 2, = yp,,
fw) ifz,=x.

But by the above remarks, ¢, =f(rm) for each m<|o| and hence f(t)=
a(f(r), ..., f(rs)), as required. 1

3.2. Application to context-free grammars

For certain sets C of iterative systems, the free C-iterative algebra can be
described as a specific subalgebra of Rs V. In this section we will describe a collection
CF of iterative systems that come from context-free grammars, and the appropriate
trees making up the free CF-iterative algebra.

Consider a context-free grammar G = (N, V, P, S) where N ={y,,..., y.} is the
set of variables (non-terminals), V is the terminal alphabet, § = N is the ‘start’ or
‘axiom’ symbol, and P< N x (N U V)" is the set of productions (rewrite rules).
Here, (N U V)" is the set of non-empty strings of letters from N UV, so we do
not allow erasing productions. G is called cycle-free if there is no G-derivation of
the form

Yi2? Y2 2 Y. Y.

As is well known, every context-free grammar is effectively equivalent to one which
is cycle-free.

With each such grammar G we associate iterative systems as follows. For each
Uu=vwa - €INUW) let i=(-+-((v;Xvz)Xv3)X-+-xXve). Then, for each
choice of j <n, suppose uy, ..., U € (N u V)" are all sequences u with (y;, u)€ P,
aind let

=0 (i i)+ +idm).

Then T =(t,...,t,)is an iterative system of type 3 where X consists of two binary
operations + and Xx. Of course the definition of T depends on the order we chose
for the u; and so with each G we associate all iterative systems obtained as above.
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Let CF be the set of all iterative systems obtained in this way from all cycle-free
context-free grammars over the terminal alphabet V ={v,, ..., vi}.

Let PV* be the set of all subsets of V*, frrnished with the structure of a Z-algebra
by defining + as set union, and X by

SxT={uv|luecS,veT}

Then the following discussion shows that PV* is a CF-iterative algebra.

For G=(N, V,P,S) with N={y,,...,y.}, define T=(ty,...,t,) as described
above. For each j<n, let U;={u = V*|y; > &u}, i.e. U; consists of all words in the
terminal alphabet that are derivable from y; using the rewrite rules in G. Then
(U,,...,U,) is a solution for T with respect to ({v1},...,{vc}). Moreover this
soluticn is unique: if (U1, ..., U,) is any other solution, then an inductive argu-
ment based on the length of z € V™ and using the fact that G is cycle-free, shows
thatue U, iffuc U, forallj<n. :

Next, we will see that a suitable subset of RV forms the free CF-iterative
algebra: let GV < RsV consist of all trees ¢ € RsV such that:

(#) for all v #0 and u € w*, if tlu = tluv then r(uw) = x for some prefix w of v.

Examples.

(]9 =11 =111 s|@=s|11=s|1111
risnotin G,V s isin G.V.

Theorem 3. G.V is the free CF-icerative algebra over V.,

Proof. 1t is clear that GsV is closed under the operation X. Suppose r, - € GsV,
t=r+s and tju = tjur; we must show r(uw) = x for some prefix w of v. If u #0,
say u = lu’, then riu’ = tlu = tlur = rlu’v and the result follows from the fact that
re GV, If u =0 ther we may assume without loss of generality that v = 1v’, so
t=tle"=rjt’, and hence r=1]i =r|v'l. Since re GsV, there is a prefix w' of v'l
with 7tw’y = x_ If w'=¢'1 then replace w’ with @, so that w' is a prefix of v’ and
riw’h = «. But then w = 1w’ is a prefix of v, and t(w)=r(w') = X, as required.

Next we wilt see that, for any T =(¢y,...,t,)e Fs(k,n)" with T € CF and any
ri.....n € CyV, the solution (sy,...,s,) to T with respect to (r;,...,r) in RsV
actually consists of members of GV, which implies GsV is iteraiive.
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Using either standard arguments from language theory, or the techniques of
Propositions 2 and 3, we can verify that it is enough to prove the c¢laim for
T =(t,...,t,)eCF with each t; having complexity one (the reduction to such a
system will not introduce cycles if the original grammar is cycle-free, and so will
itself be cycle free). Now, let rq, ..., r. € GsV, and consider »,, . .., 5., as defined
in Proposition 6, the solution to T in RsV with respect to (ry, ..., ).

Suppose for some j<n and u, v ew* that s;lu = s;luv; we musi show for some
prefix v’ of v that s;(uv') = X. Because the r;€ GsV and the ¢; have complexity 1,
it is enough to deal with the case u = 0.

