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Abstract Recently, great attentions have been paid to microbial fuel cells (MFCs) due to their mild

operating conditions and using variety of biodegradable substrates as fuel. The traditional MFC

consisted of anode and cathode compartments but there are single chamber MFCs.

Microorganisms actively catabolize substrate, and bioelectricities are generated. MFCs could be

utilized as power generator in small devices such as biosensor. Besides the advantages of this

technology, it still faces practical barriers such as low power and current density. In the present

article different parts of MFC such as anode, cathode and membrane have been reviewed and to

overcome the practical challenges in this field some practical options have been suggested. Also, this

research review demonstrates the improvement of MFCs with summarization of their advantageous

and possible applications in future application. Also, Different key factors affecting bioelectricity

generation on MFCs were investigated and these key parameters are fully discussed.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1 The MFC system is consisted of anode and cathode

compartments [22].
1. Introduction

In the recent decades, consumption of energy within the world
has had a prosperous trend [1]. Energy sources are classified

into three batches: fossil fuels, renewable sources and nuclear
sources [2], in which non-renewable sources of energy, which
include an enormous portion of energy consumption, could

be categorized into two major classifications: nuclear and fossil
energy [3]. Fossil fuels negatively influence the nature owing to
the emission of carbon dioxide. It follows logically from what

has been said that the consumption of fossil fuels has severely
imperiled human life through its drastic aftermaths, such as
global warming and atmospheric pollution [4].

However, miscellaneous countries around the world have

made remarkable efforts to find a piece of cogent solution
for energy crisis by turning the eyes into renewable energy
sources such as solar energy, energy produced from wind

and water. As an upshot of these efforts, one of the latterly
proposed alternative energy sources is fuel cell (FC) which gen-
erates energy using high value metal catalysts (in the tradi-

tional version). In actual fact, FC is of plethora advantages
over other kinds of energy generators, e.g. no emissions of
environmental polluting gases (such as SOx, NOx, CO2 and
CO), higher efficiency, no existence of mobile parts, as a result,

lack of sonic pollution, and so forth [5]. In contrast, high cost
and high mass generation are the only disadvantages of these
new energy sources [5,4].

One type of FCs is microbial fuel cell (MFC) that uses an
active microorganism as a biocatalyst in an anaerobic anode
compartment for production of bioelectricity [6,7]. Although

electrical current produced by bacteria was observed by
Potter in 1911 [8], limited feasible results were acquired in this
area by the next 50 years [9]. However, in the early 1990s, FCs

became far more appealing devices; consequently, MFCs were
considered as promising technology [10]. Furthermore,
research domain of MFCs turned much vaster in 1999 once
it was discovered that mediator was not a compulsory compo-

nent within MFCs [11–13].
Approximately all MFCs, as it is shown in Fig. 1, consist of

anode and cathode chambers, physically separated by a proton

exchange membrane (PEM) [14]. Active biocatalyst in the
anode oxidizes the organic substrates and produces electrons
and protons [15]. The protons are conducted to the cathode

chamber through the PEM, and the electrons are conveyed
through the external circuit [16]. Protons and electrons are
reacted in the cathode chamber along with parallel reduction
of oxygen to water [17]. It is worth mentioning that active bio-

catalyst in the anode compartment oxidizes the carbon sources
or substrates, and generates electrons and protons. As a fur-
ther illuminating illustration, anodic reaction of acetic acid is

presented in Eq. (1). Oxygen in the anode chamber will inhibit
the production of electricity; thus, a pragmatic system must be
designed to keep the bacteria separated from oxygen (anaero-
bic chamber for anodic reaction) [18].

Biocatalyst is able to be divided from oxygen by posing a
membrane between two separate chambers that allow charge
to be transferred between the electrodes, the anode chamber,

where the bacteria grow, and the cathode chamber, where
the electrons react the oxygen [19].

C2H4O2 þ 2H2O! 2CO2 þ 8e� þ 8Hþ ð1Þ

2O2 þ 8Hþ þ 8e� ! 4H2O ð2Þ

Based on transfer of produced electron by active microor-

ganisms from media to anode electrode, MFCs could be of
two different categories: MFCs with mediator and mediator-
less MFCs [20].
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Despite the fact that diverse electrochemical parameters
such as power density, cell voltage, and biological parameters,
for instance substrate loading rate in continuous systems, are

able to describe MFCs [6], performance of MFCs is mainly
influenced by several factors such as ensuing: (1) supply and
consumption of oxygen in cathode chamber, (2) oxidation of

substrates in anode chamber, (3) electron shuttle from anode
compartment to anode surface, and (4) permeability of proton
exchange membrane [17].

