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Abstract

In this paper, we propose a modi"cation of the BFGS method for unconstrained optimization. A remarkable feature
of the proposed method is that it possesses a global convergence property even without convexity assumption on the
objective function. Under certain conditions, we also establish superlinear convergence of the method. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let f :Rn → R be continuously di;erentiable. Consider the following unconstrained optimization
problem:

minf(x); x ∈ Rn: (1.1)

Throughout the paper, we assume that the objective function f in (1.1) has Lipschitz continuous
gradients, i.e., there is a constant L¿ 0 such that

‖g(x)− g(y)‖6L‖x − y‖; ∀x; y ∈ Rn; (1.2)

where g(x) denotes the gradient of f at x and ‖ · ‖ denotes the Euclidean norm of a vector. We
will often abbreviate g(xk), f(xk), etc. as gk , fk , etc., respectively.
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Among numerous iterative methods for solving (1.1), quasi-Newton methods constitute a particu-
larly important class. During the past two decades, global convergence of quasi-Newton methods has
received growing interests. When f is convex, it was shown that Broyden’s class of quasi-Newton
methods converges globally and superlinearly if exact line search is used (see [12,6]). When inex-
act line search is used, Byrd et al. [3] proved global and superlinear convergence of the convex
Broyden’s class with Wolfe-type line search except for DFP method. Byrd and Nocedal [2] ob-
tained global convergence of BFGS method with backtracking line search. Zhang and Tewarson [15]
obtained global convergence of the preconvex Broyden’s class of methods. Li [11] proved that when
f is a convex quadratic function, DFP method still retains global convergence. There are many other
studies on global convergence of quasi-Newton methods (see, e.g., [9,13,14]). We refer to Fletcher
[8] for a recent review.

We note that these studies focused on the case where the function f is convex. What will happen
if quasi-Newton methods are applied to (1.1) where f is not convex? Under what conditions does
BFGS method converge globally and superlinearly for nonconvex minimization problems? These
questions have remained open for many years (see [7,8]). The purpose of this paper is to study these
problems. We will show that if BFGS method is slightly modi"ed, then under suitable conditions, the
modi"ed method converges globally and superlinearly even for nonconvex unconstrained optimization
problems.

We organize the paper as follows. In the next section, we give the motivation of our study and
describe the modi"ed method. In Section 3, we discuss global convergence and superlinear conver-
gence of the modi"ed method with Wolf-type line search. In Section 4, we describe a practicable
modi"ed BFGS method and establish its global and superlinear convergence. In Section 5, we extend
the results obtained in Section 4 to the algorithm with backtracking line search.

2. Motivation and algorithm

In this section, we present a modi"ed BFGS method after describing our motivation.
First, we brieLy review Newton’s method. Suppose for the moment that f is twice di;erentiable.

Then Newton’s method for solving (1.1) takes the following iterative process. Given the kth iterate
xk , we determine the Newton direction pk by

Gkpk + gk = 0; (2.1)

where Gk = G(xk) denotes the Hessian matrix of f at xk . Once pk is obtained, the next iterate
is generated by xk+1 = xk + pk . Under suitable conditions, Newton’s method converges locally and
quadratically. To enlarge the convergence domain of Newton’s method, a globalization strategy may
be employed. In particular, when Gk is positive de"nite, the vector pk determined by (2.1) is a
descent direction of f at xk . Thus, one can choose a step length k¿0 satisfying

f(xk + kpk)6f(xk) + �kg(xk)Tpk; (2.2)

where � ∈ (0; 1) is a given constant. Line search (2.2) can be ful"lled by a backtracking process of
Armijo-type, i.e., k = �ik , where � ∈ (0; 1) is a given constant and ik is the smallest nonnegative
integer i for which k=�i satis"es (2.2). Then the next iterate is given by xk+1=xk+kpk . Newton’s
method with line search is called a damped Newton method. It converges globally and quadratically
under some conditions.
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Quasi-Newton methods were developed based on Newton’s method, in which Gk is substituted
by some matrix Bk to avoid the calculation of a Hessian matrix. That is, Newton direction is
approximated by the so-called quasi-Newton direction pk generated by

Bkpk + gk = 0; (2.3)

where Bk is an approximation of G(xk). Among various quasi-Newton methods, BFGS method is
currently regarded as the most eQcient method. In this method, Bk is updated by the following
formula:

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+
�k�Tk
�Tk sk

; (2.4)

where sk = xk+1 − xk and �k = gk+1 − gk . The update formula (2.4) has the property that if Bk is
symmetric positive de"nite and �Tk sk ¿ 0, then Bk+1 is also symmetric positive de"nite. Therefore the
quasi-Newton direction pk generated by (2.3) is a descent direction of f at xk no matter whether
Gk is positive de"nite or not.

Convergence properties of BFGS method have been well studied on convex minimization problems
(see, e.g., [2,3,12–14]). Yet it is not known whether this method converges globally when it is
applied to nonconvex minimization problems even if exact line search is used. Moreover, since
G(x) is generally not positive de"nite when f is nonconvex, there seems no reason to believe that
a positive de"nite Bk still a;ords a good approximation of Gk . So, it would be reasonable to expect
that a proper modi"cation of the method is e;ective for nonconvex problems.

Recall that in the case where f is nonconvex, the Newton direction pk generated by (2.1) may
not be a descent direction of f at xk since Gk is not necessary positive de"nite. Therefore the
line search (2.2) may not be well-de"ned. To overcome this diQculty, Newton’s method has been
modi"ed in some way or other. For example, we may generate a direction pk from (2.1) in which
Gk is replaced by the matrix

SGk
�
=Gk + rk−1I; (2.5)

where I is the unit matrix and a positive constant rk−1 is chosen so that SGk is positive de"nite. For
this modi"ed Newton’s method, we have the following result.

Theorem 2.1. Let the level set

� = {x |f(x)6f(x0)}
be bounded and f be twice continuously di7erentiable on a convex set containing �. Assume
that {xk} is generated by the modi9ed Newton’s method using matrices SGk given by (2:5) and
Armijo-type line search satisfying (2:2). Suppose that {rk} is bounded above and that there exists
an accumulation point Sx of {xk} with G( Sx) being positive de9nite. Then the following statements
hold:
(i) We have

lim inf
k→∞

‖gk‖= 0: (2.6)

(ii) If we assume further that {xk} → Sx; rk → 0; and � ∈ (0; 12 ); then the convergence rate is at
least superlinear.
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(iii) If in addition; G(x) is Lipschitz around Sx and there exists a constant C¿ 0 such that
rk−16C‖gk‖ for all k; then the convergence rate is quadratic.

