ITERATIVE ALGEBRAS

Evelyn NELSON
Department of Mathematical Sciences, McMaster University, Hamilton, Ontarı L8S 4K1, Canada

Communicated by M. Nivat
Received October 1981
Revised March 1982

Contents

1. Introduction 67
2. Definitions and basic results 69
2.1. Algebras and free algebras 69
2.2. Iterative systems and their solutions 71
2.3. Iterative algebras and free iterative algebras 7.3
2.4. Reduction and other theorems for iterative systems 75
3. Tree constructions of free iterative algebras 82
3.1. Regular trees 82
3.2. Application to context-free grammars 85
3.3. Irredundant iterative systems 87
3.4. L_{1}-iterative algebras 88
4. Iterative theories 89
4.1. Existence of free iterative theories 89
4.2. Further examples 91
References 93
Note added in proof 93

1. Introduction

The problem of finding suitable environments, in which so-called 'iterative equations' have solutions, occurs frequently in connection with the theory of computing and programming languages. Thic equations, or rather sets of equaticas, which are to be solved, are of the form $y_{j}=t_{j}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)(1 \leqslant j \leqslant n)$, for polynomials t_{j} and 'fixed' x_{i}. Such equations occur, for example, when modelling loops in flow charts or when studying formal grammars.

Elgot [4] has proposed iterative algebraic theories as models in which such equations have unique solutions, and the existence of free iterative theories was established in Bloom and Elgot [2]. Subsequently, Ginali [5] gave a construction
of the free iterative theory using regular trees, analogous to the familiar construction of ordinary free algebras which uses finite labelled trees.

Now, algebraic theories were jut forward by Lawvere [6]; they provide a homogeneous approach to (nct necessarily finitary) universal algebra via category theory. However, iterative theories are not entirely homogeneous, and Bloom and Elgot [2, abstract] suggest that this is the obstacle to proving the existence of free iterative theories from 'general algebraic considerations'.

This paper outlines a new approach to modelling unique solutions of polynomial equations, namely that of iterative algebras. These are algebras in which some, or all, iterative equations are uniquely solvable. This approach has the advantage that it is simpler than Elgot's, dea'ing only with the familiar notion of polynomial, has Elgot's results as, corcllaries, and is applicable to some situations that do arise in computer science which do not fit into the framework of iterative theories.
Iterative algebras are introdiuced in Section 2.2, and general algebraic considerations are seen to indeed directly yield the existence of free iterative algebras (Section 2.3). This fact, together with some general properties of iterative systems of equations (Section 2.4) then has as a corollary the existence of free iterative theories (Section 4.1).

This approach is more general than that developed by Elgot et al., not only because their results are consequences of the ones presented here, but also because this approach lends itself to a consideration of algebras where there are unique solutions, not to all iterative systems of polynomial equations, but to specified subcollections. The existence of free algebras of this sort also follow from general considerations (Section 2.3), the point always being that the required solutions can be viewed as additional operations, and the algebras in question are then realized as an implicationally defined class of algebras of an expanded type, in much the same way that torsion-free divisible abelian groups may be viewed as vector spaces over the field of rationals. This approach does not work in case the solutions are not required to be unique, and an example to show that free algebras need not exist in this situation is given at the end of Section 2.3.

The free iterative algebra is explicitly constructed in Section 3.1 as the collection of all regular trees, and free iterative algebras with respect to certain subcollections of equations (including the one related to context-free grammars) are realized as subalgebras of the algebra of regular trees in Sections 3.2 and 3.3. In Section 3.4 we see that, in centrast to the situation for theories (Bloom, Ginali and Rutledge [3]. an algebra may have unique solutions to all single polynomial equations but still may not be iterative.

All of the material on algebraic theories is postponed until Section 4, where the general existence results claimed above are proved and some examples from Elgot $[4]$ are discussed. Although this chapter is independent of the explicit constructions
given in Section 3, when combined with 3.1 it yields Ginali's explicit description of the free iterative theory.

2. Definitions and busic results

In this section, the definitions of an algebra and a free algebra of a given type are recalled, and the notion of an iterative algebra is introduced, analogous to the iterative theories of Elgot [4], Bloom, Ginali and Rutledge 3] and Ginali [5]. In addition, basic results from universal algebra are used to estabiish the existence of free iterative algebras.

2.1. Algebras and free algebras

As usual, a type of algebras is a set Σ (of 'operation symbols') together with a function which assigns to each $\sigma \in \Sigma$ a natural number $|\sigma|$ called the arity of σ. An algebra of type Σ is a set A together with, for each $\sigma \in \Sigma$, a $|\sigma|$-ary operation on A, i.e. a function $\sigma_{A}: A^{|\sigma|} \rightarrow A$. A homomorphism $f: A \rightarrow B$ between algebras A and B is a function from A to B such that, for all $\sigma \in \Sigma$ and all $a_{1}, \ldots, a_{|r|} \in A$, $f\left(\sigma_{A}\left(a_{1}, \ldots, a_{|\sigma|}\right)\right)=\sigma_{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{|\sigma|}\right)\right)$. For a set V (of 'variables') the free algebra F (word algebra) of type Σ over the set V is characterized (up to isomorphism over V) by the property that $V \subseteq F$, and every function from V into an algebra A of type Σ extends uniquely to a homomorphism from F into A. The existence of this free algebra is well known, as is the following explicit description as a collection of finite trees with labels from $\Sigma \cup V$: let ω^{*} be the set of finite sequences of natural numbers $\geqslant 1$. A V-labelled Σ-tree is a partial function $t: \omega^{*} \rightarrow \Sigma \cup V$ with non-empty domain, $\operatorname{dom}(t)$, such that
(1) for all $u \in \omega^{*}, k \in \omega$, if $u k \in \operatorname{dom}(t)$ then $u \in \operatorname{dom}(t)$ and $t(u)=\sigma$ for some $\sigma \in \Sigma$ with $|\sigma| \geqslant k$;
(2) if $t(u)=\sigma$ then $u k \in \operatorname{dom}(t)$ for all $k \leqslant|\sigma|$.

The set of all such trees forms an algebra $T_{\Sigma} V$, where the operators are defined by

$$
\begin{aligned}
& \sigma_{T_{2} V}\left(t_{1}, \ldots, t_{|\sigma|}\right)(\emptyset)=\sigma, \\
& \sigma_{T_{2} v}\left(t_{1}, \ldots, t_{|\sigma|}\right)(k u)=t_{k}(u) \quad \text { for all } u \in \omega^{*}, \text { all } 1 \leqslant k \leqslant|\sigma| .
\end{aligned}
$$

Also, the function which assigns to each $v \in V$ the partial function \bar{v} with domain $\{\emptyset\}$, such that $\bar{v}(\emptyset)=v$, gives an embedding of V into $T_{\mathbf{\Sigma}} V$. The complexity (or degree) of an element $t \in T_{\Sigma} V$ is the number ef operation symbols appearing in t, i.e. the number of sequences $u \in \omega^{*}$ with $t(u) \in \Sigma$; the complexity can cf course be infinite.

Examples. Σ has a binary operation T,

$$
\begin{aligned}
\text { domain of } s= & \{\emptyset, 1,2\}, \\
\text { domain of } t= & \{\emptyset, 1,2,11,12,111,112,1111,1112, \ldots\} \\
= & \text { all sequences containing at most one } 2, \text { which must occur at } \\
& \text { the end, } \\
\text { domain of } s+t= & \{\emptyset, 1,2,11,12,21,22,211, \leftharpoonup: 2,2111,2112, \ldots\} \\
& =\{\emptyset\} \cup\{l u \mid u \in \operatorname{dom}(s)\} \cup\{2 u|u \in| \operatorname{lom}(t)\} .
\end{aligned}
$$

The subset $F_{\mathbf{\Sigma}} V$ of $T_{\mathbf{\Sigma}} V$ consisting of all finite trees (i.c. all trees with finite domains) is clearly closed under tise Σ-operations, and hence is an algebra; it is well known that this algebra is the frec Σ-algebra over V. Mc eover, if $U \subseteq V$ then the subalgebra of $F_{\Sigma} V$ generated by U is $F_{\Sigma} U$.

If $U=\left\{u_{1}, \ldots, u_{m}\right\}$ is an m-element set then the elements of $F_{\Sigma} L^{r}$ are called n-ary polynomials. For each algebra A of type Σ, each $t \in F_{\Sigma} U$ induces an m-ary operation $t_{A}: A^{\prime n} \rightarrow A$; for $a_{1}, \ldots, a_{m} \in A, t_{A}\left(a_{1}, \ldots, a_{m}\right)$ is the image of t under the unique homonorphism $F_{\mathbf{\Sigma}} U \rightarrow A$ mapping u_{i} to a_{i} for each $i \leqslant m$. Note that if $t=u$, then $t_{A}: \boldsymbol{A}^{m} \rightarrow \boldsymbol{A}$ is just the i th projection, i.e. $t_{A}\left(a_{1}, \ldots, a_{m}\right)=a_{i}$, and if $t=\sigma\left(u_{1}, \ldots, u_{i, i}\right)$ for $\sigma \in \Sigma$ then $t_{A}=\sigma_{A}$.

Each homomorphism $f: A \rightarrow B$ between algebras A and B preserves a!! these polynomials, i.e. for each $t \in F_{\mathbf{\Sigma}}\left\{u_{1} \ldots, u_{m}\right\}$ and for all $a_{1}, \ldots a_{m} \in A$

$$
f\left(t_{A}\left(a_{1}, \ldots, a_{m}\right)\right)=t_{B}\left(f\left(a_{1}\right), \ldots, f\left(a_{m}\right)\right)
$$

This fact is well known, and in any case not difficult to prove; one merely shows that the set of all $t \in F_{\Sigma}\left\{u_{1}, \ldots, u_{m}\right\}$ which are preserved by f contains u_{1}, \ldots, u_{m} and is closed under all the Σ-operations, and uses the fact that $F_{\Sigma}\left\{u_{1}, \ldots, u_{m}\right\}$ is generated by $\left\{u_{1}, \ldots, u_{m}\right\}$.

Actually, since $F_{\mathbf{\Sigma}}\left\{u_{1}, \ldots, u_{m}\right\} \subseteq F_{\Sigma}\left\{u_{1}, \ldots, u_{p}\right\}$ whenever $m \leqslant p$, each $t \in$ $F_{2}\left\{u_{1}, \ldots, u_{m}\right\}$ induces a p-ary operation $A^{p} \rightarrow A$ for each $p \geqslant m$, which, of course,
does not depend on its last $p-m$ arguments. Thus, strictly speaking, our notation ' t_{A} ' is ambiguous and should also include the ' m '; however this will normally be clear from context.

2.2. Iterative systems and their solutions

The main concern of this paper is algebras in which certain syst ems of polynomial equations of the form

$$
\begin{aligned}
& y_{1}=t_{1}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
& y_{2}=t_{2}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
& \vdots \\
& y_{n}=t_{n}\left(x_{1}, \ldots, x_{:}, y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

have, for each choice of the x_{i}, unique solutions y_{1}, \ldots, y_{n}. Since the x_{i} and y_{i} really play different roles, it will be convenient to introduce two disjoint sets of variables for them, and so we make the following definition.
For the rest of this paper, let $X=\left\{x_{i} \mid 1 \leqslant i \in \omega\right\} \cup\left\{y_{i} \mid 1 \leqslant i \in \omega\right\}$ be a countable set, where $x_{i} \neq y_{i}$, and for $i \neq j, x_{i} \neq x_{i} \neq y_{i} \neq y_{i}$, and let $F_{\Sigma} X$ be, as described above, the free algebra of type Σ over the set X. For each pair $n \geqslant 1$ and k of natural numbers, let $F_{\Sigma}(k, n)$ be the subalgebra of $F_{\Sigma} X$ generated by $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\}$. Further, for each $t \in F_{\Sigma}(k, n)$ and each Σ-algebra A, let t_{A} be the $(k+n)$-ary polynomial on A induced by t such that $t_{A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)$ is the image of t under the homomorphism from $F_{\Sigma}(k ; n)$ to A mapping x_{i} to a_{i} for $1 \leqslant i \leqslant k$ and y_{i} to b_{j} for $1 \leqslant j \leqslant n$. (Note that k may be zero.)
An iterative system is, for some $n \geqslant 1$ and k, an n-tuple $T=\left(t_{1}, \ldots, t_{n}\right)$ of elements of $F_{\Sigma}(k, n) ; T$ is called uniquely solvable in A (for a Σ-algebra A) iff
(*) for all $a_{1}, \ldots, a_{k} \in \boldsymbol{A}$ there exists unique $b_{1}, \ldots, b_{n} \in \boldsymbol{A}$ such that

$$
b_{i}=t_{j A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right) \text { for } 1 \leqslant j \leqslant n
$$

An iterative system T is called degenerate iff it is uniquely solvable in every Σ-algebra. $T=\left(t_{1}, \ldots, t_{n}\right)$ is called trivial iff there exist $i_{1}, \ldots, i_{m} \in\{1,2, \ldots, n\}$ such that $t_{i_{1}}=y_{i_{2}}, t_{i_{2}}=y_{i_{3}}, \ldots, t_{i_{m}}=y_{i_{1}}$. Note that a solution in \boldsymbol{A} for the system $T=\left(y_{2}, y_{3}, y_{4}, \ldots, y_{n}, y_{1}\right)$ consists of elements $b_{1}, \ldots, h_{1} \in A$, such that $b_{1}=b_{2}=$ $b_{3}=\cdots=b_{n}$ and hence for any element $b \in A, b=b_{1}=b_{2}=\cdots=b_{n}$ provides such a solution. Thus, if this system is uniquely solvable in A, it follows that A is the trivial ($=$ one-element) algebra.
Further, T is called ideal if $t_{j} \notin\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\}$ for all $j \leqslant n$; i.e., if each $t_{\text {, }}$ has complexity $\geqslant 1$; the ideal iterative systems are the analogues for algebras of the ideal morphisms of Elgot [3]. Clearly every ideal system is non-trivial; we will see below that from the point of view of solvability these notions are equivalent. First some examples.

