
Theoretical Computer Science 29 (1984) 167-184
North-Holland

167

CLOSURES AND FAIRNESS
IN THE SEMANTICS OF PROGRAMMIN~“J LOGIC*

J.-L. LASSEZ AND M. J. MAHER
Departmw of Computer Science, University of Melbourne, Parkville, Victoria, 3052, Australia

Communicated by ‘J,. Manna
Received November 1982
Revised May 1983

Abstract. tVe use the notions of closures and fair chaotic iterations to give a semantics to logic
programs. The relationships between the semantics c;f individual rules and the semantics of the
whole program are established and an applicationjto parallel processing is mentioncti. A chaotic
fixed point theorem is given. which carries the non-determinism inherent to resolution. Finally.
\ve introduce a general definition of finite failure and the concept of fair SLD resolution, and
show that this procedure is sound and strongly complete with respect to both success and finite
failure. thus extending a result of Apt and Van Emden (1982).

Key words.
PROI.CX.

Logic pro~ram:iung, semantics. chaotic c iterations. SLD resolution. finite failure,

1. Introduction

Van Emden and Kobvalski [IS] gave very elegant simple fixed point and model-

theoretic semantics for logic programs in definite clausal form. Apt and Van Emden

[I] further exploited fixed point techniques to establish the soundness and complzte-

ness of SLD resolution with respect to success and to characterize SLD finite failure.

These two papers which give the formal semantics of what could be called ‘pun’
IWXOC; have been widely cited in the literature.

P. Cousot and R. Cousot in a long series of papers (see [6] for a bibliography)

have used the notions of closure and chaotic iterations to establish, in particular,

formal models of global data flow anaiysis.

Taking a slightly different approach from Van Emden and Kowalski’s we consider

a logic program to consist only of inference rules, the axioms being considered as

input. The function [P] representing the semantics of the program is then the closure
(idempotent, increasing) of the function [R] representing the semantics of the iules.

This closure property allows us to use the techniques of Cousot and Cousot. Further

classical fixed point theorems can then be adapted to provide simple algebraic

characterizations in the semantics of logic programming.

* Research supported by the Australian Computer Research Board.

0304-3975/83/ $3.00 c 1’384, Elsevier Science Publishers f3.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82180823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 J. -L. Lassez, M.J. Maher

After a preliminary section in which we give the necessary definitions, notations
and classical results, a first theorem is given which is the version, in our setting, of
Van Emden and Kowalski’s fixed point characterization of least model semantics.

As a corollary we obtain the relationship between the model-theoretic and fixed
point semantics of the whole program and the model-theoretic and fixed point
semantics of its rules. These and the following result give a denotational seman-

tics to logic programs in that “the meaning of any composite phrase* is expressed

in terms of the meanings of its immediate constituents” (cf. Tennent [17] for

instance).

TO establish the link between more operational semantics, we adapt techniques
due oo Tarski [16] and P. Cousot and R. Cousot [S] used to study common fixed

poin:s of sets (f functions. The result we obtain can be considered as a particular

case of chaotic iteration. We briefly mention the general case and adapt the notion

to suit our presentation. We show that the fixed point semantics can be obtained

by any chaotic iteration. We also semantically characterize programs amenable to

division into parts which can be executed independently by parallel processors.

Chaotic iterations incorporate a fair treatment of the rules, but to deal with finite

failure we need a different fairness-a fairness in the selection of atoms in SLD
resolution. This is treated in the final section.

Apt and Van Emden [I l] provided an important characterization of SLD finite

failure using fixed point techniques. We give a definition of finite failure which is

independent of any particular implementation. We then show that the result of Apt
and Van Emden can be interpreted as a form of soundness and completeness of

SLD resolution with respect to finite failure: A is finitely failed iff it is SLD finitely
failed (i.e., there exists a finitely failed SLD tree with /\ at the root). However.
SLD resolution in general will not find this finitely failed SLD tree when it exists.

WC adapt SLD resolution to search for failure by introducing fair SLD resolution

which is still sound and complete with respect to success and, as we prove, correctly

implements finite failure: we will tind a finitely failed SLD tree with A at the root
iff h is finitely failed.

2. Preliminaries: Programming logic in clausat form

In this section we first give the necessary definitions that lead to Van Emden and
Kowalski’s [X] model for pure PKOI.OG. We then give the informal semantics of ;I
program. Finally, we pivc the least fixed point semantics, the model-theoretic
semantics and the SLD resolution semantics from Apt and Van Emden [l]. A

gencralizcd treatment is to be found in [181 and in a forthcoming volume [lo]. We

further refer the reader to Kowalski [9] and Van Emden [73 for logic programming

and I.Aoveland [113, Manna [I 21 and Robinson [l-31 for resolution. There are many

rcft’rcnccs OIE Pfwf E)c;, the latest being Colmerauer [3].