Proof. (i) Summing inequalities (2.2), we obtain

−
∞∑
k=0

�kgTk pk6f(x0)− lim
k→∞

f(xk)¡∞;

where the limit exists because of the descent property of {f(xk)} and the boundedness of �. In
particular, kgTk pk → 0. Let {xk}k∈K → Sx on some subsequence. Denote S= lim inf k→∞; k∈Kk¿0. If
S¿ 0, then gTk pk → 0 or equivalently −gTk SG

−1
k gk → 0 as k → ∞ with k ∈ K . Since G( Sx) is positive

de"nite and rk¿0 for each k, { SG(xk)}k∈K is uniformly positive de"nite when k is suQciently large.
Then it is easy to deduce that ‖g( Sx)‖= limk∈K; k→∞‖gk‖= 0.
If S=0, without loss of generality, we assume that limk∈K;k→∞ k =0 and SGk → SG( Sx) as k → ∞

with k ∈ K , where the latter particularly follows from the boundedness of {rk}. By the line search

criterion, when k ∈ K is suQciently large, ′k
�
= k=� does not satisfy (2.2). In other words, we have

f(xk + ′kpk)− f(xk)¿�′kg(xk)
Tpk:

Dividing by ′k and taking limits in both sides as k → ∞ we get

g( Sx)T Sp¿�g( Sx)T Sp; (2.7)

where Sp = − SG( Sx)−1g( Sx). Since G( Sx) is positive de"nite and rk is nonnegative, it is clear that
both SG( Sx) and SG( Sx)−1 are positive de"nite. Since �∈ (0; 1), (2.7) implies that g( Sx)T Sp=
−g( Sx)T SG( Sx)−1g( Sx)¿0. It then follows that g( Sx) = 0, i.e., (2.6) holds.
(ii) By assumption, we have pk =− SG(xk)−1gk → 0. Since rk → 0, we have

f(xk + pk)− f(xk)− �gTk pk = (1− �)gTk pk + 1
2p

T
k G(xk)pk + o(‖pk‖2)

=− (1− �)pT
k
SG(xk)pk + 1

2p
T
k G(xk)pk + o(‖pk‖2)

=− (1− � − 1
2 )p

T
k
SG(xk)pk − 1

2p
T
k ( SG(xk)− G(xk))pk + o(‖pk‖2)

=− ( 12 − �)pT
k
SG(xk)pk + o(‖pk‖2);

where the last equality follows from the assumption rk → 0. Since � ∈ (0; 12 ) and SG(xk) is positive
de"nite, it follows that when k is suQciently large, the unit stepsize k ≡ 1 is accepted by the line
search criterion. Thus xk+1 = xk + pk for all k large enough. Moreover, we have

0= SGkpk + gk

= SGk(xk + pk − Sx) + gk − SGk(xk − Sx)

= SGk(xk+1 − Sx) + g(xk)− g( Sx)− Gk(xk − Sx)− rk−1(xk − Sx)

= SGk(xk+1 − Sx) +

[∫ 1

0
G( Sx + t(xk − Sx)) dt − Gk

]
(xk − Sx)− rk−1(xk − Sx):
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That is,

xk+1 − Sx =− SG
−1
k

[∫ 1

0
G( Sx + t(xk − Sx)) dt − Gk

]
(xk − Sx)− rk−1 SG

−1
k (xk − Sx):

Since G( Sx) is positive de"nite and rk¿0; SGk is uniformly positive de"nite for suQciently large k.
Thus, we deduce from the above equality that there exists a positive constant M such that

‖xk+1 − Sx‖6M

{∫ 1

0
‖G( Sx + t(xk − Sx))− Gk‖ dt + rk−1

}
‖xk − Sx‖; (2.8)

which proves (ii).
(iii) From (2.8) we have that

‖xk+1 − Sx‖6M

{∫ 1

0
‖G( Sx + t(xk − Sx))− Gk‖ dt + rk−1

}
‖xk − Sx‖

6M

{∫ 1

0
‖G( Sx + t(xk − Sx))− Gk‖ dt + C‖gk‖

}
‖xk − Sx‖

= M

{∫ 1

0
‖G( Sx + t(xk − Sx))− Gk‖ dt + C‖g(xk)− g( Sx)‖

}
‖xk − Sx‖

6M (L1 + CL)‖xk − Sx‖2;
where L¿ 0 and L1¿ 0 are Lipschitz constants of g and G, respectively.

The above theorem shows that if we choose rk in a suitable way (practicable choice of rk will
be discussed in Section 4), then the modi"ed damped Newton’s method still retains fast local
convergence as well as global convergence. This fact prompts us to consider the following question:
Is it possible to modify quasi-Newton methods in such a way that Bk approximates SGk , thereby
ensuring global and superlinear convergence without convexity assumption on the problem?

To answer this question, "rst observe that since Gk+1 satis"es

Gk+1(xk+1 − xk) ≈ gk+1 − gk ;

the matrix SGk+1 will satisfy the relation

SGk+1(xk+1 − xk) = (Gk+1 + rkI)(xk+1 − xk) ≈ (gk+1 − gk) + rk(xk+1 − xk)

or equivalently

SGk+1sk ≈ �k + rksk ; (2.9)

where �k = gk+1 − gk . Therefore, it would be reasonable to require the matrix Bk+1 to satisfy (2.9)
exactly, i.e.,

Bk+1sk = yk; (2.10)
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where yk = �k + rksk . If rk is small, (2.10) can be regarded as an approximation of the ordinary
secant equation Bk+1sk = �k .

Now, we propose a modi"ed BFGS method based on the above consideration.