Example 1. Suppose Σ has one binary operation + and let $T=\left(x_{1}+y_{2}, y_{1}\right) \in$ $\boldsymbol{F}_{\mathbf{\Sigma}}(1,2)^{2}$; then T is non-trivial but not ideal. T is uniqely solvable in an algebra A iff for all $a \in A$ there exist unique $b_{1}, b_{2} \in A$ with $b_{1}=a+b_{2}$ and $b_{2}=b_{1}$. This is clearly equivalent to the existence of a unique $b \in A$ with $b=a+b$, and hence the solvability of T is equivalent with the solvability of the ideal system $\bar{T}=$ $\left(x_{1}+y_{i}\right) \in F_{\Sigma}(1,1)^{1}$.

Example 2. Let $T=\left(x_{1}, y_{1}\right) \in F_{\Sigma}(1,2)^{2}$; then T is uniquely solvable in A iff for all $a \in A$ there are unique b_{1} and b_{2} in A with $b_{1}=a, b_{2}=b_{1}$. This system T is degenerate; for any A and $a \in A$, the unique solution for T is given by $b_{1}=b_{2}=a$.

Example 3. For any type Σ, let 2_{Σ} be the algebra whose elements are 0 and 1 , with operations defined by

$$
r\left(a_{1}, \ldots, a_{i \sigma}\right)= \begin{cases}0 & \text { if } a_{i}=0 \text { for some } i \leqslant|\sigma| \\ 1 & \text { otherwise }\end{cases}
$$

We will see in Section 2.4 that an iterative system is uniquely solvable in 2_{Σ} iff it is degenerate, so that 2_{2} is a 'test object' for which systems are always uniquely solvaitie.

Example 4. For any type Σ and any set V, let $F_{\Sigma}^{*} V$ be the Σ-algebra obtained by adjoining one new element $*$ to $F_{\Sigma} V$ and defining the operations to act as usual in $F_{3} V$ and to take value $*$ otherwise, so that $\sigma\left(a_{1}, \ldots, a_{|\sigma|}\right)=*$ whenever $a_{i}=*$ for some $i<|\boldsymbol{\sigma}|$. Then $F_{\Sigma}^{*} V$ is a Σ-algebra in which every non-trivial iterative system is uniquely solvable; this is shown by the following discussion.

For any non-trivial and non-degerate iterative system $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)$, if some $t_{i} \in F_{\leq}\left\{x_{1}, \ldots, x_{k}\right\}$ then we may drop t_{i} from T and obtain an equivalent system (see Lemmas 1 and 2 in Section 2.4), and so we may restrict our attention to those iterative systems T with no components in $F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$. But for any such T and $a_{1}, \ldots, a_{k} \in F_{\Sigma}^{*} V, b_{1}=b_{2}=\cdots=b_{n}=*$ provides a solution to T with respect to a_{1}, \ldots, a_{k}.

Finally, we verify that this solution is unique. Suppose b_{1}, \ldots, b_{n} is any solution for T with respect to a_{1}, \ldots, a_{k} and choose $p_{1} \leqslant n$ such that $b_{p_{1}} \neq *$, and among all the $;=n$ with $b_{1} \neq *, b_{p_{1}}$ has the minimum complexity. Since $t_{p_{1}} \notin F_{\Sigma}\left\{x_{1}, \ldots, x_{i}\right\}$, there exists p_{2} with $y_{p_{2}}$ in the image of $t_{p_{1}}$, and thus because of the way the operations are defined in $F_{\mathbf{\Sigma}}^{*} V, b_{\rho_{2}} \neq *$, and so the complexity of $b_{p_{2}}$ is \geqslant the complexity of $b_{p_{2}}$. But $b_{p_{1}}=t_{p_{1}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)$ and hence $t_{p_{1}}=y_{p_{2}}$ and $b_{p_{1}}=b_{p_{2}}$. Now we may repeat the above argument with $b_{p_{2}}$ replacing $b_{p_{1}}$, and eventually yield a cycle with $t_{p_{1}}=y_{p_{n},} t_{p_{2}}: y_{p_{2}}, \ldots, t_{p_{m}}=y_{p_{1}}$, contradicting the non-triviality of T. It follows that $b_{1}=b_{3}=\cdots=b_{n}=*$ is the only solution for T, as required.

Example 5. If S is a commutative semigroup containing a 'zero element' z such that $y=x y$ for $x, y \in S$ iff $y=z$, then every non-trivial iterative system, for the type
Σ consisting of a single binary operation, is uniquely solvable in S. This is not difficult to prove, using the results which will be established in Section 2.4. Moreover, every commutative semigroup S in which every non-trivial iterative system is uniquely solvable is of this form: since $y=y y$ is uniquely solvable in S, there is a unique element $z \in S$ with $z=z z$. Now for any $x \in S$ there is a unique $\bar{x} \in S$ with $\bar{x}=\bar{x} \bar{x}$, and then $\bar{x} \bar{x}=x \bar{x} \bar{x}$ which implies that $\bar{x} \bar{x}=\bar{x}$?'Uy the uniqueness of \bar{x}) and hence $\bar{x}=z$ (by the uniqueness of z). Thus, fo: all $x \in S, z$ is the unique element of S with $z=x z$.

2.3. Iterative algebras and free iterative algebras

Let C be any set of iterative systems of type Σ, i.e. C is any subset of $\bigcup_{k, n \in \omega, n>1} F_{\mathbf{\Sigma}}(k, n)^{n}$.

An algebra A of type Σ is called C-iterative iff every $T \in C$ is uniquely solvable in \boldsymbol{A}. \boldsymbol{A} is called iterative iff every non-trivial iterative system is uniquely solvable in A.

A C-iterative algebra I is the free C-iterative algebra over a set V iff $V \subseteq I$, and each function from V into a C-iterative algebra A extends uniquely to a homomorphism from I into A. Standard arguments show that I is unique up to isomorphism over V; the follewing discussion yields the existence of such free algebras.

For any C-iterative Σ-algebra A, each $T \in C$ induces $n k$-ary operations $T_{i A}: A^{k} \rightarrow A \quad(1 \leqslant i \leqslant n) \quad$ defined \quad as \quad follows: for $a_{1}, \ldots, a_{k} \in A$, $\left(T_{1 A}\left(a_{1}, \ldots, a_{k}\right), \ldots, T_{n A}\left(a_{1}, \ldots, a_{k}\right)\right)$ is the unique solution of T with respect to $\left(a_{1}, \ldots, a_{k}\right)$. Moreover, if f is any homomorphism from \boldsymbol{A} to a C-iterative $\boldsymbol{\Sigma}$-algebra B, then, as mentioned above, f preserves all polynomials, and consequently $\left(f\left(T_{1 A}\left(a_{1}, \ldots, a_{k}\right)\right), \ldots, f\left(T_{n A}\left(a_{1}, \ldots, a_{k}\right)\right)\right.$ is a solution for T with respect to $\left(f\left(a_{1}\right), \ldots, f\left(a_{k}\right)\right)$ in B, and hence by uniqueness of the solution in B, $f\left(T_{i A}\left(a_{1}, \ldots, a_{k}\right)\right)=T_{i B}\left(f\left(a_{1}\right), \ldots, f\left(a_{k}\right)\right)$ for $1 \leqslant i \leqslant n$. This means that each such $T \in C$ induces $n k$-ary operations on each C-itciative Σ-alyebra, and that the Σ-homomorphisms also preserve these new operations.
Let $\Sigma_{C} \supseteq \Sigma$ be the type obtained by adjoining to Σ, for each $T \in C \cap \Gamma_{\mathbf{s}}(k, n)^{n}$, $n k$-ary operations T_{1}, \ldots, T_{n}. The above discussion shows that each C-iterative Σ-algebra can be made ir to a Σ_{C}-algebra in such a way that Σ-homomorphisms between C-iterative $\boldsymbol{\Sigma}$-algebras are also $\boldsymbol{\Sigma}_{C}$-homomorphisms. In fact, we can recognize the Σ_{C}-algebras so obtained:
Let K_{C} be the class of all Ξ_{C}-algebras which satisfy the following identities and implications for all $T=\left(t_{1}, \ldots, t_{n}\right) \in C$ and $1 \leqslant i \leqslant n$

$$
\begin{aligned}
& \text { (\#) } T_{i}\left(x_{1}, \ldots, x_{k}\right)=t_{i}\left(x_{1}, \ldots, x_{k}, T_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, T_{n}\left(x_{1}, \ldots, x_{k}\right)\right), \\
& \text { (\#\#) }\left({\underset{1}{ } \leqslant i \leqslant n}_{M} t_{i}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)=y_{i}\right) \rightarrow y_{i}=T_{i}\left(x_{1}, \ldots, x_{k}\right) .
\end{aligned}
$$

Here, M stands for logical conjunction. The identitics (\#) ensure that, for an algebra $A \in K$, the elements $T_{i A}\left(a_{1}, \ldots, a_{k}\right)$ provide a solution of T with respect
to $\left(a_{1}, \ldots, a_{k}\right)$ and the implications (\#\#) ensure that this solution is unique. Thus, the class of \boldsymbol{C}-iterative $\boldsymbol{\Sigma}$-algebras is precisely the class of underlying $\boldsymbol{\Sigma}$-algebras of algebras in $\boldsymbol{K}_{\boldsymbol{C}}$, and the $\boldsymbol{\Sigma}$-homomorphisms and $\boldsymbol{\Sigma}_{\boldsymbol{c}}$-homomorphisms coincide for these algebras.

However, K_{C} is a class of $\boldsymbol{\Sigma}_{\boldsymbol{C}}$-algebras which is closed under formation of subalgebras and products, and is non-trivial by Example 4 of Section 2.2, and hence has free algebras (Birkhoff [1]). In view of the preceding paragraph, we know that (the underlying Σ-algrebra of) the free Σ_{C}-algebra over a set V is the free iterative $\boldsymbol{\Sigma}$-algebra over \boldsymbol{V}, yielding the following result.

Theorem 1. For any set V, and any set C of iterative systems, the free C-iterative algehra over V exists.

Note that the same argumenis prove a stronger result: we could, in addition to \boldsymbol{C}-iterativeness, also ask that our algebras satisfy certain $\boldsymbol{\Sigma}$-equations; this again will yield a class of Σ_{C}-algebras closed under subalgebras and products, which then has free algebras. Thus, for any equational class K of algebras of type Σ and any set C of iterative systems of polynomial equations of type Σ, the class of all C-iterative algehras in K has free algebras.

Let us conclude this section by considering algebras of type Σ which have solutions of all iterative systems of Σ-equations, but the solutions need not be unique. These algebras can also be realized as reducts of algebras of an expanded type; however since the solutions need not be unique, the Σ-homomorphisms need not preserve the added operations. Indeed, here the analogy breaks down: such classes of algebras need not have free algebras. For example, let Σ consist of one unary operation σ, and let $A=\omega \cup\{a, b\}$ where $a, b \notin \omega$, with the operation σ defined as the successor operation in ω and $\sigma(a)=a, \sigma(b)=b$.

This yields an algebra with solutions to all iterative systems of Σ-equations: if we ! Twe an iterative system $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\mathbf{\Sigma}}(k, n)^{n}$ and some $t_{j} \in F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$, then the j th equation is of the form $y_{i}=\sigma^{p}\left(x_{i}\right)$ and may be dropped to yield a shorter equivalent system. Thus we need only consider iterative systems with no x_{i} appearing at all, and then $y_{j}=a$ for all j yields a solution in A.