Closures and fairness in the semantics of programming logir 169

Definitions. The sets of function symbols, predicate symbols and variables are dis-

joint sets. A constant is a O-argument function symbol. A term is a variable or is

f (4, l l ’ 3 t,,) where f is an n-iargument function symbol and t,, , . . , t,, are terms.
An atomic formula (or atom) is P(tl , . . . , t,) where P is an n-argument predicate

symbol and where tl, . . . , tn are terms. A definite clause is written as

A43 ,,..., B,,, na0,

where A, B,, . . . , B,, are atomic formulae. A program is a finite set of definite

clauses. A substitution is an operation 8 which, throughout a set of atomic formulae

{A,,.. . , A,,}, replaces all occurrences of given variables by given terms, the same
term being used for all occurrences of a given variable. The result denoted

{A,&. . . , A,$} is called an instance of (A 1, . . . , A,,}. This extends naturally tc

clauses.

Semantics. A program is understood as the conjunction of its definite clauses, and

a clause

A43 I,..., B,,

is to be understood as follows: For all .q , . . . , _xL variables in the atomic formulae

A. f3,, . . . , H,, the conjunction of the Bj’s logically implies A. Thus in the case when

II = 0 we have: For all values of its variables A is true. Similarly + B, , . . . , B,, means

that for all values of its variables the conjunction of the B,‘s is not true, and is

referred to as a negative clause. A negative clause with n = 0 is called an empty

clause, and is understood as a contradiction. The Herbrand base HB of a program

P is the set of all variable free atoms containing no predicate or function symbols
other than those occurring in P. An interpretation is a subset of HB. We now define

the notion of truth with respect to a given interpretation I:
- .4 E HB is true in I iff A E I.
- A variable free clause A c- B, , . . . , B,, is true in I iff A is true in I or at least

one of the B,‘s is not ._ue in I.

- A clause A +- B, , . . . , B,, is true in I iff each of its variable free instances its true

In 1.

- Finally a program is true in I iff all its clauses are true in 1. A model of a program

P is an interpretation I such that P is true in 1.

Clearly the set of subsets of HB forms naturally a complete lattice with set

inclusion as partial order, union as lub and intersection as glb operations, the empt)

set as the least element and HB as the greatest. Let M(Pj be the set of models for

a program P.

Proposition 2.1. Any intersection of models for a program P is again a model for P.

In particular n M(P) is a model, the least one.

170 J.-L. Lassez, M. J. Maher

Now a function T from interpretations to interpretatibns is associated to a program

P in the following way:

A E T(I) iff there exists in P a clause B,, *- BI, . . . , B,,

and a substitution 8 such that A = B,,O and (B, 8,. . . , B,,O)c I.

We ha! ‘: the following proposition.

Proposition 2.2. An interpretation I of a program P is a model for P if and only if
T(l) c 1.

The fact that T is continuous (i.e., T(IJ;“=,, X,) = UT=,, T(X,) for every increasing
sequence Xrl c X, c_ l l l c XII c X,I+ I c l . 0) is simply verified and we may now

apply the least fixed point theorem which provides two characterizations of the least

fixed point of a continuous function f over a complete lattice-an existential one

as the least element x such that f(x) G x, and a constructive one as lub(f”(1): IZ 2 0)
where I is the least element of the lattice.

Theorem 2.3. The function T associated to a prograrrl P Ijas a least *fixed point lfp(T)
which can be characterized the following ways:

Therefore, we see that the semantics defined as least model of P or least fixed

point of T iire the same. To establish operntionally that A c n i\f(P) one may use

hi,L) resolution:
An SLD derivation of Pu {+-A} consists (.$ a sequence of IV{,. . . . , N,,, of negative

clauses f that is clauses without consequences: t B, , . . . , B,,) with RI,, =+- A, a

scqumce ti,. . . . , d,, of variants of clauses of P (a variant n, is obtained from a

clause of P by renaming variables so that it has no variables in common with the

negative clause Iv,). and finally a sequence of substitutions c),, . . . , O,,. In each

negative clause N, a dktinguished atom is considered, called the selected atom. The
c‘lau”5c’ N‘ * , is said to be dcrjvcd from N, and ti, +, . This relationship is defined below.

Ixt Iv, = f-+/I,. . . . Ar, , . . . , A,,‘). p / x 0. with (Ik as the selected atom. Let (I,.+ I =

I .A1 +- Ht. E& q r-r 0. b< the variant of any clause in P such that ,40 = &,c) for

SsomL sub-titution 0. Then

If ;L dcri\:ltion contains the c’mpty clause, it must be its last clause. Such a derivation

is called an SLD refutation.. When there is a substitution 0 so that AlI = A& A
and Ak are said to be ;.kfiable. A substitution 4 such that A& = ‘qkc and if A0 = A&

then H = 67~ for sOme substitution 77 is called a most general unifier (mgu) of A and

/Sr.