Algorithm 1 (Modi"ed BFGS method: MBFGS).
Step 0: Choose an initial point x0 ∈ Rn and an initial positive-de"nite matrix B0. Choose constants
�1, �2 and C such that 0¡�1¡�2¡ 1 and C¿ 0. Let k := 0.
Step 1: Solve the following linear equation to get pk :

Bkp+ gk = 0:

Step 2: Find a stepsize k ¿ 0 satisfying the Wolfe-type line search conditions:

f(xk + kpk)6f(xk) + �1kgTk pk ;

g(xk + kpk)Tpk¿�2gTk pk :
(2.11)

Moreover, if k = 1 satis"es (2.11), we take k = 1.
Step 3: Let the next iterate be xk+1 = xk + kpk .
Step 4: Let sk=xk+1−xk=kpk; �k=gk+1−gk , �k=�Tk sk=‖sk‖2 and yk=�k+rksk , where rk ∈ [0; C].
Step 5: Update Bk using the formula

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+
ykyT

k

yT
k sk

: (2.12)

Step 6: Let k := k + 1 and go to Step 1.

3. General convergence analysis

We begin with the global convergence analysis of MBFGS method. It is easy to see that if
k satis"es (2.11), then Bk+1 is symmetric positive de"nite provided that Bk is symmetric positive
de"nite. We also notice that the Lipschitz continuity of g ensures that

|�k |= |�Tk sk |
‖sk‖26

‖�k‖
‖sk‖6L; k = 1; 2; : : : :

This together with Step 4 of Algorithm 1 implies

�k + rk6L+ C; k = 1; 2; : : : : (3.1)

In other words, {�k + rk} is bounded from above. To establish global convergence of Algorithm 1,
the lower boundedness of {�k + rk} is also necessary. That is, we need throughout this section that

�k + rk¿�; k = 1; 2; : : : ; (3.2)

holds for some constant �¿0. We will show in Section 4 that inequality (3.2) is satis"ed by a
proper choice of rk .
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In the remainder of the paper, we always assume that the level set

� = {x |f(x)6f(x0)}
is bounded. It is clear from the "rst inequality of (2.11) that {f(xk)} is a nonincreasing sequence,
which ensures that limk→∞ f(xk) exists and {xk}⊂�.
To establish the global convergence of MBFGS method, we "rst prove some useful lemmas.

Lemma 3.1. Let {xk} be generated by MBFGS method. Then we have
∞∑
k=0

(−gTk sk)¡∞; (3.3)

�‖sk‖26yT
k sk6(L+ C)‖sk‖2; k = 1; 2; : : : ; (3.4)

‖yk‖6(L+ C)‖sk‖; k = 1; 2; : : : ; (3.5)

where C and � are as speci9ed in the Algorithm 1 and (3:2), and L is the Lipschitz constant of g
given by (1:2).

Proof. Since f is bounded below, (3.3) can be obtained by summing the "rst inequalities of (2.11).
Inequalities (3.4) and (3.5) follow from (3.1) and (3.2).

Lemma 3.2. There is a constant M1¿ 0 such that

tr Bk+16M1(k + 1) and
k∑
i=0

‖Bisi‖2
sTi Bisi

6M1(k + 1): (3.6)

Proof. By Lemma 3.1, taking the trace operation on both sides of (2.12) yields

tr Bk+1 = tr Bk − ‖Bksk‖2
sTk Bksk

+
‖yk‖2
yT
k sk

6 tr Bk − ‖Bksk‖2
sTk Bksk

+
(L+ C)2

�
...

6 tr B0 −
k∑
i=0

‖Bisi‖2
sTi Bisi

+
(L+ C)2

�
(k + 1):

Since Bk+1 is positive de"nite, tr Bk+1¿ 0. The last inequality implies (3.6).

Lemma 3.3. There is a constant c¿ 0 such that for k all suAciently large,
k∏
i=0

i¿ck : (3.7)



22 D.-H. Li, M. Fukushima / Journal of Computational and Applied Mathematics 129 (2001) 15–35

Proof. Taking the determinant in (2.12) we get

det Bk+1 = det

(
Bk

(
I − sksTk Bk

sTk Bksk
+
B−1
k ykyT

k

yT
k sk

))

= det Bk det
(
I − sk

(Bksk)T

sTk Bksk
+ B−1

k yk
yT
k

yT
k sk

)

= det Bk

[(
1− sTk

Bksk
sTk Bksk

)(
1 + (B−1

k yk)T
yk
yT
k sk

)
−
(
−sTk

yk
yT
k sk

)(
(Bksk)T

sTk Bksk
B−1
k yk

)]

= det Bk
yT
k sk

sTk Bksk

¿ det Bk
�Tk sk
sTk Bksk

¿ det Bk
−(1− �2)gTk sk

−kgTk sk
=

1− �2

k
det Bk

...

¿

(
k∏
i=0

1
k

)
(1− �2)k+1 det B0;

where the third equality follows from the formula (see, e.g., [5, Lemma 7:6])

det(I + u1uT2 + u3uT4 ) = (1 + uT1u2)(1 + uT3u4)− (uT1u4)(u
T
2u3)

and the second inequality follows from the second inequality of (2.11).
Since det Bk+16((1=n)tr Bk+1)n6((1=n)M1(k + 1))n by Lemma 3.2, we deduce from the above

inequality that

k∏
i=0

k¿
(1− �2)k+1 det B0

det Bk+1
¿

(1− �2)k+1 det B0

((1=n)M1(k + 1))n
:

When k is suQciently large, this implies (3.7).

Now we establish a global convergence theorem for MBFGS method. The proof is similar to the
one given in [14].