Now, let k be the class of all Σ-algebras with solutions of all non-trivial iterative systems of Σ-equations, and suppose K has a free algebra F over the singleton set brl. Then there is a unique homomorphism $h: F \rightarrow A$ with $h(v)=1$. Now define $g: A \rightarrow A$ by $g(n)=n$ for all $n \in \omega, g(a)=b, g(b)=a$. Then g is a homomorphism, so $g h$ is a homomorphism from F to A. Since $g h(v)=1$, it follows that $g h=h$. Now, there exists some element $u \in F$ with $u=\sigma(u)$, and hence $h(u)=\sigma(h(u))$ which implies that $h(u)$ is either a or b. However, since $g h=h$, it follows that whlu)=h(u), which contradicts the definition of g.

Thus. if the solutions to iterative systems are not required to be unique, there need not be fres algebras.

2.4. Reduction and other theorems for iterative systems

Recall that an iterative system $T=\left(t_{1}, \ldots, t_{n}\right)$ is degenerate iff it is uniquely solvable in every Σ-algebra, trivial iff there exists i_{1}, \ldots, i_{m} with $t_{i_{1}}=y_{i_{2}}, t_{i_{2}}=$ $y_{i_{3}}, \ldots, t_{i_{m}}=y_{i_{1}}$, and ideal iff each t_{i} has complexity $\geqslant 1$. Further, for each n, let C_{n} be the set of all iterative systems such that each componert has complexity n, and L_{n} consist of all iterative systems of length n (i.e. with n iomponents).

Note first of all that permutation of the order of the equations in an iterative system does not affect the solvability. For example, if Σ has a binary operation + and $T=\left(x_{1}+y_{1}, x_{2}+y_{2},\left(y_{1}+y_{2}\right)+y_{3}\right)$ then for $a_{1}, a_{2} \in A,\left(b_{1}, b_{2}, b_{3}\right)$ is a solution for T with respect to $\left(a_{1}, a_{2}\right)$ iff

$$
\begin{aligned}
& b_{1}=a_{1}+b_{1}, \\
& b_{2}=a_{2}+b_{2}, \\
& b_{3}=\left(b_{1}+b_{2}\right)+b_{3} .
\end{aligned}
$$

Let π be the permutation of $\{1,2,3\}$ with $\pi(1)=3, \pi(2)=1, \pi(3)=2$, and let $T_{\pi}=\left(\left(y_{2}+y_{3}\right)+y_{1}, x_{1}+y_{2}, x_{2}+y_{3}\right)$; then $\left(c_{1}, c_{2}, c_{3}\right)$ is a solution for T_{π} with respect to $\left(a_{1}, a_{2}\right)$ iff

$$
\begin{aligned}
& c_{1}=\left(c_{2}+c_{3}\right)+c_{1} \\
& c_{2}=a_{1}+c_{2} \\
& c_{3}=a_{2}+c_{3}
\end{aligned}
$$

Clearly $\left(b_{1}, b_{2}, b_{3}\right)$ solves T iff $\left(b_{3}, b_{1}, b_{2}\right)$ solves T_{π}.
The following lemma, which will be used several times in the remainder of this section, covers this phenomenon in full generality.

Lemma 1. Suppose $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{*}$ is an iterative system and π is a permutation of $\{1,2, \ldots, n\}$. Let $h: F_{\mathbf{\Sigma}}(k, n) \rightarrow F_{\mathbf{\Sigma}}(k, n)$ be the homomorphism with $h\left(x_{i}\right)=x_{i}$ for all $i \leqslant k, h\left(y_{j}\right)=y_{\pi^{-1}(j)}$ for all $j \leqslant n$. Then for any Σ-algebra A and $a_{1}, \ldots, a_{k} \in A,\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$ iff $\left(b_{\pi(1)}, \ldots, b_{\pi(n)}\right)$ is a solution for $T_{\pi}=\left(h\left(t_{\pi(1)}\right), \ldots, h\left(t_{\pi(1)}\right)\right)$, with respect to $\left(a_{1}, \ldots, a_{k}\right)$.

Proof. Let $\left.f, g: F_{\mathbf{\Sigma}}(k, n)\right) \rightarrow A$ be the homomorphisms with $f\left(x_{i}\right)=g\left(x_{i}\right)=a_{i}$ for $1 \leqslant$ $i \leqslant k$ and $f\left(y_{j}\right)=b_{j}, g\left(y_{j}\right)=b_{\pi(j)}$. Then f and the composite $g h$ coincide on all the generators of $F_{\Sigma}(k, n)$ and hence are equal. Thus, if $b_{i}=t_{j A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)$ for all $j \leqslant n$ then $b_{j}=f\left(t_{j}\right)=g h\left(t_{j}\right)=h\left(t_{i}\right)_{A}\left(a_{1}, \ldots, a_{k}, b_{\pi(1)}, \ldots, b_{\pi(n)}\right)$ for all $j \leqslant n$ and hence $b_{\pi(j)}=h\left(t_{\pi(j)}\right)_{A}\left(a_{1}, \ldots, a_{k}, b_{\pi(1)}, \ldots, b_{\pi(n)}\right)$ for all $j \leqslant n$. The converse is also true, thus yielding the claim.

A similar, easy argument yields the following lemma, which will also be useful in the remainder of this section. It states formally the intuitively obvious fact that
in dealing with iterative systems $T=\left(t_{1}, \ldots, t_{n}\right)$, if some t_{i} belongs to the subalgebra generated by x_{1}, \ldots, x_{k}, then the j th equation can be dropped to yield an equivalent, shorter, system.

Lemman 2. Suppose $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\mathrm{Z}}(k, n)^{n}$ is an iterative system with $t_{n} \in$ $F_{\mathbf{\Sigma}}\left\{x_{1}, \ldots, x_{k}\right\}$. Let $h: F_{\Sigma}(k, n) \rightarrow F_{\Sigma}(k, n-1)$ be the homomorphis m mapping all the x_{1} and all y_{j} with $j \leqslant n-1$ identically, with $h\left(y_{n}\right)=t_{n}$. Then for any Σ-algebra A and $\left(a_{1}, \ldots, a_{k}\right) \in A,\left(b_{1}, \ldots, b_{n-1}\right)$ is a solution for $\bar{T}=\left(h(t), \ldots, h\left(t_{n-1}\right)\right)$ with respect to $\left(a_{1}, \ldots, a_{k}\right)$ iff $\left(b_{1}, \ldots, b_{n-1}, t_{n A}\left(a_{1}, \ldots, a_{k}\right)\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$.

For example, if $T=\left(y_{1}+y_{2}, x_{1}+x_{2}\right)$ then $\bar{T}=\left(y_{1}+\left(x_{1}+x_{2}\right)\right)$; a solution to T in A with respect to $\left(a_{1}, a_{2}\right)$ consists of $b_{1}, b_{2} \in A$ with $b_{1}=b_{1}+b_{2}$ and $b_{2}=a_{1}+a_{2}$, which is clearly equivalent to having $b_{1}=b_{1}+\left(a_{1}+a_{2}\right)$.

Recall that the algebra 2_{Σ} was defined in Example 3 in Section 2.2.

Proposition 1. For an iterative system T the following are equivalent:

(1) Tis uniquely solvable in 2_{Σ} :
(2) T is degenerate, i.e., uniquely solvable in every Σ-algebra;
(3) T is non-trivial and solvable (not necessarily uniquely) in every Σ-algebra.

Proof. Let $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$.
Note that if $t_{j} \in F_{\mathcal{E}}\left\{x_{1}, \ldots, x_{n}\right\}$ for all $j \leqslant n$ then T is degenerate; in this case, for any algebra \boldsymbol{A} and $a_{1}, \ldots, a_{k} \in A, b_{i}=t_{j}\left(a_{1}, \ldots, a_{k}\right)$ provide the required unique solutions.
(1) \rightarrow (3). Assume T is uniquely solvable in 2_{x}. First we prove that T is solvable in every Σ-algebra. By Lemmas 1 and 2 we may assume $t_{j} \notin F_{\mathbf{\Sigma}}\left\{x_{1}, \ldots, x_{k}\right\}$ for all $j \leqslant n$. But now, let $h_{1}: F_{\mathbf{\Sigma}}(k, n) \rightarrow 2_{\mathbf{\Sigma}}$ be the homomorphism with $h\left(x_{i}\right)=1$ for all $i \leqslant k$ and $n\left(y_{i}\right)=$ for all $j \leqslant n$; it is easy to check using the definition of the operations in 2_{2} that $F_{\mathbf{2}}\left\{x_{1}, \ldots, x_{2} \cup\left\{t \in F_{\mathbf{\Sigma}}(k, n) \mid h(t)=0\right\}\right.$ is closec under all the operations and hence, becuase it contains all the generators, must equal $F_{\Sigma}(k, n)$. From this it follows that $i\left(t_{i}\right)=\mathbf{0}$ for all $j \leqslant n$ and hence $b_{1}=b_{2}=\cdots=b_{n}=0$ provides a solution for the equations $b_{1}=t_{i}\left(1,1, \ldots, b_{1}, \ldots, b_{n}\right)$. Since $b_{1}=b_{2}=\cdots=b_{n}=1$ also provides a solution, this means that $n=0$, i.e. that T is degenerate, and thus solvable in every $\boldsymbol{\Sigma}$-algebra.

Next, suppose \boldsymbol{T} is trivial. Then there exists $j_{1}, j_{2}, \ldots, j_{m} \in\{1,2, \ldots, n\}$ such that $t_{y} v_{i, t} t_{i}=v_{1,}, \ldots t_{1, \ldots}=y_{;,}$. Deine sets $U_{11} \subseteq U_{1} \subseteq \cdots \subseteq\{1,2 \ldots, n\}$ as follows:

$$
U_{s}=\left\{i_{1}, j_{2}, \ldots, i_{m}\right\} .
$$

$f_{p, i}$ iff $h_{p, 1},\left\{=0\right.$ where $h_{p}: F_{2}(k, n) \rightarrow 2_{2}$ is the homomorphism with $h\left(x_{i}\right)=1$ for all $: \cdot k, h_{n, 1}, y=0$ if $j \in U_{p}, h_{p}\left(y_{i}\right)=1$ otherwise.

Note that $U_{n} \subseteq U_{1}$ by the above identities, and $U_{p} \subseteq U_{p+1}$ implies $U_{p+1} \subseteq U_{p+2}$ because of the way the operations are defined in 2_{2}. Thus for some $p, U_{p}=U_{p+1}$.

But then, for this $p, h_{p}\left(t_{j}\right)=0$ implies $j \in U_{p+1}=U_{p}$ which implies $h_{p}\left(y_{j}\right)=0$, and conversely $h_{p}\left(y_{j}\right)=0$ implies $j \in U_{p}=U_{p+1}$ which implies $h_{p}\left(i_{j}\right)=n$. Thus, for all $j \leqslant n$ we have $h_{p}\left(t_{j}\right)=h_{p}\left(y_{j}\right)$ and conseequently $\left(h_{p}\left(y_{1}\right), \ldots, h_{p}\left(y_{n}\right)\right)$ is a solution for T with respect to $a_{1}=a_{2}=\cdots=a_{k}=1$. Since $h_{p}\left(y_{j}\right)=0$ for all $i \in U$ this shows that T is, not uniquely solvable in 2_{Σ}. Thus if T is uniquely solvable in 2_{Σ} it follows that T is solvable in every Σ-algebra and T is non-trivial.
(3) \rightarrow (2). Suppose $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ is non-trivial, non-degenerate, and solvable in every Σ-algebra A. Using Lemmas 1 and 2 , we may assume without loss of generality that no $t_{j} \in F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$, and since T is non-degenerate, $n \geqslant 1$. Since T is solvable in every algebra, T is solvable in $F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$, and hence there exists $b_{1}, \ldots, b_{n} \in F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$ such that $b_{j}=t_{j}\left(x_{1}, \ldots, x_{k}, b_{1}, \ldots, b_{n}\right)$ for all $j \leqslant n$. Let j_{1} have the property that $b_{j_{1}}$ has minimum complexity among $b_{1}, b_{2}, \ldots, b_{n}$. Since $b_{j_{1}}=t_{j_{1}}\left(x_{1}, \ldots, x_{k}, b_{1}, \ldots, b_{n}\right)$ and $t_{i_{1}} \notin F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$, it follows that t_{i} must really depend on one of its last n arguments, say j_{2}, and then because $b_{i_{1}}$ has minimum complexity it follows that $t_{i_{1}}=y_{i_{2}}$ and hence $b_{i_{1}}=b_{i_{2}}$. But now $b_{i_{2}}$ has minimum complexity too, and the argument can be repeated. Eventually we obtain a cycle $t_{j_{1}}=y_{j_{2}}, t_{i_{2}}=y_{j_{3}}, \ldots, t_{j_{\text {In }}}=y_{j_{1}}$, which implies that T is trivial, a contradiction. (2) $\rightarrow(1)$. This is trivial.

Corollary. There is an effective procedure to determine, given an iterative system 7 , whether or not T is degenerate.

Proof. There are only finitely many cases to check to see whether T is uniquely solvable in 2_{Σ}.