Closures and fairness in the semantics of programming logic 171

The success set of a program P is the interpretation S such that A E S iff P IJ {+A}
has an SLD refutation. As one can show that the least model (1 M(P) is the set

of atoms logically implied by P, the following theorem can be interpreted as
expressing the soundness and completeness of SLD refutations, a3 well as expressing
the equivalence of model-theoretic and operational semantic+. The proof of this
result by Apt and Van Emden [l] is a good illuslration of the use of fixed point
techniques.

Theorem 2.4. The success set of a program P is equal to its lecst model.

3. Closure semantics

The classical notion of closure has been used extensively by P. Cousot and 13.

Cousot [5] and Scott [1 51. In order that 1 his notion appears naturally, we will modify

the previous definition of a program, but first we solicit intuitive support of these

modifications with an example:

path(A, I?) +-

path(B, C) +

path@, E) +-

path{ x, ~7) + path(y, x)

path(x, z) +- path(x, y), patMy, z)

The above simple program determines all the paths in the graph defined by the first

three clauses. It is clear that the nature of these three clauses dirfers from that of

the remaining two--the latter would appear in any program of this sort whereas

the former specify one particular graph. Hence, it seems natural to separate the
two types of clauses in the following definitions.

Let A43,,..., &I be a definite clause C. If n = 0, C is called an axiom; if

IZ > 0, C is called a rule. We now consider a program P to be the conjunction of a

finite set of rules R. We assume the existence of a suitable Herbrand base. We will

associate to a program P two functions from interpretations to interpretations: [R]
which is defined as T was previously (that is, Vdlz HB, A E [R](I) iff there is a rule

B,,c-B,,. * -, B,, and a substitution 8 such that &8 = A and {B, 8,. . . , &B}E I)

and [P] which assigns to any subset Ax c_ HB the set of atoms that can be generated

by repeated applications of the rules.

We now look for a recursive definition of [P]. Let Ax c HB. We want [P](Ax)
to be the limit of the following sequence:

‘I’,, = Ax, Vi+, = [R](Vl) v V;.

Letting Id represent the identity function on interpretations, we find that [P] must
satisfy the recursive definition:

[P]=[R]o[P]+[P],

172

that is,

J.-L. Lassez, M.J. Maher

[V=([Rl+Wo[Pl

(where f + g is defined as (f + g)(I) = f(I) u g(Z) and 0 denotes function compbsi-

tion). Now [P] is not the least fixed point of this equation, but we can find a more

standard least fixed point semantics for [P] by using an equivalent definition for Vi,, .
By definition,

c’, + i =[R](V&J V, =[R](V;)u[R](Vi_ ,)v Vi l

As [K] is continuous and { Vl} is a chain we have

iR](c:, 2[R](ci ,,-I 2 - - . s[R](As)

SO

v, . , -=[K](t;)v c’, , =- - -=[/?](V,)uA,x

that is.

Proof. [U] is clearly increasing. Note that ‘\[K]+ Id) is continuous. To show that

[P] is continuous, let {I,}. i = 0, 1.. . . , be an increasing sequence with U:_,, I, =

Closures and fairness in the semantics of programming iogic 173

I c HB. Then

[P](I) = (j ([R]+Id)“(l) = fi fi ([R]+Id)“(l,)
n-9 n=O i=O

= fi (j ([R]+Id)“(IJ
i=O n=O

= CJ [Pl(I,)*
i=O

For idempotence,

[P]o[P](I)=[P]o(; ([~]+ld)“U))
n=O

= fi ([R]+Id)” 6 ([R]+Idj”(l)
‘II = 0)I =o >

.x

= U fi ([R]+Id)“+‘*(l))
!?I =o !1 =o

= ;, ([R]+Id)“(l)=[P](I). Cl
k =o

In fact one can also prove that P: [R] -+ [P] is also a continuous closure and

that [P] is the closest closure to [R] in the sense that every closure above [R] is

above [PI.

4. Model and fixed point semantics

Similarly to Van Emden and Kowalski we define an interpretation I to be a

model of P iff P is true in I. Note that the ditference comes from the fact that now

a program is restricted to the conjunction of rules. We easily verify the following

proposit ion.

Proposition 43 I The folio wing statements are equivalent :
(1) I is (I mode1 of f.

(2) ~2[Rl(O.
(3) I is a fixed point of [PI.

Now the equality between model, fixed point, and closure semantics is given by

the following theorem.

Theorem 4.2. [P](Ax) is the least fixed point of [P] which contains Ax.
[P](Ax) is the least model of P which contains Ax.

173 J.-L. Lassez, M.J. Maher

Proof. Let I be a fixed point of [P] containing Ax. Then [R](I) E I and so
([RI+ Id)(I) = I. By monotonicity, if Ax c I, then

([R]+ld)“(Ax) c ([R]+Id)“(Z) = I Vn.