Theorem 3.4. Let {xk} be generated by MBFGS method with Bk being updated by (2:12). Then
we have

lim inf
k→∞

‖gk‖= 0: (3.8)
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Proof. For the purpose of contradiction we assume that ‖gk‖¿�¿ 0 for all k. Since Bksk=kBkpk=
−kgk , it follows from (3.3) that

∞¿
∞∑
k=0

(−gTk sk)

=
∞∑
k=0

1
k
sTk Bksk

=
∞∑
k=0

‖gk‖
‖Bksk‖ sTk Bksk

=
∞∑
k=0

‖gk‖2k sTk Bksk
‖Bk sk‖2

¿ �2
∞∑
k=0

k
sTk Bksk
‖Bksk‖2 :

Therefore, for any #¿ 0, there exists an integer k0¿ 0 such that for any positive integer q,

q

( k0+q∏
k=k0+1

k
sTk Bksk
‖Bksk‖2

)1=q
6

k0+q∑
k=k0+1

k
sTk Bksk
‖Bksk‖26#;

where the left-hand inequality follows from the geometric inequality. Thus( k0+q∏
k=k0+1

k

)1=q
6

#
q

( k0+q∏
k=k0+1

‖Bksk‖2
sTk Bksk

)1=q

6
#
q2

k0+q∑
k=k0+1

‖Bksk‖2
sTk Bksk

6
#
q2

k0+q∑
k=0

‖Bksk‖2
sTk Bksk

6
#(k0 + q+ 1)

q2
M1:

Letting q → ∞ yields a contradiction, because Lemma 3.3 ensures that the left-hand side of the
above inequality is greater than a positive constant. Thus, we get (3.8).

The above theorem shows a global convergence property of MBFGS method without convexity
assumption on f. It only relies on the assumption that f has Lipschitz continuous gradients.

Now we turn to establishing a superlinear convergence property of MBFGS method.
To do this, we need the following set of assumptions.

Assumption (A). (1) f is twice continuously di;erentiable near x∗.
(2) {xk} converges to x∗ where g(x∗) = 0 and G(x∗) is positive de"nite.
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(3) G is HTolder continuous at x∗, i.e., there exist constants %¿ 0 and M2¿ 0 such that

‖G(x)− G(x∗)‖6M2‖x − x∗‖% (3.9)

for all x in a neighborhood of x∗.
(4) {rk} satis"es

∞∑
i=0

rk ¡∞: (3.10)

Under conditions (1) and (2) in Assumption (A), there is a neighbourhood U (x∗) of x∗ such that
G(x) is uniformly positive de"nite for all x ∈ U (x∗). Therefore, there is a constant m¿ 0 such that
for all x ∈ U (x∗)

‖g(x)‖= ‖g(x)− g(x∗)‖¿m‖x − x∗‖ (3.11)

and

dTG(x)d¿m‖d‖2 for all d ∈ Rn: (3.12)

In particular, (3.11) and (3.12) hold with x = xk for all k suQciently large.
Let (k denote the angle between sk and Bksk , i.e.,

cos(k =
sTk Bksk

‖sk‖ ‖Bksk‖ =− gTk sk
‖gk‖ ‖sk‖ :

We will establish superlinear convergence of MBFGS method after proving several lemmas similar
to those in [3].

Lemma 3.5. Under conditions (1) and (2) in Assumption (A), there are constants a1¿ 0; a′1¿ 0
and a2¿ 0 and an index k ′ such that when k¿k ′,

a′1‖gk‖cos(k6‖sk‖6a1‖gk‖cos(k; (3.13)

k∏
i=0

cos2(i¿ak+1
2 : (3.14)

Proof. From (2.11) and Taylor’s expansion with (3.12), there is an index k1 such that when k¿k1

�1gTk sk¿fk+1 − fk¿gTk sk +
m
2
‖sk‖2;

which implies that

‖sk‖26− 2(1− �1)
m

gTk sk =
2(1− �1)

m
‖gk‖ ‖sk‖cos(k:

Letting a1 = 2(1− �1)=m, we get the right-hand inequality of (3.13).
Again by (2.11) and (3.4) we have

(L+ C)‖sk‖2¿yT
k sk¿�Tk sk¿− (1− �2)gTk sk = (1− �2)‖gk‖ ‖sk‖cos(k:

Letting a′1 = (1− �2)=(L+ C) yields the left-hand inequality of (3.13).
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Since ‖Bksk‖= k‖gk‖, (3.13) implies that when k¿k1
‖Bksk‖2
sTk Bksk

=
‖Bksk‖

‖sk‖cos(k
=

k‖gk‖
‖sk‖cos(k

¿
k

a1 cos2 (k
:

Multiplying these inequalities from k1 to k ¿k1 and using the geometric inequality, we get(
k∏

i=k1

i
a1 cos2 (i

)1=(k−k1+1)

6

(
k∏

i=k1

‖Bisi‖2
sTi Bisi

)1=(k−k1+1)

6
1

k − k1 + 1

k∑
i=k1

‖Bisi‖2
sTi Bisi

6
1

k − k1 + 1

k∑
i=0

‖Bisi‖2
sTi Bisi

6M1
k + 1

k − k1 + 1
;

where the last inequality follows from (3.6). Therefore we obtain for any k large enough
k∏

i=k1

cos2 (i¿

(
k∏

i=k1

i

)
a−(k−k1+1)
1 M−(k−k1+1)

1

(
k − k1 + 1
k + 1

)k−k1+1

=

(
k∏
i=0

i

)
a−(k−k1+1)
1 M−(k−k1+1)

1

(
k − k1 + 1
k + 1

)k−k1+1 k1−1∏
i=0

−1
i

¿ ck
(
a−1
1 M−1

1
k − k1 + 1
k + 1

)k−k1+1 k1−1∏
i=0

−1
i ;

where the last inequality follows from (3.7). Since k1 is a "xed index, the above inequality implies
that when k is suQciently large, say k¿k ′, (3.14) holds.

Lemma 3.6. Under conditions (1) and (2) in Assumption (A); we have for an arbitrary %¿ 0
∞∑
k=0

‖xk+1 − x∗‖% ¡∞ (3.15)

and
∞∑
k=0

)k ¡∞; (3.16)

where )k =max{‖xk − x∗‖%, ‖xk+1 − x∗‖%}.

Proof. Denote f∗ = f(x∗). First, we show that there is a constant a3¿ 0 such that

fk+1 − f∗6(1− a3 cos2 (k)(fk − f∗) (3.17)

for all k suQciently large. Indeed, (2.11) implies

fk+1 − f∗6(fk − f∗) + �1gTk sk :
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To show (3.17), it therefore suQces to verify that there is a constant a4¿ 0 such that when k is
suQciently large

gTk sk6− a4 cos2 (k(fk − f∗): (3.18)

Since x∗ satis"es g(x∗) = 0, by Taylor’s expansion, there is a constant M3¿ 0 such that fk −
f∗6M3‖xk − x∗‖2 for all k large enough. Thus from (3.11) and (3.13) we deduce that when k is
suQciently large

gTk sk = −‖gk‖ ‖sk‖cos(k

6−a′1‖gk‖2cos2 (k

6−a′1m2‖xk − x∗‖2cos2 (k

6−a′1
m2

M3
cos2 (k(fk − f∗):

Putting a4 = a′1m
2
2=M3 yields (3.18). Hence we get (3.17).

