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In this paper an algorithm for solving a linearly constrained nonlinear 
programming problem is developed. Given a feasible point, a correction vector is 
computed by solving a least distance programming problem over a polyhedral cone 
defined in terms of the gradients of the “almost” binding constraints. Mukai’s 
approximate scheme for computing the step size is generalized to handle the 
constraints. This scheme provides an estimate for the step size based on a quadratic 
approximation of the function. This estimate is used in conjunction with Armijo 
line search to calculate a new point. It is shown that each accumulation point is a 
Kuhn-Tucker point to a slight perturbation of the original problem. Furthermore, 
under suitable second order optimality conditions, it is shown that eventually only 
one trial is needed to compute the step size. 

1. INTRODUCTION 

This paper addresses the linearly constrained nonlinear programming 
problem 

P: minimize f(x) 

subject to Ax < b, 

where f is a twice continuously differentiable function on R”, and A is an 
I x n matrix whose jth row is denoted by uj, and where a superscript t 
denotes the transpose operation. 

There are several approaches for solving this problem. The first one relies 
on partitioning the variables into basic, nonbasic, and superbasic variables. 
The values of the superbasic and basic variables are modified while the 
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nonbasic variables are fixed at their current values. Examples of methods in 
this class are the convex simplex method of Zangwill [ 181, the reduced 
gradient method of Wolfe [ 171, the method of Murtagh and Saunders [ 121, 
and the variable-reduction method of McCormick [8], 

Another class of methods is the extension of quasi-Newton algorithms 
from unconstrained to constrained optimization. Here, at any iteration, a set 
of active restrictions is identified, and then a modified Newton procedure is 
used to minimize the objective function on the manifold defined by these 
active constraints. See, for example, Goldfarb [6], and Gill and Murray [5 1. 

Other approaches for solving problems with linear constraints are the 
gradient projection method and the method of feasible directions. The former 
computes a direction by projecting the negative gradient on the space 
orthogonal to the gradients of a subset of the binding constraints while the 
latter determines a search direction by solving a linear programming 
problem. For a review of these methods the reader may refer to Rosen [ 141, 
Zontendijk [ 191, Frank and Wolfe [4], and Topkis and Veinott [ 15 1. 

In this paper, an algorithm for solving problem P is proposed. At each 
iteration a correction vector is computed by finding the minimum distance 
from a given point to a polyhedral cone defined in terms of the gradients of 
the “almost” binding constraints. An approximate line search procedure 
which extends those of Armijo [l] and Mukai [ 10, 1 l] for unconstrained 
optimization is developed for determining the step size. First, an estimate of 
the step size based on a quadratic approximation to the objective function is 
computed, and then adjusted if necessary. 

In Section 2, we outline the algorithm. In Section 3, we show that 
accumulation points of the algorithm are Kuhn-Tucker points to a slight 
perturbation of the original problem. Finally, in Section 4, assuming that the 
algorithm converges, and under suitable second order sufficiency optimality 
conditions, we show that the step size estimates which are based on the 
quadratic approximation are acceptable so that only one functional 
evaluation is eventually needed for performing the line search. 

2. STATEMENT OF THE ALGORITHM 

Consider the following algorithm for solving Problem P. 

Step 0. Choose values for the parameters c, z, 6, and E. Select a point x0 
such that Ax, < b and let 6, = 6. Let i = 0 and go to Step 1. 

Step 1. Let wi be the optimal solution to Problem D(xJ given below: 

D(xi): minimize Vf(x,)‘w + +zw’w 

subject to uj w < 0 for j E 1(x,), 
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where 

Z(x,) = {j: UjXi > b, - c}. (2-l) 

If w[ = 0, stop. Else, go to Step 2. 

Step 2. Let 

and let 

z+(w,) = {j: uf wi > O), (2.2) 

/3,=min 1, 
i 

“-a’xf for je Z+(W,) . 
lZ,!Wi I 

(2.3) 

Let 

and go to Step 3. 

