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Abstract

In this paper, we propose a modification of the BFGS method for unconstrained optimization. A remarkable feature
of the proposed method is that it possesses a global convergence property even without convexity assumption on the
objective function. Under certain conditions, we also establish superlinear convergence of the method. (©) 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let f:R" — R be continuously differentiable. Consider the following unconstrained optimization
problem:

min f(x), xe&€ R" (L.1)

Throughout the paper, we assume that the objective function f in (1.1) has Lipschitz continuous
gradients, i.e., there is a constant L > 0 such that

l9() — g <Llx = yll,  vxy e R, (1.2)

where ¢g(x) denotes the gradient of f at x and || - || denotes the Euclidean norm of a vector. We
will often abbreviate g(x;), f(x;), etc. as gi, fi, etc., respectively.
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Among numerous iterative methods for solving (1.1), quasi-Newton methods constitute a particu-
larly important class. During the past two decades, global convergence of quasi-Newton methods has
received growing interests. When f is convex, it was shown that Broyden’s class of quasi-Newton
methods converges globally and superlinearly if exact line search is used (see [12,6]). When inex-
act line search is used, Byrd et al. [3] proved global and superlinear convergence of the convex
Broyden’s class with Wolfe-type line search except for DFP method. Byrd and Nocedal [2] ob-
tained global convergence of BFGS method with backtracking line search. Zhang and Tewarson [15]
obtained global convergence of the preconvex Broyden’s class of methods. Li [11] proved that when
f is a convex quadratic function, DFP method still retains global convergence. There are many other
studies on global convergence of quasi-Newton methods (see, e.g., [9,13,14]). We refer to Fletcher
[8] for a recent review.

We note that these studies focused on the case where the function f is convex. What will happen
if quasi-Newton methods are applied to (1.1) where f is not convex? Under what conditions does
BFGS method converge globally and superlinearly for nonconvex minimization problems? These
questions have remained open for many years (see [7,8]). The purpose of this paper is to study these
problems. We will show that if BFGS method is slightly modified, then under suitable conditions, the
modified method converges globally and superlinearly even for nonconvex unconstrained optimization
problems.

We organize the paper as follows. In the next section, we give the motivation of our study and
describe the modified method. In Section 3, we discuss global convergence and superlinear conver-
gence of the modified method with Wolf-type line search. In Section 4, we describe a practicable
modified BFGS method and establish its global and superlinear convergence. In Section 5, we extend
the results obtained in Section 4 to the algorithm with backtracking line search.

2. Motivation and algorithm

In this section, we present a modified BFGS method after describing our motivation.

First, we briefly review Newton’s method. Suppose for the moment that f is twice differentiable.
Then Newton’s method for solving (1.1) takes the following iterative process. Given the kth iterate
x;, we determine the Newton direction p; by

Gy pr + g« =0, (2.1)

where G, = G(x;) denotes the Hessian matrix of f at x;. Once p; is obtained, the next iterate
is generated by x;,.; = x; + p;. Under suitable conditions, Newton’s method converges locally and
quadratically. To enlarge the convergence domain of Newton’s method, a globalization strategy may
be employed. In particular, when Gj is positive definite, the vector p; determined by (2.1) is a
descent direction of f at x;. Thus, one can choose a step length 4, >0 satisfying

F ok + 2epe) < f(x) 4+ 0249 (xi)" P (2.2)

where ¢ € (0,1) is a given constant. Line search (2.2) can be fulfilled by a backtracking process of
Armijo-type, i.e., A, = p%, where p € (0,1) is a given constant and i; is the smallest nonnegative
integer i for which 4, =p' satisfies (2.2). Then the next iterate is given by x;; =x; + A pr. Newton’s
method with line search is called a damped Newton method. It converges globally and quadratically
under some conditions.
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Quasi-Newton methods were developed based on Newton’s method, in which G, is substituted
by some matrix B, to avoid the calculation of a Hessian matrix. That is, Newton direction is
approximated by the so-called quasi-Newton direction p; generated by