Now we prove (3.15). From Lemma 3.5 and the above discussion, we see that there exists an
index k ′1¿ 0 such that when k¿k ′1, (3.14) and (3.17) hold. Therefore

fk+1 − f∗6 (1− a3 cos2 (k)(fk − f∗)

...

6 (fk′1 − f∗)
k∏

i=k′1

(1− a3 cos2 (i)

6 (fk′1 − f∗)


 1
k − k ′1 + 1

k∑
i=k′1

(1− a3 cos2 (i)



k−k′1+1

= (fk′1 − f∗)


1− a3

1
k − k ′1 + 1

k∑
i=k′1

cos2 (i



k−k′1+1

6 (fk′1 − f∗)


1− a3


 k∏

i=k′1

cos2 (i



1=(k−k′1+1)



k−k′1+1

= (fk′1 − f∗)


1− a3

(
k∏
i=0

cos2 (i

)1=(k−k′1+1)

k′1−1∏

i=0

cos2 (i



−1=(k−k′1+1)



k−k′1+1

6 (fk′1 − f∗)


1− a3a

(k+1)=(k−k′1+1)
2


k′1−1∏

i=0

cos2 (i



−1=(k−k′1+1)



k−k′1+1

;

where the last inequality follows from (3.14) in Lemma 3.5. Since k ′1 is a constant, the second term
in the last square bracket tends to a positive constant as k goes to in"nity. Therefore, it follows that
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there is a constant �1 ∈ (0; 1) such that when k is suQciently large, fk+1 − f∗6(fk′1 − f∗)�
k−k′1+1
1 .

By Taylor’s expansion and (3.12), we have fk+1−f∗¿(m=2)‖xk+1− x∗‖2 for all k suQciently large.
Therefore, we get

‖xk+1 − x∗‖6
[
2
m
(fk+1 − f∗)

]1=2

=
√
�1

−k′+1
[
2
m
(fk′ − f∗)

]1=2 √
�1

k

, a5
√
�1

k :

Hence we obtain (3.15) for an arbitrary %¿ 0.
Finally, since )k6‖xk − x∗‖% + ‖xk+1 − x∗‖%, (3.16) follows from (3.15) directly.

Lemma 3.7. Let Assumption (A) hold. Denote Q = G(x∗)−1=2, Hk = B−1
k , Hk+1 = B−1

k+1. Then there
are positive constants bi; i = 1; 2; : : : ; 7 and - ∈ (0; 1) such that for all k suAciently large

‖Bk+1 − G(x∗)‖Q; F6(1 + b1)k)‖Bk − G(x∗)‖Q; F + b2)k + b3rk (3.19)

and

‖Hk+1 − G(x∗)−1‖Q−1 ; F6(
√
1− -/2

k + b4)k + b5rk)‖Hk − G(x∗)−1‖Q−1 ; F + b6)k + b7rk ; (3.20)

where )k = max{‖xk − x∗‖%, ‖xk+1 − x∗‖%}, ‖A‖Q; F = ‖QTAQ‖F , ‖ · ‖F is the Frobenius norm of a
matrix and

/k =
‖Q−1[Hk − G(x∗)−1]yk‖

‖Hk − G(x∗)−1‖Q−1 ; F‖Qyk‖ : (3.21)

In particular; {‖Bk‖} and {‖Hk‖} are bounded.

Proof. From the update formula (2.12) we get

‖Bk+1 − G(x∗)‖Q; F =
∥∥∥∥Bk − G(x∗)− BksksTk Bk

sTk Bksk
+
ykyT

k

yT
k sk

∥∥∥∥
Q; F

6
∥∥∥∥Bk − G(x∗)− BksksTk Bk

sTk Bksk
+
�k�Tk
�Tk sk

∥∥∥∥
Q; F

+
∥∥∥∥ykyT

k

yT
k sk

− �k�Tk
�Tk sk

∥∥∥∥
Q; F

6 (1 + b1)k)‖Bk − G(x∗)‖Q; F + b2)k +
∥∥∥∥ykyT

k

yT
k sk

− �k�Tk
�Tk sk

∥∥∥∥
Q; F

; (3.22)

where the last inequality follows from the inequality (49) in [10]. Moreover,∥∥∥∥ykyT
k

yT
k sk

− �k�Tk
�Tk sk

∥∥∥∥
Q; F

=
∥∥∥∥(�k + rksk)(�k + rksk)T

(�k + rksk)Tsk
− �k�Tk
�Tk sk

∥∥∥∥
Q; F

=
∥∥∥∥�Tk sk(�k + rksk)(�k + rksk)T − (�k + rksk)Tsk�k�Tk

(�k + rksk)Tsk(�Tk sk)

∥∥∥∥
Q; F

= rk

∥∥∥∥∥�
T
k sk(�ks

T
k + sk�Tk + rksksTk )− ‖sk‖2�k�Tk
(�k + rk)‖sk‖2(�Tk sk)

∥∥∥∥∥
Q; F



28 D.-H. Li, M. Fukushima / Journal of Computational and Applied Mathematics 129 (2001) 15–35

6 rk‖Q‖2F
∥∥∥∥∥�

T
k sk(�ks

T
k + sk�Tk + rksksTk )− ‖sk‖2�k�Tk
(�k + rk)‖sk‖2(�Tk sk)

∥∥∥∥∥
F

6 rk‖Q‖2F
�Tk sk(‖�ksTk ‖F + ‖sk�Tk ‖F + rk‖sksTk ‖F) + ‖sk‖2‖�k�Tk ‖F

(�k + rk)‖sk‖2(�Tk sk)
6 rk

‖�k‖ ‖sk‖(‖�k‖ ‖sk‖+ ‖sk‖ ‖�k‖+ rk‖sk‖2) + ‖sk‖2‖�k‖2
(�k + rk)‖sk‖2(�Tk sk)