Step 3. If 

di=PiWi, (2.4) 

let 

S(x, + 4) + f&r - 4) - W,) 2 ~‘4 II 4 II*, (2.5) 

- E* V’(xi)‘di 
Ai = f(Xi + Edl) + f(xi - Edi) - 2f(xi) P-6) 

and let 6,+, = 6,, and go to Step 4. Otherwise, let li = 1, 6i+, = f 6,, and go 
to Step 4. 

Step 4. Let 
. 

a, = min{ 1, ni} (2.7) 

and compute the smallest nonnegative integer k satisfying 

(2.8) 

Letk,=k,x,+,=x,+a,($“d,,i=i+ l,andgotoStep 1. 
The following remarks are helpful in interpreting the above algorithm. 

1. A direction w, is determined by solving Problem D(xi). This problem 
finds the point in the convex polyhedral cone {w: u,! w < 0 for j E Z(x,)} 
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which is closest to the vector -(l/z) Vf(x,). Methods of least-distance 
programming, as in the works of Bazaraa and Goode [2] and Wolfe [16], 
can be used for solving this problem. Special methods that take advantage of 
the structure of the cone constraints may prove quite useful in this regard. 

2. The restrictions enforced in Problem D(xi) are the c-binding 
constraints at xi, that is, those satisfying bj - c < ajxi Q b,. If wi = 0, then 
the algorithm is terminated with xi. In this case, from the Kuhn-Tucker 
conditions for Problem D(x,), there exist Uj for j E Z(xi) such that: 

VJ(Xi)+ 1 Ujajz03 
jcI(x,) 

Uj > OT for j E Z(Xj)e 

These conditions imply that xi is a Kuhn-Tucker point for the following 
problem: 

minimize f(x) 

subject to afx Q ujxi for j E Z(Xi), 

ajx < bj for j 6!! Z(xi). 

Noting that bj - c Q ujxi < bj for j E Z(x,), if c is sufficiently small, it is clear 
that the algorithm is termined if xi is a Kuhn-Tucker (KT) solution to a 
slightly perturbed version of Problem P. The following definition will thus be 
useful. 

DEFINITION 2.1. Let x* be a feasible point to Problem P. If the optimal 
solution to Problem D(x*) is equal to zero, then x* is called a c-KT solution 
to Problem P. 

3. If xi + wi is feasible to Problem P, then the search vector di is taken 
as wi. Otherwise, di is taken to be the vector of maximum length along wj 
which maintains feasibility of xi + d,.. 

4. Steps 3 and 4 of the algorithm compute the step size along the vector 
di in order to form xi+ i. As proposed by Mukai [ 10, 111, first an estimate of 
the step size Izi is calculated. When appropriate, li is computed by utilizing a 
quadratic approximation of the function fat xi, otherwise Ji is taken equal to 
1. In order to ensure feasibility to Problem P, the first trial step size ai used 
in conjunction with Armijo line search [ 1 ] is the minimum of Izi and 1. As 
will be shown in Section 4, under suitable assumptions, for large i, test (2.5) 
passes, k, = 0, and a,. = Izi < 1. This confirms efficiency of the line search 
scheme where eventually only one trial is needed to compute ki and two 
functional evaluations are required to calculate &. 
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3. ACCUMIJLATION POINTS OFTHE ALGORITHM 

Theorem 3.1 shows that each accumulation point of the proposed 
algorithm is a c-KT point. In order to prove this theorem, Lemmas 3.1 and 
3.2 are needed. These two lemmas extend similar results of Mukai [lo] for 
uncontrained problems. 

In order to facilitate the development in this section, the following 
notation is used. Let w(x) be the optimal solution to Problem D(x) and let 
p(x) be as given in (2.3) with xi replaced with x. Finally, let d(x) =/3(x) w(x). 

LEMMA 3.1. Suppose that x* is not a c-KT point for Problem P. Then, 
there exist scalars ,u and s > 0 so that p < a(x) ,< 1 for each x with 
J/x-xx*/) <s. 