MFC technology has been improved significantly in the
recent decades. However, it has encountered several challenges
in scale-up and practical application, such as turbulence in
each compartment, membrane resistance in the proton trans-

portation process. [21]. Coupled with those, MFCs have con-
fronted two bottleneck problems in power generation. (1)
The power production in MFCs and substrate concentrations

has direct relationships, although in a significant scope in each
system. More than a specific value of substrate concentration,
the power generation, will be prevented [17] (2). MFCs output

is restricted while high internal resistance utilizes considerable
amount of power production in MFCs [17]. It should be added
here that the proton exchange membrane (PEM), which sepa-

rates anode and cathode chambers, has been found the main
source of high internal resistance (Rin) in two chambers of
MFCs. To overcome the requirement for catalysis by oxygen
oxidation on the cathode, biocathodes have been explored"

by "Biocathode can improve oxygen oxidation in MFCs [21].
Likewise, novel designs of MFCs have been proposed to
amplify the power generation, by reducing internal resistance

by removing PEM, as follows: single-chamber MFC
(SCMFC), stacked MFC and up flow MFC [17].

Soil and sediments are derived from plant and animal detri-

tus, settlement of dead bacteria and plankton, fecal matter and
anthropogenic organic materials [10]. Sediments organic car-
bon content is generally from 0.4% to 2.2% by weight [11].

Thus, sediments organic carbon content is a sufficient power
generation source in some locations. These materials can be
consumed by exoelectrogens and directly transport electrons
outside of the cell. So, Sediment-type microbial fuel cell

(SMFC) consists of an anode electrode embedded in the anaer-
obic sediment and connected through an electrical circuit and a
cathode electrode suspended in overlying water [12,13]

In the current article several portions of an MFC including
anode, cathode and separator, which play important roles in
MFC design, are investigated.

2. Effect of anode in MFCs

Microorganisms play important roles in anode chamber and

generated electrons. These generated electrons are utilized to
reduce electron acceptors in cathode once they passed through
external circuit. Likewise, so as to complete the circuit pro-
duced protons must bore into proton exchange membrane

(PEM) from anode to the cathode. It follows logically from
what has been mentioned that this process leads to electrical
power and organic waste removal contemporarily [23].

As mentioned above Anaerobic anode compartment is one
of the main parts of MFCs. All the essential conditions to
degrade the biomass are provided in the anode chamber.

This compartment is filled with substrate, mediator (it is
optional), microorganism and the anode electrode as electron
acceptor. General reaction in the anode chamber is summa-
rized in Eq. (3).

 Active microorganism

Biodegradable organics  Co2 + H+ + e-                           (3) 

Anaerobic environment 

ð3Þ

It is necessary to point out that activation energy required for
anodic reactions must be lowered by means of commensurate
catalysts. Available bacteria in the anode chamber usually

function as catalysts [24–27].
As it is a generally acknowledged fact, there are various

agents affecting the performance of MFCs for instance, elec-

trode material, equipment configuration and so forth [22,28].
In this regard, for enhancing the performance of an MFC,
optimizing these agents would be so effective [29]. One of the

most effective factors which influences the performance of an
MFC is anodic microbial electron transfer, thus thereby ampli-
fying microbial electron transfer rate, through miscellaneous
applied manners such as adding electron mediators, and opti-

mizing cell design and electrode [30–32]. In this connection it
should be added here that electrodes are critical parts of an
MFC which are essential in enhancing the MFC efficacy

[33]. Hence, various materials have been studied at different
studies. Furthermore, ideal electrode materials should be of
ensuing features: (i) good electrical conductivity and low resis-

tance; (ii) strong biocompatibility; (iii) chemical stability and
anti-corrosion; (iv) large surface area; and (v) appropriate
mechanical strength and toughness [22].

The most frequently used materials in anode are made of
carbon materials containing: graphite fiber brush, carbon
cloth, graphite rod, carbon paper, reticulated vitreous carbon
(RVC) and carbon felt, for their stability in microbial cultures,

high electric conductivity and vast surface area [22]. In addi-
tion graphite granules (GGs) or granular activated carbon
(GAC) have a high degree of micro-porosity and catalytic

activities. Also GGs are less expensive with higher conductivity
[34].