‖Q‖2F

= rk
3‖�k‖2 + rk‖�k‖ ‖sk‖

(�k + rk)(�Tk sk)
‖Q‖2F : (3.23)

By the positive de"niteness of G(x∗), we see from (3.12) that when k is suQciently large

�Tk sk = (g(xk+1)− g(xk))T(xk+1 − xk)¿m‖xk+1 − xk‖2 = m‖sk‖2:
Notice that rk → 0 by (3.10), �k + rk¿� by (3.2), and ‖�k‖= ‖g(xk+1)− g(xk)‖6L‖sk‖ by (1.2). It
then follows from (3.23) that there is a positive constant c3 such that for all k suQciently large∥∥∥∥ykyT

k

yT
k sk

− �k�Tk
�Tk sk

∥∥∥∥
Q; F

6c3rk :

Combining this and (3.22), we get (3.19).
Now we prove (3.20). We will use Lemma 3.1 in [4] to do this. First, it is well-known that the

inverse update formula of (2.12) is given by

Hk+1 =Hk +
(sk − Hkyk)sTk + sk(sk − Hkyk)T

yT
k sk

− yT
k (sk − Hkyk)sksTk

(yT
k sk)2

=
(
I − skyT

k

yT
k sk

)
Hk

(
I − yksTk

yT
k sk

)
+

sksTk
yT
k sk

:

This is the dual form of DFP update formula in the sense that Hk ↔ Bk , Hk+1 ↔ Bk+1 and sk ↔ yk .
We also have

‖Qyk − Q−1sk‖6 ‖Q‖ ‖yk − Q−2sk‖
= ‖Q‖ ‖yk − G(x∗)sk‖
= ‖Q‖ ‖�k − G(x∗)sk + rksk‖

6 ‖Q‖
[∥∥∥∥∥
∫ 1

0
G(xk + )sk)sk d)− G(x∗)sk

∥∥∥∥∥+ rk‖sk‖
]

6 ‖Q‖
[∫ 1

0
‖G(xk + )sk)− G(x∗)‖ d)‖sk‖+ rk‖sk‖

]

6 ‖Q‖
[
M2

∫ 1

0
‖xk − x∗ + )sk‖% d)+ rk

]
‖sk‖

6 ‖Q‖
[
M2

∫ 1

0
()‖xk+1 − x∗‖+ (1− ))‖xk − x∗‖)% d)+ rk

]
‖sk‖

6 ‖Q‖(M2)k + rk)‖sk‖; (3.24)
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where M2 is the HTolder constant for G in (3.9). Moreover, there exists a constant b′¿ 0 such that
for all k large enough,

‖Qyk‖ = ‖Q(g(xk+1)− g(xk) + rksk)‖
¿ ‖Q(g(xk+1)− g(xk))‖ − rk‖Qsk‖
¿ b′‖xk+1 − xk‖ − rk‖Q‖ ‖sk‖
= (b′ − rk‖Q‖)‖sk‖; (3.25)

where the second inequality follows from the positive de"niteness of G(x∗) and the fact that xk → x∗.
Since rk → 0, (3.25) implies that there is a constant c′¿ 0 such that ‖Qyk‖¿c′‖sk‖ holds for all k
suQciently large. So, we get from (3.24)

‖Q−1sk − Qyk‖6(c′)−1‖Q‖(M2)k + rk)‖Qyk‖: (3.26)

Since )k → 0 by (3.16) and rk → 0 by (3.10), it is clear that when k is suQciently large,
‖Qyk − Q−1sk‖61‖Qyk‖ for some constant 1 ∈ (0; 13 ). Therefore, from Lemma 3.1 in [4] (with
the identi"cation s ↔ yk , y ↔ sk , B ↔ Hk , SB ↔ Hk+1, A ↔ G(x∗)−1 and M ↔ Q−1) (see also [1]),
there are constants - ∈ (0; 1) and b′4; b

′
5¿ 0 such that

‖Hk+1 − G(x∗)−1‖Q−1 ; F 6

(√
1− -/2

k + b′4
‖Q−1sk − Qyk‖

‖Qyk‖

)
‖Hk − G(x∗)‖Q−1 ; F

+ b′5
‖sk − G(x∗)−1yk‖

‖Qyk‖ ; (3.27)

where /k is de"ned by (3.21). Since (3.26), we have
‖sk − G(x∗)−1yk‖

‖Qyk‖ =
‖sk − Q2yk‖

‖Qyk‖
=

‖Q(Qyk − Q−1sk)‖
‖Qyk‖

6
‖Q‖ ‖Qyk − Q−1sk‖

‖Qyk‖
6 (c′)−1‖Q‖2(M2)k + rk):

Combining this, (3.26) and (3.24) with (3.27), we get (3.20).
Finally, since

∑∞
k=0 )k ¡∞ and

∑∞
k=0 rk ¡∞, (3.19) and (3.20) together with Lemma 3.3 in [4]

indicate that both ‖Bk − G(x∗)‖Q; F and ‖Hk − G(x∗)−1‖Q−1 ; F converge. In particular, {‖Bk‖} and
{‖Hk‖} are bounded.

Now we establish superlinear convergence of MBFGS method.

Theorem 3.8. Let Assumption (A) hold. If the parameter �1 in (2:11) is chosen to satisfy �1 ∈
(0; 12 ); then {xk} converges to x∗ superlinearly.