ProoJ: We will show that )( w(x)]] and /3(x) are bounded above and below 
away from zero in a neighborhood of x*. Note that: 

fz II w(xl12 G -v-w w(x) G II vwll II W(X)llY 
so that (1 w(x)]] < (2/z) (I Vf(x)]]. By continuous differentiability off, it is clear 
that ]I w(x)]] is bounded above in a neighborhood of x*. Next, note that 
Z(x) cZ(x*) in a neighborhood of x* since otherwise there would exist a 
sequence xI converging to x* and an index j so that ajxt > bj - c and in the 
mean time afx* ( bj - c, which is impossible. Consider Problem D(x) and 
denote its optimal objective value V’(x)’ w(x) + fz ]I w(x)]]’ by g(x). By 
contradiction to the desired conclusion that I( w(x)]] is bounded aways from 
zero in a neighborhood of x*, suppose there exists a sequence xi converging 
to x* so that g(xJ + 0. Since Z(x,) c Z(x*), then the optimal objective value 
g/(x,) to Problem O’(xJ given below satisfies 0 > g’(xJ > g(Xi). 

ZY(xi): minimize Vf(xi)‘w + +zw’w 

subject to a; w < 0 for j E Z(x*). 

This in turn implies that g’(xJ + 0. By continuous differentiability off, and 
since xi-’ x*, it then follows that the optimal objective value to problem 
D(x*) is equal to 0, see for example Daniel [3]. This, however, contradicts 
the assumption that x* is not a c-KT point. Now consider p(x). If 
j E Z+(W(X)), then bi - ajx > c. Thus: 

/I(x) = min 1, I bj - afx 
4 w(x) 

for j E Z+ (w(x)) 
I 

>min 1, 
1 II a,ll lfwoll 

for j E Z+(w(x)) 
I 

. 
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Since (1 w(x)/ is bounded above, then /I(x) is bounded away from zero in a 
neighborhood of x*. Also B(x) ,< 1, so that it is bounded above. 

To summarize, there exist scalars s, a, <, and y > 0 so that 

a > II wWll 2 Y if IJx-xX*1( <s, 

1 >Lw>t if [Ix-xx*11 <s. (3.1) 

Thus if /Ix -x* II < s, we must have 

-Vf(x)’ 44 = -P(x) Vf(4’ w(x) > aw) II Wll’ 
) fz,’ = y > 0. (3.2) 

From (3.1), IId(x)ll =/I(x) II w(x)11 < a if (Ix -x* II < s. Thus from continuity 
of A there exists a scalar q > 0 so that 

f(x + 4x)) + f(x - 4x)) - Ye4 < 4 if l/x-x*II<s. (3.3) 

If test (2.5) passes, then from (3.2) and (3.3), the following lower bound on 
n(x) is at hand: 

l(x) = 
- E2Vf(X)’ d(x) > E2Y 

f(x + Ed(X)) + f(x - Ed(X)) - 2f(x) ’ 4 
if JJX -xx*)) <<. 

If test (2.5) fails, then n(x) = 1. Thus n(x) 2 min( 1, c2y/q} =,u. Since a(x) = 
min{ 1, n(x)}, the desired result follows. 

LEMMA 3.2. If x* is not a c-KT point for Problem P, then there exist a 
number s > 0 and an integer m so that k(x) Q m if IJx - x* II < s, where k(x) 
is the Armijo integer given by (2.8) with Xi and a, replaced with x and a(x), 
respectively. 