Bipr + 9 =0, (2.3)

where B, is an approximation of G(x;). Among various quasi-Newton methods, BFGS method is
currently regarded as the most efficient method. In this method, B; is updated by the following
formula:

BkSkS/-gBk VkV;{
5 Bisi TSk

Biy1 =B — (2.4)
where s, = x;.1 — x; and Y, = gi1 — gx. The update formula (2.4) has the property that if B, is
symmetric positive definite and y;s; > 0, then By, is also symmetric positive definite. Therefore the
quasi-Newton direction p;, generated by (2.3) is a descent direction of f at x, no matter whether
G is positive definite or not.

Convergence properties of BFGS method have been well studied on convex minimization problems
(see, e.g., [2,3,12-14]). Yet it is not known whether this method converges globally when it is
applied to nonconvex minimization problems even if exact line search is used. Moreover, since
G(x) is generally not positive definite when f is nonconvex, there seems no reason to believe that
a positive definite B, still affords a good approximation of Gy. So, it would be reasonable to expect
that a proper modification of the method is effective for nonconvex problems.

Recall that in the case where f is nonconvex, the Newton direction p, generated by (2.1) may
not be a descent direction of f at x;, since G, is not necessary positive definite. Therefore the
line search (2.2) may not be well-defined. To overcome this difficulty, Newton’s method has been
modified in some way or other. For example, we may generate a direction p; from (2.1) in which
G, is replaced by the matrix

GkéGk + 1, (2.5)

where [ is the unit matrix and a positive constant »;_; is chosen so that G, is positive definite. For
this modified Newton’s method, we have the following result.

Theorem 2.1. Let the level set

Q={x|f(x)<f(x0)}

be bounded and f be twice continuously differentiable on a convex set containing Q. Assume
that {x;} is generated by the modified Newton’s method using matrices G, given by (2.5) and
Armijo-type line search satisfying (2.2). Suppose that {r;} is bounded above and that there exists
an accumulation point X of {x;} with G(x) being positive definite. Then the following statements
hold:

(i) We have

li}{n inf ||g;|| = 0. (2.6)

(ii) If we assume further that {x;} — X, r, — 0, and o € (0,3), then the convergence rate is at
least superlinear.
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(i) If in addition, G(x) is Lipschitz around X and there exists a constant C >0 such that
ri—1 <Cl||gil|| for all k, then the convergence rate is quadratic.

Proof. (i) Summing inequalities (2.2), we obtain
= oGl P <[ (x0) — Jim f(x) < oo,
k=0

where the limit exists because of the descent property of {f(x;)} and the boundedness of Q. In
particular, A,g; px — 0. Let {x; hiex — X on some subsequence. Denote 4= liminf, . rexd =0. If

2> 0, then dgr pr — 0 or equivalently —g,{ék_lgk — 0 as k — oo with k£ € K. Since G(x) is positive
definite and 7, >0 for each k, {G(x;)}cex is uniformly positive definite when k is sufficiently large.
Then it is easy to deduce that ||g(X)|| = limgex. x—oo||gk|| = O.

If 1= 0, without loss of generality, we assume that limycx 4o 4x =0 and G, — C_?()E) as k — oo
with k € K, where the latter particularly follows from the boundedness of {r;}. By the line search

criterion, when k € K is sufficiently large, /; = Av/p does not satisfy (2.2). In other words, we have
FOx+ 4 pi) = £ () > 04.9(x)" P

Dividing by 4, and taking limits in both sides as k — oo we get
9(x)' p=ag(X)' p, (2.7)

where p = —G(¥)"'g(x). Since G(¥) is positive definite and r; is nonnegative, it is clear that
both G(¥) and G(x)~' are positive definite. Since o€ (0,1), (2.7) implies that ¢(¥)" p=
—g(X)"G(X)"'g(x)=0. It then follows that g(x) =0, i.e., (2.6) holds.