Proposition 2. There is an effective procedure which, given a non-trivial, nondegenerate iterative system $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n t}$, produces an ideal iterative system $\bar{T}=\left(\bar{t}_{1}, \ldots, \bar{t}_{m}\right) \in F_{\Sigma}(k, m)^{\prime n}$ for some $m \leqslant n$ such that, for every Σ-algebra A and $a_{1}, \ldots, a_{k} \in A, T$ is uniquely solvable in A with respect to $\left(a_{1}, \ldots, a_{k}\right)$ iff \bar{T} is.

Proof. Two procedures will be described which, when applied alternatively, will eventually produce the desired result.

Suppose $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ is non-trivial and non-degenerate.

Procedure 1. Apply when some $t_{j} \in\left\{x_{1}, \ldots, x_{k}\right\}$.
In this case $n \neq 1$ since otherwise T would be degenerate. Thus we may apply Lemmas 1 and 2 to get an iterative system \bar{T} with one fewer component than T, whose solvability is equivalent to that of T.

Procedure 2. Apply when some $t_{j} \in\left\{y_{1}, \ldots, y_{n}\right\}$.

By Lemma 1, we may assume $j=n$, so that $t_{n}=y_{p}$ for $p \leqslant n-1$. Now let $h: F_{\mathbf{x}}(k, n) \rightarrow F_{\mathbf{\Sigma}}(k, n-1)$ be the homorphism with $h\left(x_{i}\right)=x_{i}$ for $i \leqslant k, h\left(y_{j}\right)=y_{i}$ for $j \leqslant n-1$ and $\boldsymbol{h}\left(y_{n}\right)=y_{p}$. Then for any algebra A and $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n-1} \in A$, (b_{1}, \ldots, b_{n-1}) is a solution for $T^{\prime}=\left(h\left(t_{1}\right), \ldots, h\left(t_{n-1}\right)\right)$ with respect to (a_{1}, \ldots, a_{k}) iff $\left(b_{1}, \ldots, b_{n-1}, b_{p}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$. In particular T^{\prime} is non-degenerate.

Now simply apply procedures 1 and 2 until neither apply any more to yield the desired \bar{T}.

Corollary. For any $\mathbf{\Sigma}$-algebra \mathbf{A}, if every ideal iterative system is uniqely solvable in \boldsymbol{A} then every non-trivial iterative system is uniquely solvable in \boldsymbol{A}.

Remark. The proof of Proposition 3 actually produces more than is claimed: given $T=\left(t_{1}, \ldots, t_{n}\right)$ the procedure produces $\bar{T}=\left(\bar{t}_{1}, \ldots, \bar{i}_{m}\right)$, distirat $j_{1}, \ldots, j_{m} \leqslant n$ and for each $i \notin\left\{j_{1}, \ldots, j_{m}\right\}$ a polynomial $s_{j} \in F_{\mathbf{\Sigma}}(k, m)$ (which always has complexity zerol such that for any algebra \boldsymbol{A} and $a_{1}, \ldots, a_{k} \in A$:
(i) If $\left(b_{1}, \ldots, b_{m}\right)$ is a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(c_{1}, \ldots, c_{n}\right)$ is a solution for T with respect to (a_{1}, \ldots, a_{k}) where $c_{i_{i}}=b_{i}$ for $i \leqslant m$ and $c_{i}=$ $s_{1}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m}\right)$ for $j \notin\left\{j_{1}, \ldots, j_{m}\right\}$, and
(ii) if $\left(c_{i}, \ldots, c_{n}\right)$ provides a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(c_{1}, \ldots, c_{l_{m}}\right)$; a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}\right)$ and moreover $c_{j}=$ $s_{1}\left(a_{1}, \ldots, a_{k}, c_{1}, \ldots, c_{j_{m}}\right)$ for $j \notin\left\{j_{1}, \ldots, j_{m}\right\}$.
This will be used in Proposition 5.

Propnsition 3. There is an effective procedure which, given an ideal $T=\left(t_{1}, \ldots, t_{n}\right) \in$ $F_{2}(k, n)^{\prime \prime}$, produces $\bar{T}=\left(\bar{i}_{1}, \ldots, \bar{i}_{m}\right) \in F_{\mathbf{\Sigma}}(k, m)^{m}$ for some $m \geqslant n$ and polynomials $s_{1}, \ldots, s_{m} \in F_{2}(k, n)$ such that each \bar{t}_{i} has complexity one, and for every Σ-algebra A and $a_{1}, \ldots, a_{k} \in A$,
(i) If $\left(b_{1}, \ldots, b_{m}\right)$ is a solution for $\tilde{\boldsymbol{z}}^{\prime}$ with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(b_{1}, \ldots, b_{n}, s_{1 A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right), \ldots, s_{(m-n) A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)\right)$ is a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}\right)$, and conversely,
(ii) If $\left(b_{1}, \ldots, b_{m}\right)$ is a solution for $\bar{T}_{\text {w }}$ with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(b_{1}, \ldots, b_{n}\right)$ is solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$ and in addition $b_{n+i}=$ $\mathrm{s}_{\mathrm{i}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)$ for all $i \leqslant m$.

Proof. For any ideal $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$, define the overflow of T by

$$
\mathrm{OV}(T)=\left(\sum_{i=1}^{n} \text { complexity of } t_{i}\right)-n .
$$

We will construct \bar{T} by induction on $\mathrm{OV}(T)$
If $O V(T)=0$ then take $\bar{T}=T$.

Assume now that $\mathrm{OV}(T) \geqslant 1$. Then for some $j \leqslant n$, the complexity of t_{j} is at least 2, and so $t_{j}=\sigma\left(s_{1}, \ldots, s_{|\sigma|}\right)$ for some $\sigma \in \Sigma$ and $s_{i} \in F_{\Sigma}(k, n)$, and for some $p \leqslant|\sigma|$, s_{p} has complexity $\geqslant 1$.

Define $\bar{i}_{i} \in F_{\Sigma}(k, n+1)$ as follows:

$$
\begin{aligned}
& \bar{t}_{i}=t_{i} \quad \text { for } j \neq i \leqslant n, \\
& \bar{t}_{j}=\sigma\left(s_{1}, \ldots, s_{p-1}, y_{n+1}, s_{p+1}, \ldots, s_{|\sigma|}\right), \\
& \vdots \\
& \bar{t}_{n+1}=s_{p}
\end{aligned}
$$

Then the total complexity of $\bar{T}=\left(\bar{t}_{1}, \ldots, \bar{t}_{n+1}\right)$ is the same as that of T, and hence $\operatorname{OV}(\bar{T})=\operatorname{OV}(T)-1$.

Now, let A be any Σ-algebra and suppose that $\left(b_{1}, \ldots, b_{n+1}\right)$ is a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}\right)$. Then

$$
\begin{aligned}
b_{n+1} & =\bar{t}_{(n+1) \mathrm{A}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n+1}\right) \\
& =s_{p \mathrm{~A}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
b_{j}= & \sigma_{\mathrm{A}}\left(s_{1 \mathrm{~A}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right), \ldots, b_{n+1}, \ldots,\right. \\
& \left.\quad s_{|\boldsymbol{\sigma}| \mathrm{A}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)\right) \\
= & \sigma_{A}\left(s_{1 A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right), \ldots, s_{p A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right) \ldots .\right. \\
& \left.\quad s_{|\sigma| A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)\right) \\
= & t_{i A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right) .
\end{aligned}
$$

-

Aso for $j \neq i \leqslant n$

$$
b_{i}=\bar{t}_{i A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n+1}\right)==t_{i A}\left(a_{1}, \ldots a_{k}, b_{1}, \ldots, b_{n}\right)
$$

Thus $\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$.
Conversely, if $\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(b_{1}, \ldots, b_{n}, s_{p A}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)\right)$ is a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}\right)$.

Now if the above process is repeated, after finitely many steps we obtain a \bar{T} with overflow equal to zero, as required.

Corollary. An algebra of type Σ is iterative iff it is C_{1}-iterative.
Remark. The process, outlined in Section 2.3, of adding operations to provide solutions of iterative systems can of course be repeated. However, if we add solutions for all non-trivial iterative systems of type Σ, then in any iterative Σ-algebra we already have unique solutions to all non-trivial iterative systems of the expanded
tyue, and moreover these solutions are provided by polynomials of that type. This fact is explicitly laid out in the proposition below; first an example.

Example. Suppose Σ consists of one binary operation + , and $\bar{\Sigma} \supseteq \Sigma$ is the type obtained by adding to Σ, for each non-trivial iterative system $T \in F_{\Sigma}(k, n)^{n}$, n new sperations T_{1}, \ldots, T_{n} which provide the solutions to T in every iterative Σ-algebra. Consider the iterative system $T=\left(t_{1}, t_{2}\right)=\left(x_{1}+y_{2}, x_{2}+y_{1}\right)$. The \boldsymbol{I} contains binary operations T_{1} and T_{2} such that in every iterative algebra A of type Σ, for all a_{1}, $a_{2} \in A$,

$$
\begin{aligned}
& T_{1 A}\left(a_{1}, a_{2}\right)=a_{1}+T_{2 A}\left(a_{1}, a_{2}\right) \\
& T_{2 A}\left(a_{1}, a_{2}\right)=a_{2}+T_{1 A}\left(a_{1}, a_{2}\right)
\end{aligned}
$$

Now consider the $\bar{\Sigma}$-iterative system $T_{1}\left(x_{1}, y_{1}\right) \in F_{\bar{\Sigma}}(1,1)$. Suppose A is an iterative algebra of type Σ and $a_{1} \in A$. If the latter system is solvable in A then there is an clement $b_{1} \in A$ with $b_{1}=T_{1 A}\left(a_{1}, b_{1}\right)$, and consequently we have

$$
\begin{aligned}
& b_{1}=T_{1 A}\left(a_{1}, b_{1}\right)=a_{1}+T_{2 A}\left(a_{1}, b_{1}\right) \\
& T_{2 A}\left(a_{1}, b_{1}\right)=b_{1}+T_{1 A}\left(a_{1}, b_{1}\right)=b_{1}+b_{1}
\end{aligned}
$$

Thus ($\left.b_{1}, T_{2 A}\left(a_{1}, b_{1}\right)\right)$ provides a solution to the iterative system $S=\left(x_{1}+y_{2}, y_{1}+y_{1}\right)$ with respect to a_{1}. Conversely, if $\left(b_{1}, b_{2}\right)$ is a solution to S with respect to a_{1}, then $b_{1}=a_{1}+b_{2}, b_{2}=b_{1}+b_{1}$ and hence $b_{1}=T_{1}\left(a_{1}, b_{1}\right)$.

Now, in $\bar{\Sigma}$ there are unary operations S_{1} and S_{2} providing the unique solutions of S in every iterative Σ-algebra, and we see from the above that $b_{1}=S_{1 A}\left(a_{1}\right)$. Thus the unique solution to the iterative $\bar{\Sigma}$-system $y_{1}=T_{1}\left(x_{1}, y_{1}\right)$ is given, in any iterative $\boldsymbol{\Sigma}$-algebra, by $y_{1}=S_{1}\left(x_{1}\right)$.

Proposition 4. Let $\bar{\Sigma}$ be the type obtained from $\bar{\Sigma}$ by adding operations to give solutions for all non-trivial systems of type Σ. Then for any non-trivial iterative system $T \in$ $\boldsymbol{F}_{\bar{\Sigma}}(k, n)^{n}$ there exist $\bar{\Sigma}$-polynomials $u_{1}, \ldots, u_{n} \in F_{\bar{\Sigma}}\left\{x_{1}, \ldots, x_{k}\right\}$ such that, for any iterative Σ-algebra \mathbf{A} and any $a_{1}, \ldots, a_{k} \in \boldsymbol{A},\left(u_{1}\left(a_{1}, \ldots, a_{k}\right), \ldots, u_{n}\left(a_{1}, \ldots, a_{k}\right)\right)$ is the unique solution to T with respect to $\left(a_{1}, \ldots, a_{k}\right)$.

Proof. Let $T=\left(t_{1}, \ldots, t_{n}\right)$.
If \boldsymbol{T} is degenerate then it is uniquely solvable in $F_{\bar{\Sigma}}\left\{x_{1}, \ldots, x_{k}\right\}$ and hence there exist $u_{1}, \ldots, u_{n} \in F_{\underline{\Sigma}}\left\{x_{1}, \ldots, x_{k}\right\}$ with

$$
u_{i}\left(x_{1}, \ldots, x_{k}\right)=t_{i}\left(x_{1}, \ldots, x_{k}, u_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, u_{n}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

and then these are the required polynomials.
Assume \boldsymbol{T} is non-degenerate. It follows from Proposition 4 and the remark d:Huwing Proposition 3, applied to $\bar{\Sigma}$ rather than Σ, that it is enough to prove the claim in the case that all t_{j} have complexity 1 .

Define the 'overcomplexity' $\mathrm{OC}(T)$ of T to be the total number of operations appearing in T which are not Σ-operations. We prove the claim by induction on $\mathrm{OC}(T)$.