Proof. As in the proof of Lemma 3.1 and by continuous differentiability 
off, there exist scalars s, h, and y > 0 so that for IIx - x* II < s the following 
hold: 

Vf (xl’ d(x)< -Y, (3.4) 

I Vf (x + g44)’ d(x)- Vf (4’ WI G f Y for each g E [0, h]. (3.5) 

Now let m be the smallest nonnegative integer so that (i)” < h and let x be 
such that IIx -x* )I < s. Then there exists 8 E [0, l] such that: 

f (x + (f 1” a(x) 4x)) - f(x) - $($)” a(x) Vf (x)’ 4x) 

= ($)ma(x) Vf (x + O(i)m a(x) d(x))’ d(x) - $($)“a(x) Vf (x)’ d(x) 

= (j)“a(x)[ {Vf (x + 6(j)ma(x) d(x))’ d(x) - Vf (x)’ d(x)} 

+ $Vf(x)‘d(x)l. (3.6) 
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Since B(j)“a(x) < h, (3.4) and (3.5) imply that the right hand side of (3.6) is 
GO, which is turn shows that k(x) < m, and the proof is complete. 

THEOREM 3.1. Either the algorithm terminates with a c-KT point for 
problem P or else generates an infinite sequence {Xi} of which any 
accumulation point is a c-KT point for Problem P. 

ProoJ Clearly the algorithm stops at xi only if xi is a c-KT point. Now, 
suppose that the algorithm generates the infinite sequence {xi). Suppose that 
x* is an accumulation point so that x,-+~x* for some infinite set X of 
positive integers. Since f(x,) is decreasing monotonically and since 
f (xi) -P f (x*) then f (xi) + f (xx). Suppose by contradiction to the desired 
conclusion that x* is not a c-KT point. From Lemmas 3.1 and 3.2, there 
exist positive numbers ,LI and y and an integer m so that a, a~, 
Vf(xi)’ di < 7, and ki < m for large i in X Therefore, 

for large i in X. This implies that f (xi) + -co, contradicting the fact that 
f(xi) -+ f(x*). This completes the proof. 

4. EVENTUAL ACCEPTANCE OF THE STEP SIZE ESTIMATE 

In the previous section, we showed that an accumulation point xx of the 
sequence {x,] generated by the algorithm is a c-KT point to the perturbed 
problem P’ given below: 

P’: minimize f(x) 

subject to ajx < ajx* 

a,!x ( bj 

for j E 1(x*), 

for j & 1(x*). 

Here, we assume that the whole sequence {xi} converges to a point x* which 
satisfies suitable second order sufficiency conditions. Under this assumption, 
we show that test (2.5) is eventually passed. Furthermore, we show that 
li < 1 and that ki = 0 for i large enough. 

The second order condition is given in Definition 4.1. It is well-known that 
x* satisfying this condition is a strong local minimum for problem P’. That 
is, there exists a number y > 0 so that f(x*) < f(x) if x is feasible to problem 
P’ and ]Jx - x* ]I < y; see for example McCormick [9] and Han and 
Mangasarian [ 71. 
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DEFINITION 4.1. Let x* be such that Ax* < b and let Z(x*) = {j: 
C$X* 2 bj - c}. x* is said to satisfy the second order sufficiency optimality 
conditions for problem P’ if ujx* > bj - c for each j E Z(x*) and if there 
exist scalars uj > 0 for j E Z(x*) and y > 0 so that 

Vf(X*)+ ~ UjUj=O (4.1) 
jeI(x*) 

Vf(x*)‘d < 0, ajd < 0 for j E Z(x*), ](d(] = 1 5 d’H(x*)d > y. 

Theorem 4.1 shows that test (2.5) will eventually be passed so that Ai is 
given by (2.6). The following two intermediate results are needed to prove 
this theorem. 

LEMMA 4.1. Zf Cd < 0 and lldll= 1 imply that d’Hd > y > 0 then there is 
a number 8 > 0 so that Cd < 191 and )I d(l = 1 imply that d’Hd > y/2. 

ProoJ Suppose, by contradiction, that for each integer k there is a vector 
d, such that 

lldkl\= 1, Cd+, d:Hd, < y/2. (4.2) 

Since the sequence (dk} is bounded, it has an accumulation point d. From 
(4.2), lIdI\ = 1, Cd < 0, and d%ld < y/2 which contradicts the assumption of 
the lemma. 