Modification of anode electrode could be useful in promot-

ing the performance of MFCs. In this regard, recently, several
researchers have started to modify anode using different nano-
engineering techniques that are able to make easier the electron
transfer [35]. Moreover, for enhancing the power density and

enlarging the capability of electron accepting heterogeneous
fabrication methods and modification manners involving
nanomaterials have been tried [36]. Qiao et al. illustrated that

carbon nanotubes (CNTs) could amplify the electron transfer
feasibility and electrode surface area with utilizing carbon
nanotube/polyaniline nanostructure composite as anode mate-

rials [37].
One feasible manner to improve MFC output power is

using modified carbon and metal-based anodes with conduc-

tive polymers [38]. To use such organic polymers with microor-
ganism of substrate, attention must be paid to certify modified
electrode stability. Between different types of conductive
polymers, polyaniline (PANI) has been utilized mostly to

modify the anode electrode [39]. It has been illustrated that
utilizing the modified PANI polymers (fluorinated PANI
[38], and PANI/titanium dioxide composite [37]) has generated

enhanced current densities [39]. CNTs/polyaniline composite
can be used in an MFC as the anode material [36].
Moreover, the composition of composite anode could enhance



Table 1 Effect of different anodes on MFC performances.

Substrate Anode Bacteria System

configuration

Maximum power

density (mW/m2)

Refs.

Glucose Carbon paper GeobacterSPP (Firmicutes) Two-chamber 40.3 ± 3.9 [50,41]

Glucose Graphite Saccharomyces cerevisiae Two-chamber 16 [19]

Acetate Carbon paper G. sulfurreducens Two-chamber 48.4 ± 0.3 [50,41]

Lactate Carbon paper Geobacter SPP Two-chamber 52 ± 4.7 [50,41]

Ethanol _ Betaproteo bacterium Two-chamber 40 ± 2 [36,42]

Cyctenin Carbon paper Gammaproteo and

shewanellaaffinis (KMM3586)

Two-chamber 36 [51,43]

Marine sediment

reached in acetate

Graphite Deltaproteo bacterium Two-chamber 14 [52,44]

Marine sediment Noncorroding graphite Desulfurmonas SPP and . . . Two-chamber 25.4_26.6 [53,45]

Sewage sludge Graphite with Mn4+ Escherichia coli Single chamber 91 [54,46]

Sewage sludge Graphite with neutral

red (NR)

Escherichia coli Single chamber 152 [54,46]

Sewage sludge Platinum and

polyanilineco-modified

Escherichia coli Single chamber 6000 [55,47]

Glucose Composite electrode

(graphite/PTFE)

Escherichia coli Single chamber 760 [26,40]

Glucose Teflon treated carbon

fiber paper

Electrochemically active

bacteria

Two chamber (H-

tyape MFC)

15.2 [16]

Lactose ‘‘ ‘‘ ‘‘ 17.2 [15]

Cellulose Non-wet-prof carbon

paper

Cellulose derading bacteria ‘‘ 188 [56,48]

Glucose Graphite plates Mixed culture 2-chamber air-

cathode MFC

283 [8][6]

Glucose Carbon paper with PPY-

CNTs

Escherichia coli DCMFC 228 [8,49]
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the MFC performance [40]. Due to chemical stability and
hydrophobic nature, polytetrafluoroethylene (PTFE) was uti-

lized in MFCs as electrode. Also, Zhang et al. reported that
the graphite/PTFE composite with optimized 30%(w/w)
content of PTFE could be excellent anode for bioelectricity

production and the produced power density was 760 mW/m2

when Escherichia coli was selected as active biocatalyst [40].
The performance of different systems with their individual

anode was investigated in the past decades which is listed in
Table 1.

3. Effect of cathode in MFCs

Protons produced in the anode chamber migrate into the cath-
ode through the proton exchange membrane which compleate
the electrical circuit. The electrons (generated at the anode site

pursuant to Eq. (4)) travel to cathode chamber and transmit
onto oxygen. This radical oxygen and produced positive ions
in the anode participate in the following reaction to form water
which spreads by the way of the ion permeable membrane on

the cathode along with the assistance of catalysts [50] as
follows:

H2 ! 2Hþ þ 2e� ð4Þ

O2 þ 4Hþ þ 4e� ! 2H2O ð5Þ

A steady current is generated by this process with the wire

connecting the anode and cathode [50]. The concentration and
species of the oxidant (electron acceptor), proton availability,
catalyst performance, and electrode structure and its catalytic

ability affect the reaction yield of the cathode. Catalysis is
needed in anodic and cathodic reactions. Moreover, for the
fact that an appropriate catalyst can lower the activation

energy and enhance the reaction rate, the presence of a com-
mensurate catalyst is of paramount importance [51,52].
Oxygen has usually been a final electron acceptor in the cath-

ode due to its accessibility, intense oxidation potential, and not
being a chemical waste product (water is formed as the only
end product) [22], being free and producing no poisonous

end products [39].
Needless to say, the slow reduction kinetic on plain gra-

phite of oxygen normally needs the usage of a commensurate
catalyst, albeit resulting in high potential; therefore, it is one

of the restricting agents in MFCs [53]. In this regard, to allevi-
ate this challenge, Potassium Ferricyanide (K3[Fe(CN)6]) has
been proposed [22,54]. In contrast, for the fact that oxygen

does not adequately oxidize K3[Fe(CN)6], its regeneration
could be a problem; thus it must be refilled periodically [55].
Likewise, anaerobic conditions of anodic chamber are affected

by K3[Fe(CN)6], which is penetrated into anodic chamber via
the PEM [56], on the other hand, so far, Ferricyanide has been
advantageous for its low over potential on plain carbon
electrodes.

Another frequently used abiotic catalyst is Platinum owing
to the cathodic reaction. It should be added here that due to its
poisoning sensitivity toward some substances in the substrate

solution, platinum is not an appropriate catalyst in MFCs [46].
To amplify MFC performance, many researchers normally

have added alternative oxidants, i.e. artificial electron redox

mediators, into cathode compartment, such as potassium per-
manganate [28,57]. Najafpour and et al. showed that low con-
centration of potassium permanganate as the oxidizing agent
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had a very good ability to increase the current, power, and
voltage in MFC [18].

The cathode is subject to being dissolved in the compart-

ment on one side and exterior air on the opposite side [50].
Although the presence of Co as a catalyst on the air-side of
cathode is able to improve MFC performance (similar to Pt

cathode), wet-proofing may limit proton access to the catalyst
layer [58]. If oxygen diffusion of membrane to the anode could
be controlled, power output of MFC would be enhanced by

raising the air pressure of cathode [59].
To overcome the requirement for catalysis by oxygen oxi-

dation on the cathode, biocathodes have been explored
[52,60]. A biocathode, in which cathodic reactions are cat-

alyzed using microorganisms [39,61], has been used to improve
electricity production in a MFC, as a result, it can be adopted
into MFC to enhance the cathode performance instead of arti-

ficial mediators or catalysts using nitrate, sulfate, tetra-
chloroethene, fumarate, perchlorate, and trichloroethene,Co2,
H+, Fe(III), Cr(VI), U(VI) and Mn(IV) as electron acceptor

and without the help of exogenous [7,18,21,60].
Biocathodes are more beneficial in contrast to abiotic cath-

odes, as configuration and expenses could be decreased by uti-

lizing them; hence, expensive catalysts (e.g. pt) and mediators
are not needed [39]. Another advantage of biocathodes is gen-
erating practical products or removing by-products using
microbial metabolism [62]. In addition, obviating challenges

such as the requirement for electron mediators in the cathodic
and sulfur poisoning of Pt chamber could enhance the MFC
sustainability [62].
Table 2 Several reactions and attributed E0 at constant

pH[62].

Reaction pH E0 (V)

MnO2(s) + 4H+ + 3e� fi Mn2+ + 2H2O 7.2 0.6

Fe2+ fi Fe3+ + e� 7 0.36

CO2 + H2O !
hv

(CH2O)X + O2
�0.28 7

NO3
�+ 2H+ + 2e�fi NO2

�+ H2O 7 0.43

CO2 + 8H+ + 8e� fi CH4 + 2H2O 7 �0.24
Fumarate + 2H+ + 2e� fi Succinate 7 0.03

Table 3 Some of used electrodes in MFCs with maximum generate

Cathode M

Activated carbon fiber felt (ACFF) 31

m3

Air–cathode with graphite 28

Carbon felt 77

Plain carbon 67

Pt-coated carbon paper 0.3

Tubular ACFF 78

ACFF granules (1 cm) 66

Biocathode 19

Graphite felt 53

Parallel sheets of carbon paper secured by carbon fiber coated with

pt

7.2

Air–cathode with Carbon cloth 50
Based on adopted terminal electron acceptors (e.g. nitrate
and sulfate) in cathode, biocathodes can be classified into
two major categories: aerobic and anaerobic. In aerobic cate-