Hence [P](Ax) c Z, and since [P] is idempotent and increasing, the first part holds.

The second part follows from the equivalence of (1) and (3) in the above propo-

sition. Cl

Let T be the function associated to R u Ax. The equivalence between the closure
semantics and the semantics of Van Emden and Kowalski is shown by the following

proposition.

Proposition 4.3. [P]t Ax) = T“‘(C3).

Proof. It is clear from the definitions of T and [R] that T = [R] +[As], where [As]
it, the constant function [AxIf I) = Ax, 'dl c HB. Let c/, be defined as in Section 3.

Then

A CI~MIC r~wlt of lattice theory (Tarski [161. P. C’ousot and K. C’ousot [S]) tell;
11% th:! t a wf of oLlmmutin_c monotonic functions has a completE: lattice of common

fixed pAnI\. I’hc constr:_wtit,c characterization of the least common fixed point is
ohtaintrd by taking the Least fixed point of the composition of all functions in the

set. We can ad+ this technique to our present situation where the notion of

Closures and fairness in the semantics of programming logic 175

increasing replaces the commutativity hypothesis. The following theorem gives us
the semantics of the conjunction of rules, We use Hi=, fk for the composition

f 1 0. l l o f n*

Theorem 4.5

[P]=[R, A 9 l 9 II R,,] = (jiI [pXl)w = (ji, UM+W’~)‘~.

proof. C;‘_, ([RJ+Id)a& [PJ since ([R~]+Id)~[PJ~ Ii= 1,. . . . n, and

I;‘=_, [slq-l;‘=, [P k 1 since [P,.J is increasing, k = 1, . . . , n. Hence

[P]=([R]+Id)‘“=

d ii [Pj ‘“=[p](o=[p]. (> k=l

Hence [P] = (11 r- , [P,Jti and since [PA J = ([Rk] + Id)“, the result follows. E

This theorem is, for Programming Logic, analogous to [S, ; S] I= [S] 0 [S,] in the

denotational semantics of a sequential programming language. These theorems

remain valid if (RI, . . . , R,,} represents any (not necessarily disjoint) division of the
set of rules instead of the one above. An interesting case is when the program P

can be divided into two (not necessarily disjoint) subprograms P, and P2 such that

[P]=[P,]+[P,]. Th is can always be enforced by taking the trivial solution P, = P.

A program may have only such trivial decompositions. Another extreme case is

when R, and R2 use different predicates. In this case, SLD resolution will automati-

cally use the relevant subset of rules, ignoring the other. In the other cases SLD

resolution can be used in parallel for P, and P2, the two search spaces involved
being in general far smaller than the whole search space for P, the construction of

which necessitates combinations of rules from both programs. III any case we have

the following characterization of decomposition.

Theorem 4.6

[P]=[P,]+[P,] gf [P,]c r~~l=c~,l~[~,l=r~,l+~P,l~

Proof. We know from the previous theorem that [F’] = ([P,] 0 [&])“‘. Using

monotonicity. if [P] = [P,] + [PJ, then .‘ii

[~l=[P,l+[P~l~[P~1~[pzl~ wwJ[&l)‘” =[Pl.

176 J.-L. Lasser, M.J. Maher

Hence, by symmetry,

Using idempotence, if

then

([P,pqP,])” =[P*]” qP21” =11~,1~ll&1=II~11+~~21 f#n*

Hence,

[Pl=([P,lqPJY =[P,l+CPd c

In fact if program P is divided into n subprograms, then [P] = Liz, [R] iff

[I:‘_, [P ,,,,, J = Cy= 1 [Pi] ior all permutations p on { 1, . . . , n}. At the level of the rules
one obtains the following.

Theorem 4.7. If

([R,]+I~)o([R~]+I~)=([R,]+I~)~([R,]+I~)

=([R,J+Id)+([R,]+Id),

tt1efz [P] = [PI] + [P2].

Proof. Let T,=([R,]+Id),i=12Then,fori = 1,2, T, commutes with T, + T2 since

We prove by induction that (T1 + Tz)” = Tt + T$. This is clearly true for k = 0 and

k = 1 and if it is true for all k s n, then

(T,+ Tz)“+* = T, 0 (T, + T,)” + T2 0 (TI + T,)”

=(T,+T,)“o T,+(T,+TJ’o r, by commutativity

=(T;‘+T;)oT,+(T’,‘+?‘;)oT, by induction hypothesis

= - r1+1 J-, +T; 0 T,+T’,’ 0 T,+T;‘+’

=T’,“’ +(T;-‘-t-T;’ ‘)o Tp r,+T;,“’

= T;” +(T,+T,)“+TI” by induction hypothesis

= 7-Y” +T;+T;+T;+’ by induction hypothesis

= T;L+’ + 7-g”.