If $\mathrm{OC}(T)=0$ then $t_{j} \in F_{\Sigma}(k, n)$ for each j, and the result follows from the definiton of $\bar{\Sigma}$.

Suppose $t_{n} \notin F_{\Sigma}(k, n)$; then t_{n} involves one of the new $\bar{\Sigma}$-operations, and hence there exists a non-trivial iterative system $T^{\#}=\left(t_{1}^{\#}, \ldots, t_{m}^{\#}\right) \in F_{\Sigma}(p, m)^{m}$ such that $t_{n}=T_{j}^{\#}\left(z_{1}, \ldots, z_{p}\right)$ for some $j \leqslant m$ and some $z_{1}, \ldots, z_{p} \in\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\}$. By suitably permuting the equations in $T^{\#}$ we may assurie $j=1$, so $t_{n}=$ $T_{1}^{*}\left(z_{1}, \ldots, z_{p}\right)$. Let $h: F_{\Sigma}(p, m) \rightarrow F_{\Sigma}(k, n-1+m)$ be the homomorphism with $h\left(x_{i}\right)=z_{i}$ for $i \leqslant p$ and $h\left(y_{j}\right)=y_{n-1+j}$ for $j \leqslant m$. Consi der the system $S=$ $\left(t_{1}, \ldots, t_{n-1}, h\left(t_{1}^{\#}\right), \ldots, h\left(t_{m}^{*}\right)\right)$, whose solutions are of the form

$$
\begin{aligned}
& y_{1}=t_{1}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
& \vdots \\
& y_{n-1}=t_{n-1}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
& y_{n}=h\left(t_{1}^{\#}\right)\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
&=t_{1}^{\#}\left(z_{1}, \ldots, z_{p}, y_{n}, y_{n+1}, \ldots, y_{n-1+m}\right) \\
& \vdots \\
& \\
& y_{m}=h\left(t_{m}^{*}\right)\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \\
&=t_{m}^{\#}\left(z_{1}, \ldots, z_{p}, y_{n}, y_{n+1}, \ldots, y_{n-1+m}\right) .
\end{aligned}
$$

Note that $\mathrm{OC}(S)=\mathrm{OC}(T)-1$. Also, in an iterative Σ-algebra A, if $\left(b_{1}, \ldots, b_{n-1+m}\right)$ is a solution for S with respect to $\left(a_{1}, \ldots, a_{k}\right)$ then $\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$. Now we may use the techniques of Propositions 3 and 4 to produce a $\bar{\Sigma}$-system equivalent to S, with the same overcomplexity, each of whose components has complexity 1 ; the inductive hypothesis may now be applied to this system, yielding the desired result.

It follows from this result that $\overline{\boldsymbol{\Sigma}}$ has the kind of homogeneity found in the 'iterative theories' of Elgot [4]: everything has iterative solutions within the system. It is precisely this homogeneity which allows Bloom, Ginali and Rutledge [3] to prove that "scalar iteration implies vector iteration". The analogous result for algebras would be that every L_{1}-iterative algebra is iterative. If Proposition 5 were still true when $\bar{\Sigma}$ is replaced by $\Sigma_{L_{1}}$ then the proof in [3] would carry over. However, this analogue is not true: we will see in the next section that there are L_{1}-iterative algebras which are not iterative when Σ consists of a single binary operation. The farthest one can go in this direction is the following.

Proposition 5. If $\boldsymbol{\Sigma}$ consists exclusively of unary operations then every L_{1}-iterative Σ-algebra is iterative.

Proof. Assume A is L_{1}-iterative, and let $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\mathbf{\Sigma}}(k, n)^{n}$ be a non-degenerate iterative system where each t_{j} has coraplexity 1 . By Lemmas 1 and 2 we may assume $t_{n} \notin F_{\Sigma}\left\{x_{1}, \ldots, x_{k}\right\}$. Thus $t_{n}=\sigma\left(y_{j}\right)$ for some $j \leqslant n$, and some $\sigma \in \boldsymbol{\Sigma}$.

If $j \leqslant n-1$ then we may use Procedure 2 of Proposition 3 to reduce T to a shorter, equivalent system.

If $j=n$, then $t_{n}=\sigma\left(y_{n}\right)$. Now, A is L_{1}-iterative and hence the equation $y=\sigma(y)$ has a unique solution $b \in A$. Let $h: F_{\Sigma}(k, n) \rightarrow F_{\Sigma}(k+1, n-1)$ be the homomorphism with $h\left(x_{i}\right)=x_{i}$ for $i \leqslant n, h\left(y_{j}\right)=y_{j}$ for $j \leqslant n-1$ and $h\left(y_{n}\right)=x_{k+1}$ and let $\bar{T}=$ $\left(h\left(t_{1}\right), \ldots, h\left(t_{n-1}\right)\right)$. Then $\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T with respect to $\left(a_{1}, \ldots, a_{k}\right)$ if $b_{n}=b$ and $\left(b_{1}, \ldots, b_{n-1}\right)$ is a solution for \bar{T} with respect to $\left(a_{1}, \ldots, a_{k}, b\right)$.

Thus we reduce \boldsymbol{T} to an equivalent system of length 1 which is uniquely solvable by the L_{1}-iterativeness of A.

3. Tree constructions of free iterative algebras

In the preceding section, standard results from universal algebra were used to prove the existence of free C-iterative algebras. Here we will give concrete descriptions of free C-iterative algebras, for certain C, as algebras of trees.

3.1. Regular trees

For a type Σ, the algebra $T_{\mathbf{\Sigma}} V$ of all V-labelled Σ-trees was defined in Section 2.1: here we will deal with those trees in $T_{\Sigma} V$ that have essentially only finitely many subtrees.
For a tree $t \in T_{\mathbf{\Sigma}} V$ and $u \in \operatorname{dom}(t)$, define $t \mid u$, the subtree of t at u, by

$$
(t \mid u)(v)=t(u v)
$$

Here, for sequences $u, v \in \omega^{*}, u v$ is the concatenation product of u and v.
A tree t is called regular iff $\{t|u| u \in \operatorname{dom}(t)\}$ is finite. Alternatively, we may define an equivalence relation on $\operatorname{dom}(t)$ by: $u \sim v$ iff $t|u=t| v$ (iff $t(u x)=t(v x)$ for all $\left.x \in \omega^{*}\right)$; then t is regular iff the equivalence relation \sim has finite index. The regular trees are exactly the same as the regular = algebraic trees of Ginali [5], but the above definition is simpler and easier to work with.

Let $R_{\Sigma} V$ be the set of all regular trees in $T_{\Sigma} V$; then $R_{\Sigma} V$ is clearly closed under all the Σ-operations as defined in $T_{\Sigma} V$, and contains $F_{\Sigma} V$. We are going to prove that $R_{\mathbf{2}} V$ is the free iterative $\boldsymbol{\Sigma}$-algebra over V.

To keep notation to a minimum, we will write, for each polynomial $t \in F_{\mathbf{\Sigma}}(k, n)$, simply ' t ' iristead of ' $t_{R_{\mathbf{2}}} v$ ' for the polynomial function induced by t in $R_{\Sigma} V$. Note that, for each $: \leq F_{\mathbf{\Sigma}}(k, n)$ and $r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{n} \in R_{\Sigma} V$, we have

$$
\left.t r_{i}, \ldots, r_{k}, s_{1}, \ldots, s_{n}\right)(u)= \begin{cases}t(u) & \text { if } t(u) \in \Sigma \\ r_{i}(v) & \text { if } u=w v \text { and } t(w)=x_{i} \\ s_{i}(v) & \text { if } u=w i \text { and } t(w)=y_{i}\end{cases}
$$

Note that if $t(w)=x_{i}$ or y_{j} for some w such that $u=w v$ then w is uniquely determined, and is a 'leaf' in $\operatorname{dom}(t)$. The proof of the above equality is a straightforward induction on the complexity of t.

Example. Suppose $\boldsymbol{\Sigma}$ has a binary operation + and one unary operation λ.

$t\left(x_{1}, y_{1}, y_{2}\right)=\left(x_{1}+y_{1}\right)+\left(y_{2}+x_{1}\right)$

$r_{1}=v_{1}+v_{2}$
$s_{1}=\lambda\left(v_{1}\right)$
$s_{2}=v_{1}+\lambda\left(v_{2}\right)$

$$
t\left(r_{1}, s_{1}, s_{2}\right)
$$

Proposition 6. $\boldsymbol{R}_{\mathbf{\Sigma}} V$ is an iterative Σ-algebra.
Proof. By Propositions 3 and 4 it is enough to prove that every non-degenerate iterative system in C_{1} is uniquely soivable in $R_{\Sigma} V$.

Let $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ where each t_{j} has complexity 1 ; then for each j, $t_{j}(\emptyset)=\sigma_{j} \in \Sigma$. Let $r_{1}, \ldots, r_{k} \in R_{\Sigma} V$.

Define $s_{j} \in R_{\Sigma} V$ for $1 \leqslant j \leqslant n$, specifying $s_{j}(u)$ by induction on the length of u, as follows:

$$
\begin{aligned}
& \therefore \quad=\sigma_{j}, \\
& s_{i} \quad, \quad=: \begin{cases}r_{j}(u) & \text { if } m \leqslant\left|\sigma_{i}\right| \text { and } t_{j}(\cdot n)=x_{i}, \\
s_{p}(u) & \text { if } m \leqslant\left|\sigma_{i}\right| \text { and } t_{j}(m)=y_{p}\end{cases}
\end{aligned}
$$

Then for all $j \leqslant n$, each subtree of s_{j} is either a subtree of some $r_{i}(i \leqslant k)$ or is equal to some s_{p}, and hence each s_{j} is regular.

Moreover, by the identities ($*$) preceding the proposition, we have $s_{1}=$ $t_{i}\left(r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{n}\right)$ for each $i \leqslant n$. Thus $\left(s_{1}, \ldots, s_{n}\right)$ is a solution to T with respect
to ($r_{1}, \quad r_{k}$) in $\boldsymbol{R}_{\Sigma} V$. Moreover, a straightforward induction using the identities (*) to calculatic $t_{i}\left(r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{n}\right)(u)$ for $u \in \omega^{*}$ show that the s_{j} are uniquely determined.

Theorem 2. $\boldsymbol{R}_{\mathbf{\Sigma}} V$ is the free iterative $\mathbf{\Sigma}$-algebra over V, for any set V.
Proof. Let $f: V \rightarrow B$ be any function into an iterative Σ-algebia B; we must show that f extends uniquely to a homomorphism $\bar{f}: \boldsymbol{R}_{\Sigma} V \rightarrow B$.

Let $t \in R_{\Sigma} V$; then there exist v_{1}, \ldots, v_{k} with $t \in R_{\Sigma}\left\{v_{1}, \ldots, v_{k}\right\}$. We may assume $t \in V$. Let u_{1}, \ldots, u_{n} be a set of resfresentatives for the non-trivial subtrees of t (i.e. those with complexity $\geqslant i)$, so that for all $u \in \operatorname{dom}(t)$ either $t|u=t| u_{j}$ for some $j \leqslant n$ or $t(u)=v_{i}$ for some $i \leqslant k$. For each $j \leqslant n$, let $\sigma_{j}=t\left(u_{j}\right) \in \Sigma$.

Define $t_{1}, \ldots, t_{n} \in F_{\Sigma}(k, n)$ as follows:

$$
\begin{aligned}
& t_{i}(0)=\sigma j, \\
& t_{1}(m)=\left\{\begin{array}{ll}
y_{n} & \text { if } t\left|u_{i} m=t\right| u_{p}, \\
x_{i} & \text { if } t\left(u_{j} m\right)=v_{i}
\end{array} \text { for all } m \leqslant\left|\sigma_{j}\right| .\right.
\end{aligned}
$$

Note that if we choose $u_{1}^{\prime}, \ldots, u_{n}^{\prime} \in \omega^{*}$ such that $t\left|u_{i}=t\right| u_{i}^{\prime}$ for each $j \leqslant n$, and substitute u_{j}^{\prime} in the above definition of t_{i} we get exactly the same tree t_{j}.

In B, there exist (unique) b_{1}, \ldots, b_{n} such that $b_{i}=t_{j}\left(f\left(v_{1}\right), \ldots, f\left(v_{k}\right), b_{1}, \ldots, b_{n}\right)$.
Define $\bar{f}(t)=b_{p}$ where ρ is the unique number $\leqslant n$ with $t=t \mid u_{p}$.
It may seem that this definition depends on the order chosen for the representatives u_{1}, \ldots, u_{n} of the different subtrees of t. However, it follows from Lemma 2 that even if we order them differently, since this only amounts to permuting the cquations, we still end up with the same element of B for $\bar{f}(t)$, and hence $\bar{f}: R_{\Sigma} V \rightarrow B$ is well-defined.