gories oxygen could be reduced by an aerobic biocathode.
Coupled with that, the oxidation of transition metal com-
pounds is able to be catalyzed by virtue of the biofilm which

is on the surface of cathode, for instance Fe(II) and Mn (II).
Beyond that, MFCs utilizing aerobic biocathodes could gener-
ate greater power density compared to MFCs using anaerobic

biocathodes [63]. Likewise, an MFC composed of a biocathode
is potentiated to treat surplus wastewater stream in the catho-
dic chamber [63]. Moreover, microbial activities within the
cathode chamber could be prevented by the accumulation of

microbial metabolites. Furthermore, the performance of an
MFC can cast doubt upon metabolites that serve as electron
donors for bacteria [64]. Besides, it was demonstrated that,

in the work of Zhou et al., after subtracting miscellaneous over
potentials the voltage result for the oxidation of an organic
carbon and the combined redox reaction might be of minute

value for MFC [65].
In addition, Experimental results show that the charge

transfer (part of internal resistance) of cathode decreases using

biocathode [66] (several reactions and attributed E0 of biocath-
ode are illustrated in Table 2).

The performance of cathode is considered the main limita-
tion [21,67]. To make an MFC scalable, the design of cathode

is the immense challenge [68]. However, the surface area of
cathode has insignificant effect on power output [50] and cath-
ode efficiency can be improved using high surface area materi-

als or granular materials (e.g. graphite) [69]. In contrast, one of
the important challenges in MFC configuration is identifying
materials that maximizes power generation and columbic effi-

ciency and simultaneously minimizes expenses. Some of used
materials in cathode are: carbon paper, carbon felt, carbon
brush, carbon fiber, graphite of various type, Pt (Pt is

commonly used as cathode catalyst, while alternative polymer
binders have also been assayed, such as perfluorosulfonic acid
(Nafion) [69]), Cu, Cu–Au, tungsten carbide, granular graphite
(reported as excellent material), reticulated vitreous carbon

(RVC). [21,70,71]. The requirement for catalysts is the main
difference when these materials are used for cathode [68].
Different outputs attained using heterogeneous materials as

cathode are manifested in Table 3.
d power, current and voltage.

ax power density Max current

density

Max

Voltage

Refrence

5 mW/m2 (0.7 W/

)

1.67 * 10�3 mA/m2 679 mV [69]

3 mW/m2 1210 mA m�2 440 mV [1]

mW/m2 (0.2 W/m3) 6 * 10�3 mA/m2 575 mV [69]

mW/m2 (0.1 W/m3) 1.5 mA/m2 598 mV [69]

W/m3 4.69 mA/m2 644 mV [69]

4 mW/m2 3.17 A/m2 716 mV [69]

7 W/m3 3.34 A/m2 658 mV [69]

.53 W/m3 41.78 A/m3 432 mV [21]

9 mW/m2 3145 mA/m2 742.3 mV [72]

9 W/m3 13.16 A/m3 553 mV [59]

W/m3 363 A/m3 710 mV [73]
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4. Transfer of produced protons from anode to cathode chamber

A bio-potential developed between the bacterial metabolic
activity [reduction reaction generating electrons (e�) and pro-

tons (H+)] and electron acceptor conditions (separated by a
membrane) leads to generate a bioelectricity in MFCs [74].
As it could be conjured up from what has been mentioned, sep-

arator is one of the significant parts in MFCs which physically
separates the cathodic and anodic biological reactions (cath-
ode for a single-chamber MFC) [75,76]. However, besides
the advantages of using separators, utilizing separators can

bring some not favorable aftermaths. First of all, protons pro-
duced in the anode chamber are transferred via separator, but
the permeation of substrate and oxygen is prevented by the

separator [37]. Ergo, removing separator the penetration of
substrate and oxygen will be improved; consequently, in
MFC, columbic efficiency and the activity of microorganism

will be lowered [77]. In addition, increasing pH in the cathode
chamber and reducing in anode chamber, i.e. pH splitting, are
the main challenges. It is worth mentioning that pH splitting

will decrease the performance and system stability [39,90].
These issues are raised once proton (which is not of sufficient
rate) transfers from anode chamber to cathode. Amplifying
overall internal resistance and also the overall cost of MFCs

is the other challenge of utilizing separator [76]. To overcome
these problems, various separators were developed continu-
ously in the past decade [78]. In this connection it should be

added here that the materials of diverse separators can be clas-
sified into three categories in terms of their traits of filtration as
ensuing: salt bridge, size-selective separators and ion exchange

membranes (IEMs) [78]. Needless to say, Typical ion exchange
membranes based on the sort of ionic groups fastened to the
membrane matrix could be in two major categories as anion

exchange membranes and cation exchange membranes [5].
These separators generally contain ultrafiltration membrane
(UFM) [75], salt bridge [79], bipolar membrane (BP2M) [72],
cation exchange membrane (CEM) [80,81], anion exchange

membrane (AEM) [75], glass fibers [82,83], microfiltration
membrane (MFM) [84,85], porous fabrics [86,87] and other
course pore filter materials [83].
4.1. CEM