Closures and fairness in the semantics of programming !ogic 177

Hence V1 s HB,

[P](I) = 0 (T, + 7y(I) = cj (7-y + T?)(I)
n =o n==O

=[P,]i:I!u[P,](I)=([P,l+[P~])(I). cl

This sufficient contlition is not a necessary condition since we can take R- = R, ,

in which case [P] = [P,] +[P2] but, in general,

However, a generali;:ation similar to that of the previous theorem holds.

Example 4.8. Consider R = {N(x) + N(S(x)), N(S(x)) * N(x)) where the
Herbrand base HB is {N(S”(O))}, II= 0, 1, Let Ax be any subset of the Herbrand
base. The Van Emden-Kowalski semantics Uz=,, T”*(o) is built step by srep by

adding to a set the immediate predecessors and the immediate successors of its

elements. In comparison, the semantics

[P](Ax) = ([P,]o[P,])“(Ax) = (([R,]+Id)‘” 0 ([R,]+ld)“‘)“(Ax)

is obtained by changing the synchronization between the applications of the rules

in the following way: We take the closure of the set under the successor operation,

then the closure of the resulting set under the predecessor operation. In this

particularly simple case we do not need to repeat the process since we have reached

the fixed point HB after w applications of R7 and a finite number of applications

of R,.

One also verrfies easily that [P,] 0 [I%] = [P,l 0 [P,] = [P,] + [P,]. Therefore, one
can break the connection between the two. rules and perform SLD resolutio? on

each of them separately. That is, for a given A E HB we look simultaneously in

parallel for successors only and for predecessors only. Without this split, SLD

resolution would search alternatively for predecessors and successors creating a

search space ‘exponentially’ larger than the two preceding ones.

We see from this example that changes in the order of application i;f the rules
do not necessarily affect the least fixed point. We are, in fact, in a particular case

of chaotic iterations.

5. Chaotic iterations

P. Cousot and R Cousot [4) adapted and generalized the concept of chaotic
iterations from nun erical analysis to lattice theory to generate fixed points of

178 J. -L. Lassez, M. J. Maher

functions with multiple arguments. In this context the interpolation of their result
would be, informally, that [P](Ax) may be reached by transf’inite repetitive applica-
tions of the rules in any order, provided a fairness condition is met: For any rule
R,, for any ordinal ar there exists an ordinal p 2 (Y such that the rule Ri will be
applied at ‘time’ @, assuming that each successor ordinal corresponds to the applica-
tion of a rule. Other fairness conditions can be considered and we adopt one here
which will be more in tune with SLD resolution for which there is no neeil to go
beyond w.

Definitions. Le: R = {R 1, . . . , R,,} be a set of rules and P the associated program.
A fair scyuence FS is a sequence of functions { fk}, k - 0, 1, . . . , such that

c.Vk fk=[Ri]+Id forsomei,l~i~n.

and

(Vi, 1 s is rz)(Vf)(3m > i) fin =[R;]+Id.

A chaotic iteration for P defined by a fair sequence FS, starting at Ax E HB is the

bcquence of subsets of HB given by the recurrence relation

Xo= Ax, X,, , =f:(X,).

Clearly X, + , 2 X, and w define the limit of the chaotic iteration to be Lj;=,, X,.

We can now state the chaotic fixed point theorem which introduces non-deter-

minism simil;rr tll that inherent in resolution into the sequence converging to the
Ic;tst fixed point ;ibove Ax.

Theorem 5.1. Ecery chaotic iteration for a program P starting at Ax c HB cowerges
to [P]MK).

Proof. Let (?lk }, k = 0, 1. . . . , be an arbitrary chaotic iteration defined by { fk},
s Pi = 0. I, , . . . Kecall from the proof of Theorem 4.4 that [P](I).= I iff [R,](I) C_ I.
1=1..... II. itf ([R,j+Id)(W=I. i= 1,. *. , tz, so that, for any fixed point I of [PI,

if .YL c 1. thtn PI’, , , =fr,(X,kf,II)=f v’k. S’ mce A_u c [P](A.v). XL c [P](Ax) Vk
md \o y; ,, Sk rZ [P](Ax 1. The sequcncc { fk }, k = 0, 1 , . . . , is faik so

Closures and fairness in the semmtics of programming fogic 179

In the informal semantics we want to generate all true facts from the axioms by
repeated applications of the rules. No particular order or synchronization of the
rules is specified. Chaotic iterations model this more closely than the functions T

and [RI, in which the rules are applied simultaneously. In this respect the above

theosem provides a further justification for the use of [R] and T.