Moreover, if f is a homomorphism, then the following discussion shows that it is unique: For each $j \leqslant n$ define $s_{j}=t \mid u_{j} \in R_{\Sigma}\left\{v_{1}, \ldots, v_{k}\right\}$; then $t=s_{p}$. Moreover, for each $j \leqslant n, s_{i}=t_{i}\left(v_{1}, \ldots, v_{k}, s_{1}, \ldots, s_{n}\right)$; this follows from the identities (*). Thus $\left(s_{1}, \ldots, s_{n}\right)$ is the solution for $T=\left(t_{1}, \ldots, t_{n}\right)$ with respect to $\left(v_{1}, \ldots, v_{k}\right)$ in $\boldsymbol{R}_{\Sigma} V$. Since homomorphisms necessarily preserve such solutions, $\bar{f}(t)=\bar{f}\left(s_{p}\right)$ must be b_{p}.

Thus all that remains is to verify that f is a homomorphism.
Suppose $t=\sigma\left(r_{1}, \ldots, r_{i \sigma!}\right)$ for some $\sigma \in \Sigma$ and $r_{i} \in R_{\Sigma} V$. Let u_{1}, \ldots, u_{n} be a set of representatives for the non-trivial subtrees of t, and $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ the corresponding iterative systems as defined above. Let b_{1}, \ldots, b_{n} be the solution in B for T with respect to $f\left(v_{1}\right), \ldots, f\left(v_{k}\right)$, so that $\bar{f}(t)=b_{p}$ for the $p \leqslant n$ with $t=t \mid u_{p}$.

Since r_{i} is a subtree of t, we known that among the u_{i} are a set of representatives for the non-trivial subtrees of r_{1}. If r_{1} is itself nontrivial, then we may assume without loss of generality that $u_{j}=1 w_{j}$ for $j \leqslant m$ and that $w_{1}, \ldots, w_{m} \in \operatorname{dom}\left(r_{i}\right)$ are a set of representatives for the non-trivial subtrees of r_{1}. Let $\bar{T}=\left(\bar{t}_{1}, \ldots, \bar{t}_{m}\right)$ be the itcrative system produced as above from r_{1} and these $w_{1}, \ldots, w_{m \text {. }}$. Since $r_{1}(w)=$ $\left\|\|\right.$) for all $w \in \omega^{*}$, it fohlows that $\bar{t}_{j}=t_{i}$ for all $j \leqslant m$ and hence $\left(b_{1}, \ldots, b_{m}\right)$ is a solution for \tilde{T} with respect to $\left.\left(f: v_{1}\right), \ldots, f\left(v_{k}\right)\right)$ in B.

All together, this shows that if r_{1} is non-trivial then $\bar{f}\left(r_{1}\right)=b_{p_{1}}$ for the unique $p_{1} \leqslant n$ with $r_{1}=t \mid u_{p_{1}}$. Of course if r_{1} is trivial then $r_{1}=v_{i}$ for some i and then $\bar{f}\left(r_{1}\right)=f\left(v_{i}\right)$.

Similarly, for those other r_{m} that are non-trivial, $\bar{f}\left(r_{m}\right)=b_{p_{m}}$ for the unique $p_{m} \leqslant n$ with $r_{m}=t \mid u_{p_{m}}$.

Now suppuse $i=t \mid u_{p}$. Then $t_{p}(\emptyset)=\sigma$, and for each $m \leqslant|\sigma|$, $i \mid u_{p} m=r_{m}$. Thus $t_{p}=\sigma\left(z_{1}, \ldots, z_{|\sigma|}\right)$ where for $m \leqslant|\sigma|$,

$$
z_{m}= \begin{cases}y_{p_{m}} & \text { if } r_{m}=t \mid u_{p} \\ x_{i} & \text { if } r_{m}=v_{i}\end{cases}
$$

Since $\left(b_{1}, \ldots, b_{n}\right)$ is a solution for T in B with respect to $f\left(v_{1}\right), \ldots, f\left(v_{k}\right)$ it follows that $b_{p}=\sigma\left(c_{1}, \ldots, c_{|\sigma|}\right)$ where

$$
c_{m}= \begin{cases}b_{p_{m}} & \text { if } z_{m}=y_{p_{m}} \\ f\left(v_{i}\right) & \text { if } z_{m}=x_{i}\end{cases}
$$

But by the above remarks, $c_{m}=\bar{f}\left(r_{m}\right)$ for each $m \leqslant|\sigma|$ and hence $\bar{f}(t)=$ $\boldsymbol{\sigma}\left(\bar{f}\left(r_{1}\right), \ldots, \bar{f}\left(r_{|\sigma|}\right)\right)$, as required.

3.2. Application to context-free grammars

For certain sets C of iterative systems, the free C-iterative algebra can be described as a specific subalgebra of $\boldsymbol{R}_{\boldsymbol{\Sigma}} V$. In this section we will describe a collection CF of iterative systems that come from context-free grammars, and the appropriate trees making up the free CF-iterative algebra.

Consider a context-free grammar $G=(N, V, P, S)$ where $N=\left\{y_{1}, \ldots, y_{n}\right\}$ is the set of variables (non-terminals), V is the terminal alphabet, $S \in N$ is the "start' or 'axiom' symbol, and $P \subseteq N \times(N \cup V)^{+}$is the set of productions (rewrite rules). Here, $(N \cup V)^{+}$is the set of non-empty strings of letters from $N \cup V$, so we do not allow erasing productions. G is called cycle-free if there is no G-derivation of the form

$$
y_{i_{1}} \rightarrow y_{i_{2}} \rightarrow \cdots \rightarrow y_{i_{m}} \rightarrow y_{i_{1} .} .
$$

As is well known, every context-free grammar is effectively equivalent to one which is cycle-free.

With each such grammar G we associate iterative systems as follows. For each $u=v_{1} v_{2} \cdots v_{k} \in(N \cup V)^{+}$let $\bar{u}=\left(\cdots\left(\left(v_{1} \times v_{2}\right) \times v_{3}\right) \times \cdots \times v_{k}\right)$. Then, for each choice of $j \leqslant n$, suppose $u_{1}, \ldots, u_{m} \in(N \cup V)^{+}$are all sequences u with $\left(y_{i}, u\right) \in P$, and let

$$
t_{j}=\left(\cdots\left(\bar{u}_{1}+\bar{u}_{2}\right)+\cdots+\bar{u}_{m}\right) .
$$

Then $T=\left(t_{1}, \ldots, t_{n}\right)$ is an iterative system of type Σ where Σ consists of two binary operations + and \times. Of course the definition of T depends on the order we chose for the u_{i} and so with each G we associate all iterative systems obtained as above.

Let CF be the set of all iterative systems obtained in this way from all cycle-free context-free grammars over the terminal alphabet $V=\left\{v_{1}, \ldots, v_{k}\right\}$.

Let PV^{+}be the set of all subsets of \boldsymbol{V}^{+}, furnished with the structure of a Σ-algebra by defining + as set union, and \times by

$$
S \times T=\{u v \mid u \in S, v \in T\}
$$

Then the following discussion shows that PV^{+}is a CF-iterative algebra.
For $G=(N, V, P, S)$ with $N=\left\{y_{1}, \ldots, y_{n}\right\}$, define $T=\left(t_{1}, \ldots, t_{n}\right)$ as described above. For each $j \leqslant n$, let $U_{i}=\left\{u \equiv V^{+} \mid y_{i} \rightarrow_{G}^{*} u\right\}$, i.e. U_{j} consists of all words in the terminal alphabet that are derivable from y_{i} using the rewrite rules in G. Then $\left(U_{1}, \ldots, U_{n}\right)$ is a solution for T with respect to $\left(\left\{v_{1}\right\}, \ldots,\left\{v_{k}\right\}\right)$. Moreover this solution is unique: if ($U_{1}^{\prime}, \ldots, U_{n}^{\prime}$) is any other solution, then an inductive argument based on the length of $u \in V^{+}$and using the fact that G is cycle-free, shows that $u \in U_{i}^{\prime}$ iff $u \in U_{i}$ for all $j \leqslant n$.

Next, we will see that a suitable subset of $R_{\Sigma} V$ forms the free CF-iterative algebra: let $G_{\mathbf{\Sigma}} V \subseteq R_{\Sigma} V$ consist of all trees $t \in R_{\Sigma} V$ such that:
(\#) for all $v \neq \emptyset$ and $u \in \omega^{*}$, if $t|u=t| u v$ then $t(u w)=\times$ for some prefix w of v.

Examples.

$t|\theta=t| 1=t \mid 11$
t is not in $G_{\mathbf{2}} V$

$s|0=s| 11=s \mid 1111$
s is in $G_{:} \cdot V$.

Theorem 3. $G_{\mathbf{2}} V$ is the free $C F-i$ eratite algebra over V.
Prosf. It is clear that $G_{\mathbf{\Sigma}} V$ is closed under the operation \times. Suppose $r, \in G_{\Sigma} V$, $t=r+s$ and $t u=t u v$; we must show $t(u w)=\times$ for some prefix w of v. If $u \neq \emptyset$, say $u=1 u^{\prime}$, then $r_{i}^{\prime} u^{\prime}=t|u=t| u v=r \mid u^{\prime} v$ and the result follows from the fact that $r \in G_{2} V$. If $u=\left\{\right.$ then we may assume without loss of generality that $v=1 v^{\prime}$, so $t=t_{1}^{\prime} 1 v^{\prime}=r \mid v^{\prime}$, and hence $r=s|i=r| v^{\prime} 1$. Since $r \in G_{\Sigma} V$, there is a prefix w^{\prime} of $v^{\prime} 1$ with $z\left(w^{\prime}\right)=\varnothing$. If $w^{\prime}=v^{\prime} 1$ then replace w^{\prime} with \emptyset, so that w^{\prime} is a prefix of v^{\prime} and $\left.r w^{\prime}\right)=x$. But then $v=1 w^{\prime}$ is a prefix of v, and $t(w)=r\left(w^{\prime}\right)=\times$, as required.

Next we will see that, for any $T=\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ with $T \in C F$ and any $r_{1}, \ldots, r_{k} \in C_{ \pm} V$, the solution $\left(s_{1}, \ldots, s_{n}\right)$ to T with respect to $\left(r_{;}, \ldots, r_{k}\right)$ in $R_{\Sigma} V$ actualiy consists of members of $G_{\mathbf{\Sigma}} V$, which implies $G_{\Sigma} V$ is iterative.

Using either standard arguments from language theory, or the techniques of Propositions 2 and 3 , we can verify that it is enough to prove the claim for $T=\left(t_{1}, \ldots, t_{n}\right) \in \mathrm{CF}$ with each t_{j} having complexity one (the reduction to such a system will not introduce cycles if the original grammar is cycle-free, and so will itself be cycle free). Now, let $r_{1}, \ldots, r_{k} \in G_{\boldsymbol{\Sigma}} V$, and consider s_{1}, \ldots, s_{n}, as defined in Proposition 6, he solution to T in $R_{\Sigma} V$ with respect to $\left(r_{1}, \ldots, r_{k}\right)$.

Suppose for some $j \leqslant n$ and $u, v \in \omega^{*}$ that $s_{j}\left|u=s_{j}\right| u v$; we mus show for some prefix v^{\prime} of v that $s_{i}\left(u v^{\prime}\right)=\times$. Because the $r_{i} \in G_{\boldsymbol{\Sigma}} V$ and the t_{j} have complexity 1 , it is enough to deal with the case $u=\emptyset$.

Suppose $v=m_{1} m_{2} \cdots m_{q} \in \omega^{+}, j_{1} \leqslant n$ and $s_{j_{1}}=s_{i_{1}} \mid v$, but $s_{i_{1}}\left(m_{1} \cdots m_{q^{\prime}}\right) \neq \times$ for any $q^{\prime} \leqslant q$. We may assume that $q \geqslant n+1$.

If $t_{i_{1}}\left(m_{1}\right)=x_{i}$ for some i then $s_{i_{i}} \mid m_{1}=r_{i}$ and hence $r_{i}=r_{i} \mid m_{2} \cdots m_{q} m_{1}$. Since $r_{i} \in G_{\Sigma} V$ this implies that $r_{i}\left(m_{2} \cdots m_{q^{\prime}}\right)=\times$ for some $q^{\prime} \geqslant q$ and then $s_{i_{1}}\left(m_{1}, \ldots, m_{q^{\prime}}\right)=\times$, a contradiction.

Thus $t_{j_{1}}\left(m_{1}\right)=y_{j_{2}}$ for some $j_{2} \leqslant n$ and hence in the grammar G from which T was derived there is a production $y_{i_{1} \rightarrow y_{i_{2}}}$. Moreover we have $s_{i_{1}} \mid m_{1}=s_{i_{2}}$ and hence $s_{i_{2}}=s_{i_{2}} \mid m_{2} \cdots m_{q} m_{1}$. Using the argument in the preceding paragraph again, we see that $t_{i_{2}}\left(m_{2}\right)=y_{i_{3}}$ for some $j_{3} \leqslant n$ and hence G has a production $y_{i_{2}} \rightarrow y_{i_{1}}$. Proceeding in this way, because $q \leqslant n+1$, we eventually produce a cycle in G, which is a contradiction.