LEMMA 4.2. Suppose that xi-+x* and suppose that bj - ajx* ( c for 
each j E Z(x*). Then di -+ 0. 

ProoJ Since 0 <pi < 1 and di = pi wi, it suffices to show that Wi -+ 0. By 
Theorem 3.1, x* is a c-KT point. Thus the optimal solution w* to Problem 
D(x*) must satisfy W* = 0. The assumption bj - L-$X* < c for j E Z(x*), 
implies that Z(xJ = Z(x*) for i large enough. This shows that the feasible 
region for Problem D(x,) is equal to that of Problem D(x*) for i large 
enough. Since xi -+ x*, it then follows that wi --f w*, see, for example, Daniel 
[3]. Thus wi + 0 and di + 0, and the proof is complete. 

Throughout the remainder of this section, the following notation will be 
used for any scalar y: 

Hy = 2 
s 

’ (1 - y) H(Xi + yydi) dy, 
0 

(4.3) 

We can integrate by parts to obtain 

f(Xi + yd,) - f(Xi) = yV’(xi)‘di + iy2di HJdi * 

For futher details, the reader may refer to Polak [ 13, p. 2931. 

(4.4) 
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THEOREM 4.J. Let {xi} be a sequence generated by the algorithm. 
Suppose that x, + x* and x* satisJes the second order optimality conditions 
for problem P’. Then there exists an integer m so that test (2.5) passes for all 
i>m. 

ProoJ: From (4.3) and (4.4) we get 

f(xr + edJ -j-(x,) = eVf(x,)‘d, + fe*d:H;d,, 

f(xr - edJ - f(xJ = -eVJ(xI)’ di + $*d;H;‘d,, 

Adding, we obtain 

j-(x* + edJ + J-(X* - cd,) - 2f(x,) = ;e*df(H; + II;‘) d,. (4.5) 

NOW for j E 1(x*), ajx* > bj - c. Since xl+x* then for i large enough, 
afx( > b, - c so that j E 1(x,). By Step 1 of the algorithm ajwi ( 0 and so 
af(dJll dJ) < 0 for i large enough and j E 1(x*). Likewise, from Step 1 of the 
algorithm V’(xr)‘w, ( 0 and hence Vf(xt)‘(dJIIdrjJ) Q 0. Since x1 + x*, then 
for any number 6’ > 0, Vf(x*)‘(dJIjdJ) ,< 9 for i large enough. Thus, 
Lemma 4.1 and the second order conditions imply that 

d:fW*M, 2 W II 411* for large i. (4.6) 

Now note that 

IlHi - W*Il = // 2jd (1 - y)[W, + NJ - W*)l dvll 

’ < 2 I (1 - Y) II Wx, t w4) - Wx*)ll 4. (4*7) 
0 

Since x,+x*, then by Lemma 4.2, d, -+ 0. Particularly, for i large enough, 
]]H(x, + y&d,) - H(x*)(] < y/4 for all y E [0, 11. From (4.7), 
]]EZf - H(x*)]] < y/4. This together with (4.6) yields: 

dfH;d, = d;H(x*)d( t df(H; - H(x*))d, 

> WI IPill’ - ll4ll” II& - W*Il 
> (r/4) lP,ll* for large i. 

Similarly, 

d:K’d, > (y/4) IMll* for large i. 

(4-g) 

(4.9) 
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From (4.5), (4.8), and (4.9) it immediately follows that 

ftxi + Edi) + ftxi - Edi) - 2f(xi) 2 E2(Y/4) Ildtllz for large i. 
(4.10) 

From (4.10), if test (2.5) fails for a large i, we must have 

E26i II d, 11’ > fCxi + &di) f ftxi - Ed*) - 2f(xi) > E2(Y/4) II dill2i 
that is, ?ii > y/4. If the conclusion of the lemma does not hold, then test (2.5) 
fails infinitely often and then 6i -+ 0. This contradicts 6i > y/4 for large i, and 
the proof is complete. 