6. Finite failure and SLD finite failure

In the language of automatic theorem proving, [P](A.x) represents the set of
theorems proved for the system (R, Ax). An element A which does not belong to

[P](Ax) 1s a non-theorem. In attempting to prove A as a theorem, it may be that

a theorem prover will exhaust all possibilities of proof in a finite time. In this case

we can ceduce that A is a nontheorem. The finite failure set that we will introduce
correspo*tds to this set of facts which we can prove are non-theorems. From an

implementation point of view, it is preferable to have a theorem prover which will

halt when given such a fact to prove, rather than proceed with an infinite computa-

tion. As these non-theorems can be used to infer falsehood, the concept of finite

failure is also important from a semantic point of view. We now revert to Van

Emden and Kowalski’s definition of program (i.e., a program consists of rules mzd

axioms).
As a procedure to find SLD refutations, Clark [2] and Apt and Van Emden [I]

construct SLD trees. When this construction fails in a finite time to find a refutation

a finitely failed SLD tree is obtained. This concept is used in PKCXOC; to infer

negation. Clark provided this use with a formal justification.

Therefore, in [l] and [2] the concept of finite failure has been defined only in the

context of SLD resolution. In this section we define finite failure in general and
show that it is clearly equivalent to .Apt and Van Emden’s ‘fixed point’ characteriz-

ation of SLD finite failure. This leads us to reinterpret Apt and Van Emden’s result

as proving the soundness and weak completeness of SLD resoiution with respect

to finite faiiurc. We then extend this result by introducing a simple condition of

fairness. The resulting fair SLD resolution is sound and strongly complete with

respect to finite failure and so will always find a finitely failed SLD tree if one exists.

We restrict our attention to SLD resolutions in which every substitution is an mgu,

as is done in [l]. These resolutions are sufficient to obtain a refutation if one exists.

The dGnition of finite failure in terms of SLD resolution [l] can be stated as follows

(our terminology differs slightly from that of Cl]).

Definitions. An SLD tree for a negative clause N for a program P is a tree with Iv

at the root and with a negative clause 6. A,, . . . , A,,, and selected atom Ak (if IZI :> 0)

at every node. Each node has a descendant (.+-A,, . . . , Ak _ , , B, , . . . , B,,, Ak + I,
A,,,)8 for every clause (rule or axiom) B,,+ B,, . . . , B,, of P such that Ak and B,,

I x0 J.-L. Lasses, M.J. Maher

are unifiable, where 8 is an mgu. An SLD tree is finitely failed if it is finite and

does not contain the empty clause. A negative clause h’ is SLD finitely failed (sldff)

if there is a finitely failed SLD tree which has N as its root. The SLD finite failure

set is the set of atoms A E HB such that +A is sldff.

Apt and Van Emden obtain, after a series of involved lemmas, the following

characterization of SLD finite failure as one of their main theorems.

Theorem 6.1. Let Y be a &finite sentence offinire degree. The SLD finite failure set

of P is the complement in HB of T&w.

Here TOW = f7;._,, T”(HB). The concept of definite sentence is a generalization

of program which allows an infinite set of definite clauses. A definite sentence is of
finite degree if for no negative clause N there exists an SLD tree with N as root

and containing a node of infinite degree. Equivalently and independently of SLD

resolution, a definite sentence is of finite degree if every predncate symbol appears

in the conclusion of only finitely many clauses.
We now give a genera1 definition of finite failure. For the remainder of this paper

WC imphcitly rcfcr to a program P with rules R and set of axioms which defines a

Auhscr Ax of HB. Although we consider programs with only a finite number of
clauses, the proofs in this section also hold for definite sentences of finite degree.

It is ctear that A E HB is finitely failed if A does not unify with any conclusion of

a rule nor any axiom. Now if the only sets of variable free atoms which imply A
contain a finitely failed atom, then A must also be finitely failed. Formally. we can

state the following.

Definition. For a given program P, an element ‘~1 of HB is finitely failed (A E FF)
ifI 3/-I: A is failed by depth d(A E FF,,).

Failure by depth d is defined recursively by: A E FF,, iff A C [R](HB) and A e Ax.
For d > 0, A F FFtI iff for every rule (B,, +- B,, . . . , R,,) in R and variable free

substitution 0, if A = BJ~, then (3k)(1 < k s q) and BkO E FF,,, for some uz <: n.

The finite failure set FF is closely related to a set constructed by Sato [141. If

11 ; FF,,,, then A E FFtI V’d 2 m (from the definition of FF,,). With this it is easy to
t-crify that. for d -7s 0, I\ c FF,, iff, for every rule (I?,, c- B, , . . . , I?(,) in R and variable

frc~substitution Owith ,L3 = B,,@,@k)(1 s k ~61) and B&% FF,,. ,. Thispropertywill

t-lc u\ed in the proof of the following proposition. (5 denotes the complement of S
in HfJ. 1

Proposition 6.2

F--F = ; ‘I’“(HB) = TJL~.
,, 0

Ciosures and fairness in the semantics of programming logic 181

Proof. We prove by induction that FFn = Td+‘(HB). This is immediate for d = 0.