Proof. We "rst show that the Dennis–MorUe condition

lim
k→∞

‖(Bk − G(x∗))sk‖
‖sk‖ = 0 (3.28)
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holds. Since
√
1− t61− 1

2 t, ∀t ∈ (0; 1), ‖sk‖ → 0, )k → 0 and {‖Hk‖} is bounded, it follows from
(3.20) that there are positive constants M4 and M5 such that for all k suQciently large

‖Hk+1 − G(x∗)−1‖Q−1 ; F6(1− 1
2-/

2
k)‖Hk − G(x∗)−1‖Q−1 ; F +M4)k +M5rk ;

i.e.,
1
2-/

2
k‖Hk − G(x∗)−1‖Q−1 ; F6‖Hk − G(x∗)−1‖Q−1 ; F − ‖Hk+1 − G(x∗)−1‖Q−1 ; F +M4)k +M5rk :

Summing these inequalities we get

1
2
-

∞∑
k=k̃

/2
k‖Hk − G(x∗)−1‖Q−1 ; F ¡∞;

where k̃ is a suQciently large index such that (3.20) holds for all k¿k̃. In particular, we have
limk→∞ /2

k‖Hk − G(x∗)−1‖Q−1 ; F = 0, i.e.,

lim
k→∞

‖Q−1(Hk − G(x∗)−1)yk‖2
‖Hk − G(x∗)−1‖Q−1 ; F‖Qyk‖2 = 0:

However, since {‖Hk − G(x∗)−1‖Q−1 ; F} is bounded, this inequality implies that

lim
k→∞

‖Q−1(Hk − G(x∗)−1)yk‖
‖Qyk‖ = 0: (3.29)

Moreover we have

‖Q−1(Hk − G(x∗)−1)yk‖ = ‖Q−1Hk(G(x∗)− Bk)G(x∗)−1yk‖
¿ ‖Q−1Hk(G(x∗)− Bk)sk‖ − ‖Q−1Hk(G(x∗)− Bk) (sk − G(x∗)−1yk)‖
¿ ‖Q−1Hk(G(x∗)− Bk)sk‖ − ‖Q−1Hk(G(x∗)− Bk) (sk − G(x∗)−1�k)‖

−rk‖Q−1Hk(G(x∗)− Bk)G(x∗)−1sk‖: (3.30)

Note that

‖Q−1Hk(G(x∗)− Bk) (sk − G(x∗)−1�k)‖
= ‖Q−1Hk(G(x∗)− Bk)G(x∗)−1(G(x∗)sk − �k)‖
= ‖Q−1Hk(G(x∗)− Bk)G(x∗)−1[(G(x∗)− G(xk))sk + (G(xk)sk − �k)]‖
6‖Q−1Hk(G(x∗)− Bk)G(x∗)−1‖{‖G(x∗)− G(xk)‖ ‖sk‖+ ‖G(xk)sk − �k‖}
=o(‖sk‖)

and

rk‖Q−1Hk(G(x∗)− Bk)G(x∗)−1sk‖6rk‖Q−1Hk(G(x∗)− Bk)G(x∗)−1‖ ‖sk‖= o(‖sk‖);
where we used the fact that {‖Bk‖} and {‖Hk‖} are bounded (and hence uniformly nonsingular),
G is continuous and rk → 0. Therefore, it follows from (3.30) that for some constant m1¿ 0

‖Q−1(Hk − G(x∗)−1)yk‖¿m1‖(G(x∗)− Bk)sk‖ − o(‖sk‖): (3.31)

On the other hand, we have from (3.5) in Lemma 3.1

‖Qyk‖6‖Q‖ ‖yk‖6(L+ r)‖Q‖ ‖sk‖: (3.32)

From (3.31), (3.32) and (3.29), we conclude that the Dennis–MorUe condition (3.28) holds.
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Next we verify that  ≡ 1 for all k suQciently large. Since ‖pk‖ = ‖Hkgk‖ → 0, by Taylor’s
expansion we obtain

f(xk + pk)− f(xk)− �1g(xk)Tpk = (1− �1)g(xk)Tpk + 1
2p

T
k G(xk + S2kpk)pk

=− (1− �1)pT
k Bkpk + 1

2p
T
k G(xk + S2kpk)pk

=− ( 12 − �1)pT
k Bkpk − 1

2p
T
k (Bk − G(xk + S2kpk))pk

=− ( 12 − �1)pT
k G(x

∗)pk + o(‖pk‖2);
where S2k ∈ (0; 1) and the last equality follows from (3.28). Thus f(xk+pk)−f(xk)−�1g(xk)Tpk60
for all k suQciently large. In other words, k = 1 satis"es the "rst inequality of (2.11) for all k
suQciently large.

On the other hand, we have

g(xk + pk)Tpk − �2g(xk)Tpk = (g(xk + pk)− g(xk))Tpk + (1− �2)g(xk)Tpk

=pT
k G(xk + S2

′
kpk)pk − (1− �2)pT

k Bkpk

=pT
k G(xk + S2

′
kpk)pk − (1− �2)pT

k G(xk)pk + o(‖pk‖2)
= �2pT

k G(xk)pk + o(‖pk‖2);
where S2

′
k ∈ (0; 1). So we have g(xk +pk)Tpk¿�2gTk pk , which means that k =1 satis"es the second

inequality of (2.11) for all k suQciently large. Therefore, we assert that the unit stepsize is accepted
when k is suQciently large. Consequently, we can deduce that {xk} converges superlinearly.

4. A practicable MBFGS method

In Section 3, we have proposed a general modi"cation of BFGS method. We have also shown
that if rk is chosen to satisfy (3.2) then under appropriate conditions, the modi"ed BFGS method
converges globally. If in addition (3.10) holds, then the convergence rate is superlinear. In other
words, the global and superlinear convergence of MBFGS method depends on the choice of {rk}.
Therefore, it is important to select {rk} appropriately so that it is practicable and satis"es (3.2) and
(3.10). The following theorem shows that rk =O(‖gk‖) is a suitable choice.

Theorem 4.1. Suppose that the level set � is bounded. Let {xk} be generated by MBFGS method
with Bk being updated by (2:12). If the parameters rk are chosen as rk = #k‖gk‖; where #6#k6 S#
for all k with some constants 0¡#¡ S#; then we have

lim inf
k→∞

‖gk‖= 0: (4.1)

If in addition; conditions (1)–(3) in Assumption (A) hold and the parameter �1 in (2:11) is chosen
to satisfy �1 ∈ (0; 12 ); then {xk} converges superlinearly.

Proof. Denote by SM an upper bound of {‖gk‖} on �. It is obvious that rk6 S# SM . This means that
rk varies in a bounded interval [0; S# SM ].
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To prove (4.1), we assume to the contrary that ‖gk‖¿� holds for all k with some constant �¿ 0.
Then we have

�k + rk =
�Tk sk
‖sk‖2 + #k‖gk‖¿− (1− �2)gTk sk

‖sk‖2 + #�¿#�;

where the "rst inequality follows from (2.11). This shows that inequality (3.2) holds with � = #�.
Therefore, by Theorem 3:1 we get a contradiction.