Remark. The image of $G_{\Sigma} V$, under the homomorphism to PV^{+}which maps each $v \in V$ to $\{v\}$, is the set of all context-free languages over the alphabet V which do not contain \emptyset.

3.3. Irredundant iterative systems

In this section we consider algebras with unique solutions to systems $T=$ $\left(t_{1}, \ldots, t_{n}\right) \in F_{\Sigma}(k, n)^{n}$ where each 'variable' y_{j} is linked to at least one of tie 'constants' x_{i}. Such systems of equations arise when considering context-free grammars in which each 'variable' or 'non-terminal' has a derivation to a terminal word. Thus for example we do not insist on either the existence or uniqueness of solutions to systems such as

$$
y=y+y
$$

but for each element a of the algebra in question, there is a unique b with $b=b+a$.
More precisely, for an iterative system $T=\left(t_{1}, \ldots, t_{n}\right)$, define a binary relation \rightarrow_{T} on $Z=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\} \cup\{\sigma \in \Sigma| | \sigma \mid=0\}$ a \mathfrak{a} follows: $y_{i} \rightarrow_{T} z$ if $z=t_{i}(u)$ for some $u \in \omega^{*}$. Let \rightarrow 娄 be the transitive closure of \rightarrow_{T}; then we say that T is irredundant iff for all $j \leqslant n, y_{j} \rightarrow{ }_{T}^{*} z$ for some $z \in Z_{0}=\left\{x_{1}, \ldots x_{n}\right\} \cup\{\sigma \in \Sigma| | \sigma \mid=0\}$.
Let IR be the set of all irredundlant iterative systems. We will describe the free IR-iterative algebra: ret $I_{\Sigma} V \subseteq R_{\Sigma} V$ consist of those trees $t \in R_{\Sigma} V$ such that
for all $u \in \operatorname{dom}(t)$ there exists $v \in \omega^{*}$ with $t(u v) \in Z_{0}$.

Theorem 4. $I_{\mathbf{\Sigma}} V$ is the free $I R$-iterative algebra over V.

Proof. The fact that $I_{\mathbf{\Sigma}} V$ is closed under the Σ-operations is clear, and that it is IR-iterative comes from the construction of iterative solutions in $T_{\Sigma} X$ and the definition of IR. The fact that set maps from V into IR-iterative algebras extend uniquely to homomorphisras follows from the same arguments as in Theorem 2, the point being that, given a tree $t \in I_{\Sigma} V$, the corresponding iterative system constructed from it is in IR.

3.4. L_{1}-iterative algebras

In this section we will describe a subalgebra of $R_{\Sigma} V$ which is L_{1}-iterative but not iterative, as promised in Section 2.4.
Let $V=\{v\}$ be a singleton, and define subsets $A_{n} \subseteq R_{\Sigma} V$ as follows:

$$
A_{\mathbf{n}}=F_{\mathbf{\Sigma}} V,
$$

A_{n+1} is the subalgebra of $R_{\Sigma} V$ generated by the elements of A_{n} together with all solutions in $R_{\Sigma} V$ to single iterative equations with constants from \boldsymbol{A}_{n}.

Then define $A=\bigcup \mathcal{A}_{n}(n \in \omega)$; then A is an L_{1}-iterative subalgebra of $R_{\mathbf{\Sigma}} V$.
Suppose Σ consists of a single binary operation + . We will show that A is not iterative.
If A is iterative, then there exist $s_{1}, s_{2}, s_{3} \in A$ with

$$
\begin{aligned}
& s_{1}=s_{1}+s_{2}, \\
& s_{2}=s_{3}+s_{2}, \\
& s_{3}=v+s_{1} .
\end{aligned}
$$

Since A is a subalgebra of $R_{\Sigma} V$, and the latter has unique solutions to iterative systems, it follows that s_{1}, s_{2} and s_{3} are precisely the solution to this system in $R_{\Sigma} V$.

Let n be the smallest natural number such that one of s_{1}, s_{2} or s_{3} is a subtree of a tree in A_{n}. Since each of s_{1}, s_{2}, s_{3} is a subtree of each of the others, it follows that they all occur for the first time in A_{n}.
Thus there exists $t \in F_{\mathbf{\Sigma}}(k, 1)$ and $r_{1}, \ldots, r_{k} \in A_{n-1}$ with $s_{1}=t\left(r_{1}, \ldots, r_{k}, s_{1}\right)$. Since each r_{1} is a subtree of s_{1} and belongs to A_{n-1}, and since the only non-trivial subtrees of s_{1} are s_{1}, s_{2} and s_{3}, it follows that $r_{i}=v$ for all $i \leqslant k$, and hence $s_{1}=t\left(v, v, \ldots, v, s_{1}\right)$. But then $\operatorname{dom}(t)$ is a subset of $\operatorname{dom}\left(s_{1}\right)$, and $u l \in \operatorname{dom}(t)$ iff $u 2 \in \operatorname{dom} t$, and for all $u \in \operatorname{dom}(t)$, either $s_{1} \mid u$ is trivial or $s_{1} \mid u=s_{1}$. However, s_{1} is pictured below; the labels $1,2,3$ indicate the nodes, which are all labelled + , whote subtree is s_{1}, s_{2} or s_{3} respectively, and it is easy to see that the above is impossibie.

This leaves open the (fairly plausible) conjecture that \boldsymbol{A} is actually the free L_{1}-iterative algebra on V.

4. Iterative theories

4.1. Existence of free iterative theories

In this section, we will see how the existence of free iterative theories, proved by Bloom and Elgot [2] and Ginali [5], follows from the existence of free iterative algebras. The explicit description of free iterative algebras given in the preceding chapter is not needed at all here; we will only use Theorem 1 and Propositions 2 and 4 of Section 2. However, Ginali's explicit description of the free iterative theory can also be accomplished using the arguments given here together with the results of Section 3.

The definitions of an algebraic theory and iterative algebraic theory can be found in Elgot [4], but are repeated here for the convenience of the reader. Briefly, an algebraic theory is a category \boldsymbol{T}, with countably many objects [0], [1], [2], \ldots, in which $[n]$ is the nth copower of [1]. The coproduct injections [1] $\rightarrow[n]$ (called base' morphisms by Elgot) are ambiguously denoted $1,2, \ldots, n$, and $[n]$ being the nth copower of [1] means that for all k and morphisms $f_{1}, \ldots, f_{n}:[1] \rightarrow[k]$ there is a unique morphism $f_{1} f_{2} \sqcup \cdots \sqcup f_{n}:[n] \rightarrow[k]$ such that $\left(f_{1} \sqcup \cdots \sqcup f_{n}\right) \cdot j=f_{i}$ for all $j \leqslant n$. (Elgot writes $\left(f_{1}, \ldots, f_{n}\right)$ instead of $f_{:} \sqcup \cdots \sqcup f_{n}$) A morphism $f:[m] \rightarrow[n]$ in \boldsymbol{T} is called ideal iff for all $i \leqslant m, f \cdot i:[1] \rightarrow[n]$ is not a coproduct injection. An ideal theory is an algebraic theory in which the composite $g \cdot f$ is ideal whenever f is ideal. Finally, an iterative algebraic theory is an ideal theory \boldsymbol{T} in which, for every ideal morphism $f:[n] \rightarrow[n+m]$ in \boldsymbol{T} there is a unique morphism $f^{*}:[n] \rightarrow[m]$ such that f^{*} is the composite

$$
[n] \stackrel{f}{-}[m+n] \xrightarrow{i d_{m} \sqcup f^{*}}[m]
$$

(Here, $i d_{m}$ is the identity morphism on $[m]$.)
Now, suppose \boldsymbol{T} is an algebraic theory, and that for each $\sigma \in \boldsymbol{\Sigma}$ we are given a morphism $\bar{\sigma}:[1] \rightarrow[|\sigma|]$ in \boldsymbol{T}. For each natural number m, we make $\boldsymbol{T} m$, the set of all \boldsymbol{T}-morphisms from [1] to [m], into a Σ-algebra in the obvious way, namely:

$$
\text { for } f_{1}, \ldots, f_{|q|} \in \boldsymbol{T} m, \quad \sigma_{\boldsymbol{T}_{m}}\left(f_{1}, \ldots, f_{|r|}\right)=\left(f_{1} \sqcup f_{2} \sqcup \cdots \sqcup f_{|r|}\right) \cdot \overline{\boldsymbol{\sigma}} .
$$

For each natural number m, there is a unique Σ-homomorphism from $F_{\Sigma}\left\{v_{1}, \ldots, v_{m}\right\}$ to Tm which maps v_{i} to the i th coproduct injection $[1] \rightarrow[m]$; for each $t \in$ $\boldsymbol{F}_{\mathbf{s}}\left\{v_{1}, \ldots, v_{m}\right\}$ let $\boldsymbol{i} \in \boldsymbol{T}$ be the image of t under this homomorphism. A simple inductive argument on the complexity t then shows that for all $t \in F_{\Sigma}\left\{v_{1}, \ldots, v_{n}\right\}$ and all $f_{1}, \ldots, f_{n} \in T m$

$$
\ell_{T m}\left(f_{1}, \ldots, f_{n}\right)=\left(f_{1} \sqcup \cdots \sqcup f_{n}\right) \cdot \bar{t}
$$

Proposition 7. If \boldsymbol{T} is an iterative algebraic theory and if for each $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}, \bar{\sigma}:[1] \rightarrow[|\sigma|]$ is an ideal morphism in $\mathbf{T m}$, then $\mathbf{T m}$ is an iterative $\boldsymbol{\Sigma}$-algebra for all natural numbers m.

Proof. If \boldsymbol{T} is an iterative algebraic theory then it is ideal, and then an inductive argument basec on the complexity of t shows that if $\bar{\sigma}$ is ideal for each $\sigma \in \Sigma$ then i is ideal for all $t \in F_{\Sigma}\left\{v_{1}, \ldots, v_{n}\right\}$ of complexity $\geqslant 1$.

Let $\boldsymbol{T}=\left(t_{1}, \ldots, t_{n}\right) \in F_{\mathbf{\Sigma}}(k, n)^{n}$ be an ideal iterative system, and let $f_{1}, \ldots, f_{k} \in \boldsymbol{T}_{m}$. Consider the morphism $t:[n] \rightarrow[n+m]$ which is the following composite:
where $i d_{n}$ is the identity morphism on [n].
Since $i_{1} \sqcup \cdots \cup \bar{i}_{n}$ is an ideal morphism, and \boldsymbol{T} is ideal, it follows that t is ideal, and hence there exists a unique morphism $t^{*}:[n] \rightarrow[m]$ with $t^{*}=\left(i d_{m} \sqcup t^{*}\right) \cdot t$. But then $t^{*}=t_{1}^{*}\lfloor \rfloor \cdots \cup \cup t_{n}^{*}$ for unique $t_{1}^{*}, \ldots, t_{n}^{*} \in \boldsymbol{T} m$, and for each $j \leqslant n$

$$
\begin{aligned}
t_{, I m}\left(f_{1}^{\prime \prime}, \ldots, f_{k}, t_{1}^{*}, \ldots, t_{n}^{\prime \prime}\right) & =\left(f_{1} \sqcup \cdots \sqcup f_{k} \sqcup t_{1}^{*} \sqcup \cdots \sqcup t_{n}^{\#}\right) \cdot \bar{t}_{j} \\
& =\left(i d_{m} \sqcup t^{*}\right) \cdot\left(\left(f_{1} \sqcup \cdots \sqcup f_{k}\right)+i d_{n}\right) \cdot \bar{t}_{j} \\
& =\left(i d_{m} \sqcup t^{*}\right) \cdot t \cdot j \\
& =t^{\#} \cdot j \\
& =t_{j}^{*} .
\end{aligned}
$$

Thus $t_{1}^{\prime \prime}, \ldots, t_{n}^{*}$ provide a solution in $\boldsymbol{T} m$ for T with respect to (f_{1}, \ldots, f_{k}). A similar computation to the one above, using the uniqueness of t^{*}, shows that this solutien is unique. Hence, by the Corollary to Proposition 2, Tm is an iterative 5 -algebra
Now. for $V=\left\{v_{1}, v_{2}, \ldots\right\}$ a countable set, suppose that $A_{\Sigma} V$ is the free iterative S-algebra over V, whose existence is provided by Theorem 1. For each natural number n, let $A_{\mathbf{\Sigma}} \boldsymbol{n}$ be the sub-iterative algebra of $\boldsymbol{A}_{\boldsymbol{\Sigma}} V$ generated by $\left\{v_{1}, \ldots, v_{n}\right\}$; then $A_{2} n$ is the free iterative aigebra over $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Construct an algebraic theory \boldsymbol{A} from $\boldsymbol{A}_{2} V$ as follows: for each m, the \boldsymbol{A}-morphisms from [1] to $[m$] are
the elements of $A_{\Sigma} m$, and the morphisms $[n] \rightarrow[m]$ are n-tuples of morphisms from $[1]$ to $[m]$. For \boldsymbol{A}-morphisms $s_{1}, \ldots, s_{m}:[1] \rightarrow[k]$ and $t_{1}, \ldots, t_{n}:[1] \rightarrow[m]$, the composite $\left(s_{1}, \ldots, s_{m}\right) \cdot\left(t_{1}, \ldots, t_{n}\right):[n] \rightarrow[k]$ is the n-tuple $\left(r_{1}, \ldots, r_{n}\right)$ where r_{i} is the image of t_{j} under the unique homorphism from $\boldsymbol{A}_{\Sigma} n \rightarrow A_{\Sigma} k$ which mays v_{i} to s_{i} for $1 \leqslant i \leqslant m$. As in Section 1.1 we write $r_{j}=t_{j A_{\Sigma} k}\left(s_{1}, \ldots, s_{m}\right)$.