Now A E Td+‘(HB) iff (by definition) one cannot find a rule Bo+ f?, , . . . , I$ in R

and a variable free substitution 8 such that A = So0 and (tlk)(ls k G q), Bk6 E

Td(HB) iff for every rule B,,+ B, , . . . , Bq in R and variable free substitution 6,
A # BOB or (3 k)(1 s k d q), Bk 0 e Td(HB) iff (by induction hypothesis) for every

rule &+B,,... , Bq in R and variable free substitution 8, A # BO 6 or (3 k)

(l~k~q)zmd&@EFF d-1 iff (by definition) A E FFd. The result easily follows. 0.

Therefore TJw is an alternative definition of finite failure; indeptindent of any

implementation. In this context, the Apt-Van Emden result (Theorem 6.1) can be

considered as a form of soundness and completeness for an SLD implementation

of finite failure. If A is SLD finitely failed, it is indeed finitely failed (soundness).

If A is finitely failed, Theorem 6.1 and the definition of SLD finite failure guarantee

only the existence of a finitely failed SLD tree among others that may be infinite

(see Example 6.3 below). In that respect, it is a weak form of completeness; the
use of SLD resolution does not guarantee that a finitely failed tree will be found

when one exists. By introducing a fairness condition, we adapt SLD resolution to

search for failure as well as success. For this fair SLD resolution, we obtain a strong

form of completeness: If A is finitely failed, then there exists a finitely failed SLD

tree and all fair SLD trees are finitely failed. Therefore, the use of fair SLD

resolution guarantees that a finitely failed SLD tree will be found when one exists.

Definitiuns. For a given SLD derivation (N,, dj, 8i), an atom B in Nk is an instantiated
copy of an atom A in N,,,, m s k, if there is a sequence of k - HZ + 1 atoms { Bj> with

B,, = A, & -,,, =B and Bj is in N,,+j and Bj=Bj_,6,,,+i, j=l,. . . , k-m.

An initial atom in an SLD derivation has level 0. An atom has level n if it is an

instantiated copy of an atom which was introduced by expanding an atom of level
I1 - 1.

An SLD derivation is fair if, for every atom B in the derivation, either some

instantiated copy is selected within a finite number of steps or some instantiated

copy is in a failed clause (i.e., a clause where the selected atom does not unify with

the conclusion of any clause in P)

A computation rule chooses the selected atom from a negative clause. A comp:lta-

tion rule is fair if every SLD derivation produced from it is fair.

Example 6.3. Assume that C does not unify with any conclusion of a rule nor any

axiom of a program which contains the following rules

A(x) +- B(x), c
A(X) c- B(x)

B(x)+-A(s)

B(x+l)+A(x)

The derivations +iQ(l);+B(j), (2+-A(l), C and +-A(l);+?(1); 0. y+(l);

182 J. -L. Lassez, M. J. Maher

B(j);- - and +4(]);+8(1). C;+&Q), C ;+B(O), C, C are all fair (selected

atoms are underlined). However, the derivation *A(1) ; +@(I), C ; +A(I), C ; l l 9 ;

43(j), c ,..., c; +4(l), c ,... , c;. l l is not fair since C is never used as the

selected atom. Hence, for this program the computation rule which expands the

first atom in a negative clause and places the introduced atoms at the front of the

negative clause (as is done in many implementations of PROLOG) is not a fair

computation rule. Note that each C in a given negative clause has a different level.

The elimination of ‘unfair’ SLD resolution is justified, as an unfair computation
rule systematically ignores potentially relevant information. In the unfair derivation

of the above example the fact that C cannot be proved is ignored. Now the following

theorem shows that finite failure guarantees that (111, but the unfair, SLD trees are

finitely failed. Furthermore, its corollary shows that the existence of a single finitely

failed SLD tree also guarantees that all, but the unfair, SLD trees are finitely failed.

It is possible for an SLD derivation to reuse a variable which has previously been

in\taniiated, for efficiency reasons. For the sake of simplicity in the presentation of
the following proof, we do not allow this.

Theorem 6.4. Fair SLD rtxdution is sound arld complete with respect to fhite j’ailure.

Proof. Chmplete~~ess: Let A E HB and suppose there is a fair computation rule

which \tartc; with +-A and does not give a finitely failed SLD tree and does not _
wcceed htz.. the SLD tree is infinite). Then there is an infinite fair SLD derivation

{UV,. d,, 0,)). i = 0, 1. . . . (by Kiinig’s Lemma). By the remark before this theorem.
the f+ each act on different variables. We need to show that A B FF. From

Proposition 6.2 it is equivalent to show that A E T’(HB) for every n. In order to

apply 7’ we need variable free atoms and so any variable remaining in (N#, . . . O,,},

i == 0, 1 , _ . _ . p. is replaced by an arbitrary variable free term. Thus let 8 = 0, . . . 6,,u,

where u is some variable free substitution on {IV& . . . Of,}, i = 0, 1,. . . . p. For all

atom5 G of level d in the derivation, G has been expanded within p steps and our
choice of 8 implies that (38 unifies with the conclusion of some clause and so

(;(I 6 7-f HB). Let E be an atom in the derivation of level ci - 1. Then it has been

csp~~lcd into F,. . . . , FL, k 2 0. atoms of level d. Since F, , FL are aioms of
Ic\%.?I d. { I--, 0. . . . , FL 0) c 7’(HB) and so E8 tl 7°C HB). By performing this process l/
time\ wit‘ obtain A c 7.“’ ’ (HB). ix.. A 8t FF,/. But d was arbitrary so A e FF,! V’II 2 0,
i-c., A B FF.