The role of CEMs is one of the most noteworthy factors influ-

encing MFCs performance. Otherwise stated, they must func-
tion instrumentally to transport produced protons to cathode
chamber in MFCs. Moreover, CEMs must be able to prevent
the transfer of other materials such as substrate or oxygen

from anode and cathode compartments [88,69,89–91].
CEM is a widespread ion-penetrable separator and positive

charges have to be transferred through it. Connotatively

speaking, groups with negative charges are inclusive cation
exchange membranes (e.g. –PO�3 , –COO�, –C6H4O

�) attached
to the backbone of membrane which subsequently permit the

cations to pass through them, but, in contrast negative ions
are refused [92]. Hence, they are often referred to as proton
exchange membranes (PEMs) which have been extensively

utilized as separators in MFCs [78]. Thanks to low internal
resistance and high conductivity of cations, PEM is one of
the well-known applicable separators [75,83].
Different kinds of materials were used as CEM in MFCs
such as ultrex, Nafion, bipolar membranes, dialyzed mem-
brane, polystyrene and divinylbenzene with sulfuric acid

group, glass wool, nano-porous filters and microfiltration
membranes [85,93–95]. As it is generally accepted, among the
assigned membranes, Nafion is one of the most common

CEMs in MFCs [96] which was first developed by Dupont in
1970 and, consequently, fuel system utilized this membrane
as well as the industry of chlor-alkali production [97]. It is

worth reiterating that Nafion is one of the most popular
CEMs utilized most frequently, a perfluorosulfonic acid mem-
brane consisting of hydrophobic fluorocarbon backbone
(–CF2–CF2–) to which hydrophilic sulfonate groups (SO3

- )

are attached [98], and due to the existence of these negatively
charged sulfonate groups, Nafion demonstrates high conduc-
tivity to different kinds of cations [99]. As advantages, not only

Nafions are of more specific conductivity for protons and more
lifetime [5], but they also have an appropriate level of hydra-
tion and thickness, both of which affect the cell performance

[100]. Besides the encountered advantages, Nafion is not suit-
able for neutral pH and in the presence of cation species such
as Na+, K+, and NH4

+ (that 105 times higher than H+ con-

centrations). These species have more potential to transfer
through the membrane rather than protons; thus, this process
causes pH increase in the cathode chamber. It needs to be
added here that, the ability of interception of pH that is

increased in cathode compartment is a major criterion for
membrane performance [93]. Furthermore, the high cost of
Nafion (owing to the complexity of fluorine chemical structure

[101]) that includes 38% of MFCs along with the physical
instability at the temperatures higher than 100 �C [102] is the
other challenge in using Nafion as membrane material. For

the mentioned facts, researches have decided to test another
type of practical membrane [103,104]. In comparison with
Nafion, Ultrex with great mechanical stability and more

affordability is a common alternative for CEMs [93,105]. As
a further instance, Ultrex CMI 7000 is another commonly uti-
lized CEM [75,81,105]. CMI 7000 is a strong acid polymer
membrane with gel polystyrene and divinylbenzene cross-link

structure which includes numerous sulfonic acid groups. It
illustrates comparable mechanical durability, albeit a high
ohmic resistance, and comparable cation conductivity in com-

parison with Nafion [105].
Zirfon [106] and Hyflon (Solvay-Solexis, Italy) [107] are

another alternative cut-rate CEMs. Zirfon, which consists of

85 wt.% of a hydrophilic ZrO2 powder and 15 wt.% polysul-
fone, is a macro porous organ mineral material [108]. In com-
parison with Nafion, Zirfon is of higher oxygen permeability
(penetrability) which is detrimental to anodic reactions, but

its specific resistance is much lower [106]. In addition to
Zirfon, Arico et al. reported that in conductivity and chemical
stability, Hyflon is better than Nafion [109]; in contrast, it

demonstrated larger internal resistance in comparison with
Nafion. Needless to say, recent efforts have focused on
nanoparticle, and nonofibers membrane because of cost-effec-

tive materials [110,111]. In this connection it should be added
here that Rahimnejad et al. prepared Fe3O4/PES nanocompos-
ite with a variety of Fe3O4 content with applied Saccharomyces

cerevisia as biocatalyst and the result demonstrated that for
low roughness and high conductivity, the MFC performance
was affected to a considerable degree with optimized content
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(e.g. PES-15% Fe3O4) rather than Nafion and all other fabri-
cated membrane [112].