Suppose v =mym; -+ -my€ee’, ji<n and s;, =s; v, but 5;,(my - my)# X for
any q' <q. We may assume that g =n +1.

“If t;,(m;)=x; for some i then s;|/m,=r; and hence r,=rim," - mym,. Since
rie GsV this implies that ri(m,---mg)=%x for some q'=q and then
si,(my, ..., mg) =X, a contradiction.

Thus t;,(m,) = y,, for some j,<n and hence in the grammar G from which T was
derived there is a production y; —»y;,. Moreover we have s;|m; =s;, and hence
S;, = Siplmz + + - mgm,. Using the argument in the preceding paragraph again, we see
that ¢;,(m,) =y;, for some j3<n and hence G has a production y;, = y;,. Proceeding

in thic wav hecause g<n -l-1 we pvpnh:n“u nroduce a n\mlp in (7 whunh ic a
AAR SAARD vvu] vvvvv ‘] lllll r’ NS v LA 4 ARR ~ry ANAWwER "y

contradiction. O

Remark. The image of G5V, under the homomorphism to PV™* which maps each
v € V to {v}, is the set of all context-free languages over the alphabet V which do
not contain 0.

3.3. Irredundant iterative systems

In this section we consider algebras with unique solutions to systems T =
(ti,...,t,)€Fs(k,n)" where each ‘variable’ y; is linked to at least one of the
‘constants’ x;. Such systems of equations arise when considering context-free gram-
mars in which each ‘variable’ or ‘non-terminal’ has a derivation to a terminal word.
Thus for example we do not insist on either the existence or uniqueness of solutions
to systems such as

y=y+ty

but for each element a of the algebra in question, there is a unique b with b =b +a.
More precisely, for an iterative system T =(fy,...,1,), define a binary relation
>ronZ ={x1,...,%X, Y1,-..,Ynt{o € X||o|=0}azfollows: y; > 7z if z = ¢;(u} for
some ucw®. Let->7% be the transitive closure of - ; then we say that T is
irredundant iff for all j<n, y;»>%z for some z € Zo={xy,...x.}u{oceZllo|=0}.
Let IR be the set of all irredundant iterative systems. We will describe the free
IR-iterative algebra: et IsV < RsV consist of those trees t € Rz V such that

for all u € dom(¢) there exists v € w™® with t(uv) € Z,.
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Theorem 4. IsV is the free IR-iterative algebra over V.

Proof. The fact that IsV is closed under the X-operations is clear, and that it is
IR-iterative comes from the construction of iterative solutions in TsX g.nd the
definition of IR. The fact that set maps from V into IR-iterative algebras'extend
uniquely to homomorphisras follows from the same arguments as in Theorem 2,
the point being that, given a tree r€lsV, the corresponding iterative system
constructed from itisin IR. [

3.4. L,-iterative algebras

In this section we will describe a subalgebra of RzV which is L,-iterative but
not iterative, as promised in Section 2.4.
Let V={v} be a singleton, and define subsets A, < RsV as follows:

A“':F};V,

A, .1 is the subalgebra of RsV generated by the elements of A, together
with all solutions in RsV to single iterative equations with constants
from A,.

Then define A = J A, (n € w); then A is an L -iterative subalgebra of RsV.

Suppose £ consists of a single binary operation +. We will show that A is not
iterative.

If A is iterative, then there exist s,, 55, s3€ A with

$1=851+53,
$2=83+8),
S3=0+s;.

Since A is a subalgebra of RsV, and the latter has unique solutions to iterative
systems, it follows that s,, s, and s, are precisely the solution to this system in RsV.

Let n be the smallest natural number such that one of s,, s, or s; is a subtree
of a tree in A,,. Since each of s, s, 53 is a subtree of each of the others, it follows
that they all occur for the first time in A,,.

Thus there exists re Fs(k,1)and ry....,r €A,y withs,; =t(rq, ..., r., s1). Since
cach, is a subtree of 5; and belongs to A,,_;, and since the only non-trivial subtrees
of s;aresy,s;and sa, itfollowsthatr, = v foralli <k,and hence s, = t(v, v, ..., v, 5y).
But then dom(r) is a subset of dom(s,), and u! e dom(¢) iff u2 e domt, and for all
u € dom(t), either s,fu is trivial or s,ju =s,. However, s, is pictured below; the
labels 1, 2, 3 indicate the nodes, which are all labelled +, who: e subtree is s;, s
or s, respectively, and it is easy to see that the above is impossibie.
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This leaves open the (fairly plausible) conjecture that A is actually the free
L -iterative algebraon V.