THEOREM 4.2. Let {xi} be a sequence generated by the algorithm. 
Suppose that xi-+x* and that x* satisfies the second order optimality 
conditions for Problem P’. Then there exists an integer m so that 
f (xi + aidi) - f (xt) < &Vf (xi)’ d, for all i > m, that is, kt = 0 for all i > m. 

Proof By Theorem 4.1, test (2.5) passes for large i so that I, is given by 

pi= 
- E*Vf (xl)’ di -c’f (xt)‘dt 

f (xi + Edi) + f (xi - Edi) - 2f (XI) = ~d~(H~ t H~‘)di ’ “’ ’ ‘) 

If A, < 1 so that (xi = A,, then from (4.4) and (4.11) we get: 

f (xi + aidi) - f(x,) - ;a,Vf (xi)‘di = )A; dfH:‘d, t ;Ai Vf(x,)‘d, 

= &I;[d;H;‘d,- )df(Hf t H;‘)d,] -#;d;(H; t H;‘)d,.(4.12) 

Since xi--t x*, then by Lemma 4.2, dt + 0. Thus Hfi, K, and H;’ converge 
to H(x*) and the first term in (4.12) will be less than (y/24)L: IId,]]* for i 
large enough. As in the proof of Theorem 4.1, df(HT t HT’)dt > (y/2) ]]d,]]* 
for large i. Substituting in (4.12), the desired result holds. 

NOW suppose that pi > 1 SO that (Xi = 1. Then 

f(xi+a,d,)-f(x,)-faivf(x,)‘di=~d~Htd,t~Vf(xi)’d,. (4.13) 

Since ;li > 1, then from (4.11) we must have 

Vf(xt)‘dt < -jdf(H; t H;‘)di* 

Substituting in (4.13) we get: 

f(xi + aid,)-f(xt) -$at Vf(xt)‘dt 

< $ [dfHi dt - $df(H; + H;‘)d,] - &df(H; + Hc”)dt* (4.14) 



18 BAZARAA AND GOODE 

That the right-hand side of (4.14) is <O for large i follows exactly in the 
same manner in which we proved that (4.12) is GO. This completes the 
proof. 

Finally, we state certain condition in Theorem 4.3 below which guarantee 
that li < 1 SO that a, = Izi for i large enough. 

THEOREM 4.3. Let {x,} be a sequence generated by the algorithm. 
Suppose that xI +x* and that x* satisfies the second order optimality 
conditions for Problem P’. If z < y/4, then there is an integer m so that 
li < 1 for all i > m, that is, at = 1, for all i > m. 

ProoJ By Theorem 4.1 there is an integer m so that for i > m we have 

Li = 
- c2Vf (xJ’di - Vf (Xi)t di 

f(Xi + Edi) + f (Xi - Edi) - 2f(X,) = td:(H~ + H~‘)di ’ “‘15) 

As in the proof of Theorem 4.1, 

f&t& + ff;‘)di 2 (y/4) lIdill’ for i large enough. (4.16) 

Since wi solves Problem D(Xi), then there exist scalars uij > 0 for j E I(xi) 
such that 

Vf(X,)+ZW,+ C uijaj=O, 
iW.q) 

ui,ajwj = 0 for j E I(Xi) 

(4.17) 

(4.18) 

From (4.17) and (4.18) it follows that Of (xJfwi = -z )I wi)12. But by 
Theorem 3.1, x* is a c-KT point and hence the optimal solution w* to 
Problem 0(x*) is w* = 0. Since x1+x*, by continuity of the optimal 
solution to Problem D(n), and since b, - ajxi > c for each j E I+(w,), it 
follows from (2.3) that fir = 1 for large i. Thus di = Wi SO that 

Vf(Xi)‘d,=-Z l/dill’ for large i. (4.19) 

Substituting (4.19) and (4.16) in (4.15), it is clear that li < 1 for i large 
enough, and the proof is complete. 
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