Biofilm enrichment during long-time operation occasions

membrane fouling which decreases the following factors: con-
ductivity, capacity of ion transfer and diffusion coefficient
[113]. These factors affect MFC performance negatively,

reduce electricity generation and finally enlarge operation costs
due to PEM replacement [113].

In the final analysis, it should be mentioned here that High

cost of CEM and oxygen permeability are the constraints that
have restricted the MFC performance [114]. High internal
resistance and pH splitting could be other presented barriers
[76]. One of the greatest restrictions that has limited internal

resistance and conductivity in CEM is low proton transfer
capability [115].

4.2. AEM

Due to the limitations of CEMs encountered above, research-
ers have suggested AEM which utilizes carbonate and phos-

phate as pH buffer [94] to improve proton transfer [116]. To
utilize buffer anion in AEM separator, the substrate perme-
ability is commonly higher than CEM. Kim et al. demon-

strated higher power density of nearly 0.61 W/m2 using
AEM in comparison with using CEM when 0.48 W/m2 of
power density has been obtained [75]. AEM includes ions with
positive charges (e.g. –PR+

3 , –SR+
2 , –NH+

3, COO�) that join

the membrane and transmit anions through it [5]. Another
investigation illustrated that AEM-based membrane cathode
assembly achieved much higher power of 13.1 W/m3 in com-

parison with 8.3 W/m3 when CEM was used for membrane
cathode assembly [94].

4.3. Bipolar membrane (BPM)

BPM that consists of two monopolar membranes (CEM and
AEM) is another alternative separator that has been imple-

mented in MFCs in which Protons and hydroxide ions were
conducted. As a more application, it has been used for treating
high salinity water [116].

Generally, in bipolar membrane studies, the principal

anxiety improves the electrical conductivity and reduces weight
especially cost. Ergo, metallic materials such as graphite and
stainless steel have been vastly exploited for bipolar plate

membrane. Graphite is a well-known plate for bipolar mem-
brane thanks to easy fabrication, good conductivity and low
density. Coupled with graphite, electrical conductivity and

chemical stability are the reasons for utilizing stainless steel
as another bipolar plate [117].

As the final point, in the stack version of MFC, five typical

functions are considered for every bipolar plate that supports
two adjacent cells: (i) to detach single cells in the stack, (ii)
to facilitate water management inside the cell, (iii) to transport
current away from the cell, (iv) to distribute fuel and oxidants

of fuel inside the cell, and (v) to facilitate heat management
[118].

5. Application

The main applications of MFCs developed in recent decades
are classified in the following forms:
5.1. Generation of bioelectricity

MFC is a fantastic technology that can use a wide variety of
substrates, materials, and system architectures with bacteria
to achieve bioenergy production despite the fact that power

levels in all these systems were relatively low [68].
It is particularly preferred for sustainable long-term power

applications, with potential health and safety issues [103].
Clytonbetin (2006) demonstrated if an MFC could convey

25mW of power, it would be suitable for cardiac stimulation;
however, the amount of surface area needed is quite large
[50]. The main objective of MFCs is to achieve a suitable cur-

rent and power for the application in small electrical devices.
Rahimnejad and et al. turn on ten LED lamps and one digital
clock with fabricated stacked MFC as power source and

both devices were successfully operated for the duration of
2 days [4].

5.2. Biohydrogen production

MFCs can be readily adjusted to the harvest of biohydrogen,
instead of producing electricity. Hydrogen can be accumulated
for later application [103]. MFCs supply a renewable hydrogen

source that can be donated to the overall hydrogen demand in
a hydrogen economy [119]. To generate hydrogen gas in typi-
cal MFC, anodic potential must be increased with an addi-

tional voltage of about 0.23 V or more, and also the oxygen
at the cathode chamber should be vanished [68].