4. Iterative theories

4.1. Existence of free iterative theories

In this section, we will see how the existence of free iterative theories, proved
by Bloom and Elgot [2] and Ginali [S], follows from the existence of free iterative
algebras. The explicit description of free iterative algebras given in the preceding
chapter is not needed at all here; we will only use Theorem 1 and Propositions 2
and 4 of Section 2. However, Ginali’s explicit description of the free iterative theory
can also be accomplished using the arguments given here together with the results
of Section 3.

The definitions of an algebraic theory and iterative algebraic theory can be found
in Elgot [4], but are repeated here for the convenience of the reader. Briefly, an
algebraic theory is a category T, with countably many objects [0}, [1], [2],..., in
which [n] is the nth copower of [1]. The coproduct injections [1]->[n] (called *base’
morphisms by Elgot) are ambiguously denoted 1, 2, ..., n, and [n] being the nth
copower of [1] means that for all k and morphisms fi, ..., f,:[1]-[k] there is a
unique morphism f1 > - - Uf,.:[n]> [k Isuchthat (f, - - -Uf,) - j=f; forallj=n.
(Elgot writes (fi,...,f.) instead of f;LI- - -Lif..) A morphism f:[m]->[n]in T is
called ideal iff for alli <m, f - i:[1]> [n]is nota coproduct injection. An ideal iheory
is an algebraic theory in which the composite g - f is ideal whenever f is ideal. Finally,
an iterative algebraic theory is an ideal theory T in which, for every ideal morphism
f:[n]>[n+m]in T there is a unique morphism f*:[n]-[m] such that f* is the
composite

(n]——{m +n ] {m]
(Here, id,, is the identity morphism on [m].)

Now, suppose T is an algebraic theory, and that for each o € £ we are given a
morphism &:[1]-[|o|] in T. For each natural number m, we make Tm, the set of
all T-morphisms from [1] to [m], into a Z-algebra in the obvious way, namely:

forfi,...,flo1€ Tm, TTmJ1, - - "fl(rl)=(fluf2u c U fio) - 4
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For each natural number m, there is a unique -homomorphism from Fx{v;, . . ., Um}
to Tm which maps v; to the ith coproduct injection [1]->[m]; for each te
Fs{vy,...,tn} let 7€ T be the image of ¢ under this homomorphism. A simple
inductive argument on the complexity ¢ then shows that for all teFs{vy, ..., v}
andallf;,...,[r€eTm

trm(f1s .. f)=(fild---Ufa) - 1.

Proposition 7. If T is an iterative algebraic theory and if for each o € Z, 6:[1]->[|o|]
is an ideal morphism in Tm, then Tm is an iterative 2-algebra for all natural numbers
m.

Proof. If T is an iterative algebraic theory then it is ideal, and then an inductive
argument basec on the complexity of ¢ shows that if & is ideal for each o € X then
7 is ideal for all r € Fs{v,, ..., v,} of complexity >1.

LetT =(1,,...,t,)= Fs(k,n)" be anideal iterative system, andletf,, ..., fy € T,.
Consider the morphism ¢:[n]-[# + m] which is the following composite:

‘,, Ly 'Lnfk.“"id"

x[n] llLJ“"iJl" [k+n] [m+n]
where id, is the identity morphism on [n].

Since f, L) - - LT, is an ideal morphism, and T is ideal, it follows that ¢ is ideal,
and hence there exists a unique morphism t*:[n]-[m] with t* = (id,,, LI t*) - t. But
thent” =7 1) ---Lit) forunique t7,...,t; € Tm, and for eachj<n

t,!ﬂn‘[:v---vfko';yc-"yt:)-:(flLJ'"'L—Ifkl-—-lt;«L—]"'ut:!)';j
= (id,, Ut")- (fiJ- U fu)+ida) -1
=(id, UJt*) -t -]

Thus t7,...,1; provide a solution in Tm for T with respect to (f,...,f:). A
similar computation to the one above, using the uniqueness of t*, shows that this
soluticn is unique. Hence, by the Corollary to Proposition 2, Tm is an iterative
X-algebis.