(i1) By assumption, we have p;, = —(_?(xk)_lgk — 0. Since 7, — 0, we have

S G+ p) = f() = ogp pr = (1 = 0)gy pi + 3 P GOx) pi + o[ pe1*)
=—(1 = 0)pi Gx) pi + 3 Pi G(xi) pr + o(|| pil*)
=—(1—0—HpiGlxx)pr — 1 P (G(xi) — Gx)) i + o] pel*)
== (5 = )P GCx) pi + o(|| pil).

where the last equality follows from the assumption r, — 0. Since o € (0, %) and G(x;) is positive
definite, it follows that when k is sufficiently large, the unit stepsize 4, = 1 is accepted by the line
search criterion. Thus x;,; =x; + p; for all £ large enough. Moreover, we have

0=Gipi + g
=G5 + pr — X) + g — Gi(xp — X)
= Gi(xp1 — %) + g(xx) — 9(X) — Gy — %) — 11 (3 — X)

= G — )+ / G + 1 — £))dt — Gy | (i — F) — res (s — ).
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That is,
- 1| [ - - -—1 _
Xy — X =—G, [/o G(x + t(x; —x))dt — le (xf —X%) — 121G, (xp —X).

Since G(x) is positive definite and r, >0, G, is uniformly positive definite for sufficiently large k.
Thus, we deduce from the above equality that there exists a positive constant M such that

1
xes — 5| <M {/0 GG + t(x — %)) — Gi|| dr + rk_l} e — 5, (2.8)

which proves (ii).
(iii) From (2.8) we have that

1
v = 5 < { [ 166 + o —#) = Gl as + } v
1
<M { 166+ s~ ) - Gl dr + cugkn} e |

1
=M {/ GG+ 1 = ) = Gl de + Cllg(x) —goan} e — 51

< M(L; + CL)||x; — x||%,

where L > 0 and L; > 0 are Lipschitz constants of g and G, respectively. [J

The above theorem shows that if we choose »; in a suitable way (practicable choice of »;, will
be discussed in Section 4), then the modified damped Newton’s method still retains fast local
convergence as well as global convergence. This fact prompts us to consider the following question:
Is it possible to modify quasi-Newton methods in such a way that B, approximates G, thereby
ensuring global and superlinear convergence without convexity assumption on the problem?

To answer this question, first observe that since Gy, satisfies

G (X1 — Xk) = g1 — Gis
the matrix C_ikH will satisfy the relation
Gk+1(xk+l = X)) = (Gror + red Yo — X)) = (G — gx) + 1 — xx)
or equivalently
Gri1Sk = P + sk, (2.9)

where y; = gi.1 — gi. Therefore, it would be reasonable to require the matrix B, to satisfy (2.9)
exactly, i.e.,

B 1Sk = i, (2.10)
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where y, =y, + risp. If 7 is small, (2.10) can be regarded as an approximation of the ordinary
secant equation By, Sy = Vs.
Now, we propose a modified BFGS method based on the above consideration.

Algorithm 1 (Modified BFGS method: MBFGS).
Step 0: Choose an initial point x, € R” and an initial positive-definite matrix By. Choose constants
01, 0, and C such that 0 <o, <0, <1 and C > 0. Let £:=0.
Step 1: Solve the following linear equation to get py:

Bip+ 9 =0.

Step 2: Find a stepsize /; > 0 satisfying the Wolfe-type line search conditions:
S G+ Aepi) < f (%) + 0174y Pis @11
g0k + 24 pi)' P = 0295 i '

Moreover, if 4, =1 satisfies (2.11), we take 4, = 1.
Step 3: Let the next iterate be x; . = x; + A pr.
Step 4: Let sy =X 1 — Xk =X P> Yk =Yis1— 9> Me=7i5x/|Isx||* and yy =7y; +resy, where 7 € [0, C].
Step 5: Update B, using the formula

T T
Bisesy B i

T T °
S, Bisi Vi Sk

Bii1 =B — (2.12)

Step 6: Let k:=k + 1 and go to Step 1.