5.3. Wastewater treatment

As energy source, large potential is kept in wastewaters includ-
ing diverse types of organic substrate [17,120,121]. Different

kinds of Wastewaters such as sanitary wastes, food processing
wastewater, swine wastewater and corn stover contain energy
in the form of biodegradable organic matters [103]. MFC tech-
nology that was considered to be used for wastewater treat-

ment early in 1991 [122] is favorable as a completely
different method because of capturing energy in the form of
electricity or hydrogen gas [68].

For an efficient treating system, high operational sustain-
ability and low material costs are worthwhile characteristics
[123].

Scientists have reported that to remove nitrogen and
organic matters from leachate, biological treatment is preva-
lently used as a credible and highly cost-effective Method
[124,125].

Simultaneous methane and electricity generation from
waste materials are anaerobic digestion processes with long
detention time that are suitable for high-strength wastewaters

[68]. In 2006, Rabaey et al. demonstrated that MFCs using
specific microbes were excellent techniques to remove sulfides
from wastewater [126].

Up to 90% of the COD can be removed in some cases
[123,127] and a columbic efficiency as high as 80% has been
reported [128].

The capability of MFC technology for simultaneous elec-
tricity generation and the removal of salinity from Se-contain-
ing wastewater were observed and it was concluded that at
higher serenity concentration, both power output and CE are

lower [129].
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Also MFC could be an efficient method of electricity gener-
ation and odor removal, and Kim et al. demonstrated MFC-
based technology accelerates the rate of removing odor when

the electricity generation reaches a maximum of 228 mW/m2

[130].
Puig et al. demonstrated that biofuel cells used landfill lea-

chate as a method of treating biodegradable organic matter
and electricity production even with high content of nitrogen
and salinity. The amount of removal organic matter was

8.5 kgCODm�3 d�1 when the power density was 344 mWm�3

[127].
A novel MFC-membrane bioreactor (MBR) for the treat-

ment of wastewater has recently been reported to achieve a

maximum power density of 6.0 W/m3 with the average current
of 1.9 ± 0.4 mA and good pollutant removal performance
attributed to the high biomass retention and solid rejection

[123].

5.4. Application of MFCs in biosensor

Using MFC technology as sensor for pollutant analysis and
process monitoring is another application of biofuel cells
[57]. Batteries have restricted lifetime and must be changed

or recharged; thus, MFCs are suitable for powering electro-
chemical sensors and are small telemetry systems to transmit
obtained signals to remote receivers [131,132]. To design this
type of system, having appropriate cathodic and anodic reac-

tions is the first step [132]. It is possible to use MFCs as biolog-
ical oxygen demand (BOD) sensor [53], and it is exhibited that
this type of BOD sensor has excellent operational sustainabil-

ity and reproducibility and can be kept operating for 5 years
[103].

Different types of enzymatic glucose sensors have been

developed [50]. The first type measures the amount of pro-
duced hydrogen peroxide and the lack of oxygen with the
advantages of being easily fabricated and assembling small

sized systems [133,134]. The another one uses chemical media-
tors such as ferrocene to convey electron to electrode [50].
MFCs may have many other applications besides wastewater
treatment and renewable energy. The first and practical appli-

cation of MFC is using this system for energy recovery to sus-
tainable water infrastructure [68].

Also a potential of remediating toxicants, such as phenols

and petroleum compounds is another application of MFC
[135,136].

Biological electricity from wastes produced onboard on a

spaceship is also a possible applicability [103].

6. Limitations

Power generated by the cell may not be enough to run a sensor
or a transmitter continuously. This is the principal problem
with using microbial cells. It can be solved by increasing the

surface area of the electrodes. Also the other solution is to
use a suitable power management program: the data are trans-
ferred only when enough energy is stored and this occurs by
using ultra capacitor [132,137]. Finally, the other limitation

of MFCs is that they cannot operate at extremely low temper-
atures due to the fact that microbial reactions are slow at low
temperatures [132].
7. Conclusion

As petroleum source is depleted, energy crisis encouraged
researchers in the world to consider for alternative sources of

energy. Moreover, using of fossil fuels may cause environmen-
tal pollution. Clean fuels, significantly fuel cells and biofuels,
as new sources of energy without any pollution are suitable

replacements of traditional fossil fuels. MFCs are individual
kinds of FCs which use active biocatalysts such as microorgan-
isms or enzymes to generate energy. MFCs are one of the new-
est technologies to produce energy from different sources of

substrates. Because of the promise of sustainable energy
generation from different substrates such as organic wastes,
research has been intensified in this field in the last few years.

MFCs have different applications based on generated power.
The generated power in MFC is still too low and researchers
are working to improve it for commercial application.
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