If in addition, conditions (1)–(3) in Assumption (A) hold, then we get from (3.12) that �Tk sk =
sTk
∫ 1
0 G(xk + )sk) d) sk¿m‖sk‖2 for all k large enough. Thus

�k + rk =
�Tk sk
‖sk‖2 + #k‖gk‖¿ �Tk sk

‖sk‖2¿m:

This shows that (3.2) holds for all k suQciently large with �= m.
Moreover, Lemma 3.6 indicates that conditions (1) and (2) in Assumption (A) imply

∑∞
k=0 ‖xk −

x∗‖¡∞. Since

rk = #k‖gk‖= #k‖g(xk)− g(x∗)‖6 S#L‖xk − x∗‖;
it follows that {rk} satis"es (3.10), i.e., condition (4) in Assumption (A) is ful"lled. Therefore,
from Theorem 3.8 we get the superlinear convergence of {xk}. This completes the proof.

5. Backtracking line search

In this section, we extend the results obtained in the previous sections to MBFGS method with
backtracking line search. Speci"cally, we consider the algorithm in which line search condition (2.11)
is replaced by the following inequality:

f(xk + kpk)6f(xk) + �kgTk pk ; (5.1)

where � ∈ (0; 1) is a given constant and k is the largest element in the set {1; �; �2; : : :} with
� ∈ (0; 1) which satis"es (5.1).

However, in this case, the condition yT
k sk ¿ 0 may fail to be ful"lled and the hereditary positive

de"niteness of Bk is not guaranteed any more. To cope with this defect, we further modify the vector
yk as yk = �k + tk‖gk‖sk , where tk ¿ 0 is determined by

tk = 1 +max
{
− �Tk sk
‖sk‖2 ; 0

}
: (5.2)

Then it is easy to see that we always have yT
k sk¿‖gk‖ ‖sk‖2.

With this modi"cation, we present the following algorithm.

Algorithm 2 (Modi"ed BFGS method with backtracking line search).
Step 0: Choose an initial point x0 ∈Rn, an initial positive de"nite matrix B0, and constants
� ∈ (0; 1) and � ∈ (0; 1). Let k := 0.
Step 1: Solve the following linear equation to get pk :

Bkp+ gk = 0: (5.3)
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Step 2: Find the smallest nonnegative integer j, say jk , satisfying

f(xk + �jpk)6f(xk) + ��jgTk pk (5.4)

and let k = �jk .
Step 3: Let the next iterate be xk+1 = xk + kpk .
Step 4: Update Bk using the formula

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+
ykyT

k

yT
k sk

; (5.5)

where sk = xk+1 − xk = kpk and yk = �k + tk‖gk‖sk with tk given by (5.2).
Step 5: Let k := k + 1 and go to Step 1.
We note that the di;erence between Algorithms 1 and 2 lies in the line search (Step 2) and the

expression of yk .

Lemma 5.1. Suppose that the level set � is bounded. Let {xk} be generated by Algorithm 2. If
‖gk‖¿# holds for all k with some constant #¿ 0; then there are positive constants 1j; j = 1; 2; 3
such that; for any k; the inequalities

‖Bisi‖611‖si‖ and 12‖si‖26sTi Bisi613‖si‖2 (5.6)

hold for at least a half of the indices i ∈ {1; 2; : : : ; k}.

Proof. It is easy to see that {xk}⊂� and ‖yk‖6C‖sk‖ for some positive constant C. By the choice
of tk , we have yT

k sk¿‖gk‖ ‖sk‖2¿#‖sk‖2. Therefore, the proof follows from that of Theorem 2.1
in [2].

Lemma 5.2. Let the level set � be bounded. If ‖gk‖¿# holds for all k with some constant #¿ 0;
then there is a positive constant S such that i¿ S for all i ∈ J = {i | (5:6) holds}.

Proof. It suQces to consider the case i �= 1. By the line search rule, we see that ′i ≡ i=� does
not satisfy inequality (5.1), i.e.,

f(xi + ′ipi)− f(xi)¿�′ig
T
i pi: (5.7)

By the mean-value theorem and (1.2) we have

f(xi + ′ipi) = f(xi) + ′ig(xi)
Tpi + ′i(g(xi + 2i′ipi)− g(xi))Tpi

6f(xi) + ′ig(xi)
Tpi + (′i)

2L‖pi‖2;
where 2i ∈ (0; 1). Substituting this into (5.7), we get for all i ∈ J ,

′iL‖pi‖2 ¿−(1− �)g(xi)Tpi

= (1− �)pT
i Bipi

¿ (1− �)12‖pi‖2;
where the last inequality follows from (5.6). This means that ′i¿((1 − �)=L)12 and hence i =
′i�¿(1− �)12�=L, S¿ 0 for all i ∈ J .

A global convergence theorem for Algorithm 2 is now stated as follows.
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Theorem 5.1. Let the level set � be bounded and {xk} be generated by Algorithm 2. Then we
have

lim inf
k→∞

‖gk‖= 0:

Proof. Suppose to the contrary that ‖gk‖¿# holds for all k with some #¿ 0. Summing (5.1) we
have

∞¿
∞∑
k=0

(−gTk sk)

=
∞∑
k=0

‖gk‖2k sTk Bksk
‖Bksk‖2

¿ #2
∞∑
k=0

k
sTk Bksk
‖Bksk‖2

¿ #2
∑
k∈J

k
sTk Bksk
‖Bksk‖2

¿ #2 S
∑
k∈J

sTk Bksk
‖Bksk‖2 :

Then, in a similar manner to the proof of Theorem 3.4, we can prove the theorem.

It is easy to see that if conditions (1) and (2) in Assumption (A) hold, then tk ≡ 1 holds for all
k suQciently large. Therefore, we can establish superlinear convergence of Algorithm 2 in a similar
manner to Theorem 3:2.

Theorem 5.2. Let conditions (1)–(3) in Assumption (A) hold. If the parameter � in (5:4) is chosen
to satisfy � ∈ (0; 12 ); then the sequence {xk} generated by Algorithm 2 converges to x∗ superlinearly.

Proof. Omitted.
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