3. General convergence analysis

We begin with the global convergence analysis of MBFGS method. It is easy to see that if
A satisfies (2.11), then B, is symmetric positive definite provided that B, is symmetric positive
definite. We also notice that the Lipschitz continuity of g ensures that

T
| = |yks"2| B S
llsill® [l

This together with Step 4 of Algorithm 1 implies
nk—l—rk<L—|—C, k:1,2, . (31)

In other words, {n; + r;} is bounded from above. To establish global convergence of Algorithm 1,
the lower boundedness of {n; + r;} is also necessary. That is, we need throughout this section that

77k+”k>8, k:1527~": (32)

holds for some constant ¢>0. We will show in Section 4 that inequality (3.2) is satisfied by a
proper choice of 7.
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In the remainder of the paper, we always assume that the level set

Q={x|f(x)<f(x0)}

is bounded. It is clear from the first inequality of (2.11) that { f(x;)} is a nonincreasing sequence,
which ensures that lim;_ ., f(x;) exists and {x;} C Q.
To establish the global convergence of MBFGS method, we first prove some useful lemmas.

Lemma 3.1. Let {x;} be generated by MBFGS method. Then we have

> (—gise) < o, (3.3)
k=0

ellsel* <yisi <L+ Ollsell?, k=1,2,..., (3.4)
[l <@+ Osill, k=1.2,..., (3.5)

where C and ¢ are as specified in the Algorithm 1 and (3.2), and L is the Lipschitz constant of ¢
given by (1.2).

Proof. Since f is bounded below, (3.3) can be obtained by summing the first inequalities of (2.11).
Inequalities (3.4) and (3.5) follow from (3.1) and (3.2). O

Lemma 3.2. There is a constant M, > 0 such that

1B:si|*
TB[ S

tr B <Mi(k+1) and Z

i=0

<M (k +1). (3.6)

Proof. By Lemma 3.1, taking the trace operation on both sides of (2.12) yields

B 2 2
e —uwp, VBl Ll
S, Bisi Vi Sk
Bysi||? L+ C)?
<tB — ||TkSk|| (L+C)
Sy BrSk e

Bsil|> (L+C)
tB—ZHTBL’ - (k+1).

Since By, is positive definite, tr By, > 0. The last inequality implies (3.6). O

Lemma 3.3. There is a constant ¢ > 0 such that for k all sufficiently large,

[[4=¢ (3.7)
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Proof. Taking the determinant in (2.12) we get

TB 371 T
det B = d6t<Bk <1 _ SiSiDi + k )’kJ’k>>

T T
Sy By Vi Sk

B T T
— det By det <I—sk( K| gy, y")

SszSk k ky;?sk
By ) ( _ Vi Vi (Bisi)'
=detB; (1 —sf 1+ B y) =) — [ —sf =—— B!
k [( SkSEBkSk +( k yk) y,fsk Sk y,fsk Sszsk k Vi
T
YiSk
= detB
k s,{Bksk
T
VieSk
> detB
k SszSk
(1 — T
S U1
_ikgksk
1 —
= y % detBk

4

k
1
= (H ) (1 — 02)k+1 detBo,

i=0 z
where the third equality follows from the formula (see, e.g., [5, Lemma 7.6])
det(/ + wyuy + usuy) = (14 ujup)(1 4 ugug) — (g uq )(uyu3)

and the second inequality follows from the second inequality of (2.11).
Since det By <((1/n)tr By )" <((1/n)M(k + 1))" by Lemma 3.2, we deduce from the above
inequality that
k o k+1 _ k+1
H/lk>(1 62) detBO>(1 0'2) detBo'
0 det By, ((1/m)M,(k + 1))

When £ is sufficiently large, this implies (3.7). O

Now we establish a global convergence theorem for MBFGS method. The proof is similar to the
one given in [14].