Now, for V ={ry, v2, ...} a countable set, suppose that As;V is the free iterative
X-algebra over V, whose existence is provided by Theorem 1. For each natural
number n, let Azn be the sub-iterative algebra of AV generated by {vy, ..., v.};
then A.n is the free iterative aigebra over {v,, v,, ..., v,}. Construct an algebraic
theory A from A,V as follows: for each m, the A-morphisms from [1] to [m] are



Iterative algebras 91

the elements of Asm, and the morphisms [n]- [in] are n-tuples of morphisms from
[1]to [m]. For A-morphisms sy, ..., S.:[1]=>[k]and t1,. .., f,:[1]=[m], the com-
posite (S1,...,8n) " (t1,...,t):[n]=>[k] is the n-tuple (r,...,r,) where r; is the
image of ¢; under the unique homorphism from Asn -» A sk which mas v, to s; for
1<i<m. Asin Section 1.1 we write r; = fjazk(S1, .- ., Sm)-

It is straightforward to check that this yields an algebraic theory, ia which the
ith coproduct injection [1]-[n] is just v;. Moreover, judicious usc & hiomomorph-
isms from AsV into the algebra described in Example 3 of Sectior: 2.4 will show
that this theory is ideal. It follows from Proposition 4 that 4 is an iterative
theory. (]

Theorem S. A is the free iterative theory generated by X.

Proof. Suppose T is an iterative algebraic theory and for each o€ X, 6:[1]>[|o|]
is an ideal morphsim in: T. By Proposition 7, for each m, Tm is an iterative X-algebra
and hence there is a unique homomorphism ¢, from Azm = Am into Tm such
that @,,(v;) is the ith corproduct injection [1]-[m] in T. But then ¢ = (dm)mca
provides the desired functor from A to T. [

4.2. Further examples

In this section, Elgot’s examples [4] of iterative theories are discussed, and put
into the framework of iterative algebras. Since morphisms [n]->[p] .7 an algebraic
theory are essentially just n-tuples of morphisms [1]-[p], only the latter will be
described.

The first example concerns ‘timed terminal behaviour' of machines. Here, X is
the set of external states (tape configuration plus position of reading heac for a
Turing machine, etc.) and a morphism [1]- [n]in the theory [ X - N, O] is a function
f: X »(XxNx[phu{d} (where [p]={1,2,3,...,p}) such that

f(x)=(y,0,j) for some x € X implies f(z)=(z,0,j) for ali z € X.

In the latter case, f is the jth coproduct injection. Such a function f is interpreted
as the timed terminal behaviour of a machine with one entrance and p exits, f(x ) =[]
means the machine has no output on input x, and f(x) = (y, k, /) means the machine,
given input x, outputs y at the jth exit in time k. Note that Elgot’s definition
[4, p. 184] of a morphism [1]->[p] is a function f.{X XN x[1])ui]}~>
(X xN x[p])u{l} such that f(CJ) =01 and for each k, f(x, k, 1) determines and
is completely determined by f(x, 0, 1) and hence we need only consider the values
of f on triples (x, 0, 1).

The aigebra A of machines is now defined as follows: the elements of A are all
the functions f: X » (X x X x[p])u{J} as described in the preceding paragraph.
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Also, each function g: 7 » (X XN " x[n]) u{(J} (where N" ={1, 2,3, ...}) induces
an n-ary operaticn o, o A as follows: for f;: X -» (X xN x[p;) u{l]} (1 si=<n),

Olfiy. ... fn): X »(X XN x[pDu{]}

where p = maximum £ py, pa, . . ., P and for each x € X,

O if g(x)=0],
ool f1e. .o fa)x)=90 if g(x)=(y, k, i) and fi(y) =],
(z,k+r,j) ifgx)=(y,k,i)and fi(y)=(z,r,]).

This corresponds to connecting up the machines so that given an input x, first the
machine g acts on it; if this produces an output at the ith exit then this is fed into
the machine f.

It is straightforward to check that A, with all these operations, is an iterative
algebra, analogous to Elgot’s result that the theory [X - N, [J] is iterative.

Elgot’s sccond example is that of matrices of subsets of a monoid M which has
a ‘length function’, i.e. a function /: M - N such that [(xy)=1I(x)+{(y) and [(x)=0
iff x =0. His theory [M] has as morphisms {1]-[p] all p-tuples (U,,..., U,) of
subsets of M such that 1€ U, implies U; ={1} and U, =0 for k #j. Thus, besides
the coproduct injections (0,0,....,{1},0,...,0), the morphisms are p-tuples of
<ubsets of M which do not contain 1. Alternatively, we may consider the algetra
M whose clements are all subsets of M not containing 1, and which has, for each
n-tupleS =(S,,...,8,)€ M",an n-aryoperation whichmaps (X, ..., X,)to S, X, +
$:X:+ - +5,X,. Then M with these operations is an iterative algebra. As a further
alternative, we may consider M as an algebra of type X ={+, x} where +, X are
binary operations; + is set union and U X V ={uv |u € U, v € V}. Then techniques
similar to those in Section 3.2 show that M has unique solutions te all iterative
systems T =(1y,...,1,) of type T such that for each i <n, if ;(u) =+ then there
exists ¢ with 1, (urj = x.