It is straightforward to check that this yields an algebraic theory, in which the i th coproduct injection $[1] \rightarrow[n]$ is just v_{i}. Moreover, judicious use vi homomorphisms from $A_{\Sigma} V$ into the algebra described in Example 3 of Section 2.4 will show that this theory is ideal. It follows from Proposition 4 that A is an iterative theory.

Theorem S. \boldsymbol{A} is the free iterative theory generated by $\boldsymbol{\Sigma}$.

Proof. Suppose T is an iterative algebraic theory and for each $\sigma \in \Sigma, \bar{\sigma}:[1] \rightarrow[|\sigma|]$ is an ideal morphsim in \boldsymbol{T}. By Proposition 7 , for each $m, \boldsymbol{T} m$ is an iterative Σ-algebra and hence there is a unique homomorphism ϕ_{m} from $A_{\Sigma} m=A m$ into $\boldsymbol{T m}$ such that $\phi_{m}\left(v_{i}\right)$ is the i th corproduct injection [1] $\rightarrow[m]$ in T. But then $\phi=\left(\phi_{m}\right)_{m \in \omega}$ provides the desired functor from \boldsymbol{A} to \boldsymbol{T}.

4.2. Further examples

In this section, Elgot's examples [4] of iterative theories are discussed, and put into the framework of iterative algebras. Since morphisms $[n] \rightarrow[p]$ in an algebraic theory are essentially just n-tuples of morphisms $[1] \rightarrow[p]$, only the latter will be described.

The first example concerns 'timed terminal behaviour' of machines. Here, \boldsymbol{X} is the set of external states (tape configuration plus position of reading head for a Turing machine, etc.) and a morphism $[1] \rightarrow[n]$ in the theory $\llbracket \boldsymbol{X} \cdot N$, $\square \rrbracket$ is a function $f: X \rightarrow(X \times N \times[p]) \cup\{\square\}($ where $[p]=\{1,2,3, \ldots, p\})$ such that

$$
f(x)=(y, 0, j) \text { for some } x \in X \text { implies } f(z)=(z, 0, j) \text { for all } z \in X \text {. }
$$

In the latter case, f is the j th coproduct injection. Such a function f is interpreted as the timed terminal behaviour of a machine with one entrance and p exits, $f(x)=\square$ means the machine has no output on input x, and $f(x)=(y, k, j)$ means the machine, given input x, outputs y at the j th exit in time k. Note that Elgot's definition [4, p. 184] of a morphism $[1] \rightarrow[p]$ is a function $f:\{X \times N \times[1]) \cup\{\square\} \rightarrow$ $(X \times N \times[p]) \cup\{\square\}$ such that $f(\square)=\square$ and for each $k, f(x, k, 1)$ determines and is completely determined by $f(x, 0,1)$ and hence we need only consider the values of f on triples $(x, 0,1)$.
The aigebra A of machines is now defined as follows: the elements of A are all the functions $f: X \rightarrow(X \times X \times[p]) \cup\{\square\}$ as described in the preceding paragraph.

Also, each function $g: X^{\infty} \rightarrow\left(X \times N^{+} \times[n]\right) \cup\{\square\}$ (where $N^{+}=\{1,2,3, \ldots\}$) induces an n-ary operation $\sigma_{\mathrm{g}} 01 / \boldsymbol{A}$ as follows: for $f_{i}: X \rightarrow\left(X \times N \times\left[p_{i}\right]\right) \cup\{\square\}(1 \leqslant i \leqslant n)$,

$$
\sigma_{R}\left(f_{1}, \ldots, f_{n}\right): X \rightarrow(X \times N \times[p]) \cup\{\square\}
$$

where $p=$ maximum ©if $p_{1}, p_{2}, \ldots, p_{n}$ and for each $x \in X$,

$$
\sigma_{k}\left(f_{1}, \ldots, f_{n}\right)(x)= \begin{cases}\square & \text { if } g(x)=\square, \\ \square & \text { if } g(x)=(y, k, i) \text { and } f_{i}(y)=\square, \\ (z, k+r, j) & \text { if } g(x)=(y, k, i) \text { and } f_{i}(y)=(z, r, j) .\end{cases}
$$

This corresponds to connecting up the machines so that given an input x, first the machine g acts on it; if this produces an output at the i th exit then this is fed into the machine f_{i}.

It is straightforward to check that A, with all these operations, is an iterative algebra, analogous to Elgot's result that the theory $\llbracket X \cdot N, \square \rrbracket$ is iterative.

Elgot's sccond example is that of matrices of subsets of a monoid M which has a 'length function', i.e. a function $l: M \rightarrow N$ such that $l(x y)=l(x)+l(y)$ and $l(x)=0$ iff $\boldsymbol{x}=0$. His theory [M] has as morphisms $[1] \rightarrow[p]$ all p-tuples $\left(U_{1}, \ldots, U_{p}\right)$ of subsets of M such that $1 \in U_{i}$ implies $U_{i}=\{1\}$ and $U_{k}=\emptyset$ for $k \neq j$. Thus, besides the coproduct injections $(\emptyset, \emptyset, \ldots,\{1\}, \emptyset, \ldots, \emptyset)$, the morphisms are p-tuples of subsets of M which do not contain 1 . Alternatively, we may consider the algetra \bar{M} whose elements are all subsets of M not containing 1 , and which has, for each n-tuple $S=\left(S_{1}, \ldots, S_{n}\right) \in \bar{M}^{n}$, an n-ary operation which maps $\left(X_{1}, \ldots, X_{n}\right)$ to $S_{1} X_{1}+$ $S_{y} X_{y}+\cdots+S_{n} X_{n}$. Then \bar{M} with these operations is an iterative algebra. As a further alternative, we may consider \bar{M} as an algebra of type $\Sigma=\{+, \times\}$ where,$+ \times$ are binary operations; + is set union and $U \times V=\{u v \mid u \in U, v \in V\}$. Then techniques similar to those in Section 3.2 show that \bar{M} has unique solutions to all iterative systems $T=\left(t_{1}, \ldots, t_{n}\right)$ of type Σ such that for each $i \leqslant n$, if $t_{i}(u)=+$ then there exists t with $f_{i}\left(u c^{\prime}\right)=x$.

The third example from Elgot [4] which we will discuss is that of sequacious functions, which essentially keep track of the sequence of external states attained in a computation. For Elgot's sequencious funstions, x is always a prefix of $f(x)$; here we replace f with the function g uniquely determined by $x g(x)=f(x)$. With this reduction, the theory has, as morphisms $[1] \rightarrow[p]$, all functions $f: X \rightarrow$ $\left.\left(X^{*} \times \mid p\right]\right) \cup X^{\times}$(where X^{∞} is the set of countable sequences from X) such that

$$
\text { if } f(x)=(0, i) \text { for some } x \in X \text { then } f(z)=(\emptyset, i) \text { for all } z \in X \text {. }
$$

Thus, besides the coproduct injections which are constant with value (\emptyset, i), the morphisnis from [1$]$ to $[p]$ are all functions $f: X \rightarrow\left(X^{+} \times[p]\right) \cup \boldsymbol{X}^{\infty}$. The algebraic approach is to consider the algebra S whose elements are all functions $f: X \rightarrow$ i $\left.X^{*} \in p\right] \cup X^{*}$ as above. Also, for each function $g: X \rightarrow\left(X^{+} \times[n]\right) \cup X^{\infty}, S$ has a n-ary operation σ_{k} defined as follows: for $f_{i}: X \rightarrow\left(X^{*} \times\left[p_{i}\right] \cup X^{\infty}(1 \leqslant i \leqslant n)\right.$,

$$
\sigma_{6}\left(f_{1}, \ldots, f_{n}\right): X \rightarrow\left(X^{*} \times[p]\right) \cup X^{x}
$$

where $p=$ maximum $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, and for each $x \in X$,

$$
\sigma_{g}\left(f_{1}, \ldots, f_{n}\right)(x)=\left\{\begin{aligned}
g(x) & \text { if } g(x) \in X^{\infty}, \\
u y f_{i}(y) & \text { if } g(x)=(u y, i) \text { for } u \in X^{*},: \in X \text { and } \\
& f_{i}(y) \in X^{\infty}, \\
(u y w, j) & \text { if } g(x)=(u y, i) \text { for } u \in X^{*}, u \in X \text { and } \\
& f_{i}(y)=(w s, j)
\end{aligned}\right.
$$

Just as in the example concerning timed terminal behaviour, this models the glueing together of the machines. It can be verified that S, with all these operations, is an iterative algebra.

References

[1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Whilos. Soc. 29 (1935) 4.3.3-45.4.
[2] S.L. Bloom and C.C. Elgot, The existence and construction of free tierative theories, J. Comput. System Sci. 12 (1976) 305-318.
[3] S.L. Bloom, S. Ginali and J.D. Rutledge, Scalar and vector iteration, J. Comput. System Sci. 14 (1977) 251-256.
[4] C.C. Elgot, Monadic computation and iterative algebraic theories, in: H.E. Rose and J.C. Shepherdson, Eds., Logic Colloquim ' 73 (North Holland, Amsterdam, 1975) 175-230.
[5] S. Ginali, Regular trees and the free iterative theory. J. Comput. System Sci. 18 (1979) 228-242.
[6] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. 50 (1963) 869-872.

Note added in proof

Iterative algebras have also been studied in Tiuryn (Unique fixed points vs. least fixed points, Theorct. Comput. Sci. 13 (1981) 229-254). Tiuryn uses the results of Ginali et al. on free iterative theories to show that the algebra of all regular trees is the free iterative algebra (with respect to solutions of all ideal iterative equations), which is the reverse of the approach taken here, in Section 4. In addition, he explores the connection between iterative algebras and regular algebras, the latter being ordered algebras where solutions of iterative equations are obtained as joins of certain ω-chains.

A related topic has been developed by Benson and Guessarian (Algebraic solutions to recursion schemes, manuscript CS-81-079, Washington State University), namely that of algebras with solutions to recursive equations, these being more general than iterative. In their approach, solutions are not required to be unique, but are explicitly added as extra operations. A brief descrition follows.

A recursion scheme over a set $\boldsymbol{\Sigma}$ of basic operations is a set S of equations

$$
G_{i}\left(x_{1}, \ldots, x_{n_{1}}\right):=t_{i}\left(x_{1}, \ldots, x_{n_{2}}\right) \quad(1 \leqslant i \leqslant n)
$$

where the G_{i} are new operations, and the t_{i} are polynomials in both the $\mathbf{\Sigma}$-operations
and these new ones, i.e. elements of the free $\Sigma \cup\left\{G_{1}, \ldots, G_{n}\right\}$-algebra on an appropriate set of generators. For such a recursion scheme S, let $\Phi=\left\{G_{1}, \ldots, G_{n}\right\}$, then we may consider the class of all $\Sigma \cup \boldsymbol{\Phi}$-algebras satisfying the above equations and all $\mathbf{\Sigma} \cup \boldsymbol{p}$-homomorphisms between them. Since this is just an equationally defined class of (universai) algebras, the existence of free algebras is a standard result (Birkhoff [1]). The approach of Benson and Guessarian is essentially to construct this free algebra as a quotient of the absolutely free $\Sigma \cup \Phi$-algebra; teither approach yields a canonical form, or description, for the elements of the free algebra. Similarly, by adding a set of operations for each recursion scheme over 5 . one can obtain an algebra which has solutions to all recursion schemes and is free, or uriversal, with this property. In the same way one can also obtain free algebras with solutions to :ecursive equations satisfying some additional equations, as in the last section of thei" paper. The essential cifference between their approach and the one presented in the present paper is that the solutions to recursion schemes need not be unique; however, since the homomorphisms are stipulated to preserve these solutions, because they are added as operations, this does fall within the usual framework of universal algebra. As the example at the end of Section 2.3 above shows. if neither of these approaches is followed (i.e. solutions need not be unique and ate also not added as operations which niust be preserved by morphisms) then free algebras need not exist.