%~4mf:24.s.s: I’hwrm~ 7. 1 of [l] and Proposition 6.2 show that SLD resolution is
sound with respect to finite failure, so certainly fair SLD resolution is sound. q

A con~cqut’ncc’ of this proof is the following corollary which shows that fair SLD

tree\ arc’ equi\alcnt with respect to finite failure in ;(nlanrwr similm- to SLD trees

being cquivalcnt with respect to success.

Closures and fairness in the semantics of programming logic 183

Corollary 6.5. If there is a finitely failed SLD tree, then every fair SLD tree is finitely
failed.

Proof. From the proof of soundness in the previous theorem, if +A is sldff, then

A E FF and so, by completeness, *A is finitely failed for any fair computation

rule. q

It is immediate from the soundness and strong completeness of general SLD

resolution with respect to success [l] that fair SLD resolution also has these

properties. Hence, in fair SLD resolution we have a procedure which is sound and

strongly complete with respect to both success and finite failure.

Acknowledgment

We wish to thank K. Apt for providing much insight and his comments on a draft

of this paper and J.F. Perrot, J. Lloyd and J. Schultz for many valuable discussions.

The first author wants to thank M. Nivat for making possible a four-month stay at

the LITP, during which this work was initiated. We aiso wish to thank the referees

for their careful reviewing.

References

[I] K.K. Apt and M.H. van Emden, Contnbutions to the theory of I(>;& programming, J. i\C’h4 29
(19,Y2) 841462.

[?I K.L. Clark. Negation as failure, in: H. Gallaire and J. Minker. eds., Logic and Data Bases (Plenum
Press, New York. 197X) pp. 293--X4.

[?] A. Calmerauer. PKOI .OG II manuet de reference et modt=te, thPorique. Kapp. Rech. GJA ERA
CNRS 263, Universite Aix-Marseille II. 1982.

[31 P. Cousot and P.. Cc~usot, Automatic synthesis of optima! invariant assertions: Mathematical
foundations, ACM Symp. ~1 Artificial Intelligence and Programming Languages; SIGPLA N NoticeS
12 (H) (1977) I-12.

[5] P. CrJusot am! R. Cousut, Constructive versions of Tat-ski’s fixed point theorems. Pucific .I. %jCJth.

82 (I) (1979) 13-57.
[tj] I’. C’ousot. Scniantic foundwticms of program analysis. in. S.S. Muchnick and N.D. Jones. cds..

Prcqra 171 Flow A nalysis : i%eorry ad Applicarinrz (Prentice- Ha!!, London, 198 1) pp. 303-342.
[7] M.H. Van Emdcn, Programming with resolution logic, in: E.W. Etcock and D. Michie, eds., Muchine

fr~tt~lligtwe Vol. 8 (Ellis Horwood, Chichester, 1977) pp. 2fh-299.
[X] !bl.tf. Van Emden and R.A. Kowalski, The semantics of predicate logic its a programming language,

J. AC&I 23 (1976) 733-742.
[9] R.A. Kowalski, Logic for Problem Solving (Elsevier (North-Holland), New York, 1979).

[IO] J.-L. Lassez. M.J. lLlaher and D.A. Wolfram, The Semantics of Logic Programs, in preparation.

[1 I] D.W. Loveland, Automated Theorem Proving: A Logical Basis (Elsevier (North-Holland), New
York. 1978).

[121 Z. Manna, Mathematicai Theory t~f Compldtation (McGraw-Hit!, New York, 1974).
[131 J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 23 (1965)

2.3-41.

184 J.-L. Lassez, M. J. Maher

[143 1’. Sato, Negation and semantics of prolog programs, Proc. 1st Internat. Logic Programming Conf,
Marseille, France (1982) pp. 169-174.

[15 J D. Scott, Lectures on a mathematical theory of computation, Tech. Monograph PRG-19, Program-
ming Research Group, Oxford University, 1981.

[161 A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955)
285-309.

[171 R.D. Tennent, Principles of Programming Languages (Prentice-Hall, London, 198 1).

[18] D.A. Wolfram, M.J. Maher and J.-L. Lassez, A unified treatment of resolution strategies for logic
programs, Tech. Rept. 83/ 12, Dept. of Computer Science, Univ. of Melbourne, 1983.