The third example frcm Elgot [4] which we will discuss is that of sequacious
functions, which essentially keep track of the sequence of external states attained
in a computation. For Elgot’s sequencious fun:tions, x is always a prefix of f(x);
here we replace f with the function g uniquely determined by xg(x) = f(x). With
this reduction, the theory has, as morphisms [1]->[p], all functions f: X -
1IX*«[phoX™ (where X~ is the set of countable sequences from X) such that

if fixy=10,7) forsomz x e X thenf(z)=(0,i) forall z e X.

Thus, besides the coproduct injections which are constant with value (0, i), the
morphisms from [1] to [p] are all functions f: X » (X " x[p]) U X ™. The algebraic
approach is to consider the algebra § whose elements are all functions f: X -
iX <{pho X" as above. Also, for each function g: X - (X "x[n])u X", S has
a n-ary operation o, defined as follows: for f,: X > (X*x[p,JuX™(1=i<n),

o tfi. .., foh: X > X*x[pDpuX™



Iterative algebras 93

where p = maximum {p{, p2, ..., p.}, and for each x € X,

(g(x)  ifglx)eX™,

uyfi(y) ifg(x)=(uy,i)forueX*, ceX and

oo f1s ooy fudx) =1 fi(y)eX?,

(uyw,j) ifg(x)=(uy,i)forueX *, uecX and

k fily) = (ws, ).

Just as in the example concerning timed terminal behaviour, this models the glueing

together of the machines. It can be verified that S, with all these operations, is an
iterative algebra.
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Note added in proof

Iterative algebras have also been studied in Tiuryn (Unique fixed points vs. least
fixed points, Theorct. Comput. Sci. 13 (1981) 229-254). Tiuryn uses the results of
Ginali et al. on free iterative theories to show that the algebra of all regular trees
is the free iterative algebra (with respect to solutions of a/l ideal iterative cquations),
which is the reverse of the approach taken here, in Section 4. In addition, he
explores the connection between iterative algebras and regular algebras, the latter
being ordered algebras where solutions of iterative equations are obtained as joins
of certain w-chains.

A related topic has been developed by Benson and Guessarian (Algebraic
solutions to recursion schemes, manuscript CS-81-079, Washington State Univer-
sity), namely that of algebras with solutions to recursive equations, these being
more general than iterative. In their approach, solutions are not required to be
unique, but are explicitly added as extra opecrations. A brief descri, tion follows,

A recursion scheme over a set 3 of basic operations is a set § of cquations

Gilxyy ooy X ) =tixy, ... X)) (1=i<n)

where the G; are new operations, and the ¢; are polynomials in both the X -operations
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and these aew ones, i.e. elements of the free 3 U{G,..., G,}-algebra on an
appropriate sct of generators. For such a recursion scheme S, let ® ={G, ..., G,},
then we may consider the class of all £ U @-algebras satisfying the above equations
and all X U @-homomorphisms between them. Since this is just an equationally
defined class of (universai) algebras, the existence of free algebras is a standard
result (Birkhoff [1]). The approach of Benson and Guessarian is essentially to
construct this free algebra as a quotient of the absolutely free 3 U @ -algebra;
ncither approach yields a canonical form, or description, for the elements of the
free algebra. Similarly, by adding a set of operations for each recursion scheme
over £, one can obtain an algebra which has solutions to all recursion schemes and
is free, or universal, with this property. In the same way one can also obtain free
algebras with solutions to recursive equations satisfying some additional equations,
as in the last section of thei paper. The essential ¢ifference between their approach
and the one presented in the present paper is that the solutions to recursion schemes
nieed not be unique; however, since the homomorphisms are stipulated to preserve
these solutions, because th2y are added as operations, this does fall within the usual
framework of universal alzebra. As the example at the end of Section 2.3 above
shows, if ncither of these approaches is followed (i.e. solutions need not be unique
and are also not added as operations which niust be preserved by morphisms) then
free algebras need not oxist,