Theorem 3.4. Let {x;} be generated by MBFGS method with B, being updated by (2.12). Then
we have

li?linf llg|| = 0. (3.8)
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Proof. For the purpose of contradiction we assume that ||g;|| =7 > 0 for all k. Since Bysy =/ By pr=
—Avgy, it follows from (3.3) that

o0 > Z( gksk)
= Z fSkBkSk
k=0 z
ol
|| Besi|| "
> S BkSk
= ol A
,; (1B sel|?
) i SkBkSk
=27 )\,k
kz:% (| Brsi?

Therefore, for any { > 0, there exists an integer k, > 0 such that for any positive integer g,

ko+q T Va ko+q
S, Bisk 1 BkSk
|| Dy —k < § <{,
1 ( "||Bkskr\2> “IBescl?

k=ko+1 k=ko+1

where the left-hand inequality follows from the geometric inequality. Thus

1/ 1/

T ) <5 1f 1z’
/L/ — B —
k &S szsk

k=ko+1 9 \ kZigr1

ki
e Oi:q [ Bisi|®
~

2 T
9 o1 S Bisi

lgf [[Besi|?
\ qz k=0 SkBkSk
< (ko +q+1)
7
Letting ¢ — oo yields a contradiction, because Lemma 3.3 ensures that the left-hand side of the
above inequality is greater than a positive constant. Thus, we get (3.8). [

M.

The above theorem shows a global convergence property of MBFGS method without convexity
assumption on f. It only relies on the assumption that f has Lipschitz continuous gradients.

Now we turn to establishing a superlinear convergence property of MBFGS method.

To do this, we need the following set of assumptions.

Assumption (A). (1) f is twice continuously differentiable near x*.
(2) {xx} converges to x* where g(x*) =0 and G(x*) is positive definite.
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(3) G is Holder continuous at x*, i.e., there exist constants v > 0 and M, > 0 such that
1G(x) = G| <M lx — x| (3.9)

for all x in a neighborhood of x*.
(4) {r} satisfies

Z re < 00. (3.10)
=0

Under conditions (1) and (2) in Assumption (A), there is a neighbourhood U(x*) of x* such that
G(x) is uniformly positive definite for all x € U(x*). Therefore, there is a constant m > 0 such that
for all x € U(x*)

l9CO = [lg(x) — g(x™)[| Zmllx — x7| (3.11)
and
d"G(x)d=m|d|* forall d € R". (3.12)
In particular, (3.11) and (3.12) hold with x =x; for all k£ sufficiently large.
Let ¢, denote the angle between s; and Bysy, i.c.,
coS Py = $iBisk =— 9 .
Isell [1Brsell - llgill [lsl

We will establish superlinear convergence of MBFGS method after proving several lemmas similar
to those in [3].

Lemma 3.5. Under conditions (1) and (2) in Assumption (A), there are constants a; > 0, a] > 0
and a, > 0 and an index k' such that when k=k',

ay||gxl|cos ¢x <||si|| <ail|gx[|cos . (3.13)
K

[ cos’d:=d5"". (3.14)
i=0

Proof. From (2.11) and Taylor’s expansion with (3.12), there is an index k; such that when k >k,

m
019,85k = fer — fe=gise + 0l el

which implies that

2(1 —oay) 2(1 — 1)
Il < = == = s = = = llgellllsellcos .

Letting a; =2(1 — a,)/m, we get the right-hand inequality of (3.13).
Again by (2.11) and (3.4) we have

L+ O)sell> = yisi=visi= — (1 — a2)gisi = (1 — 62)|| gk | ||k || cos .

Letting a} = (1 — g2)/(L + C) yields the left-hand inequality of (3.13).
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Since ||Bysi|| = Allgk]l, (3-13) implies that when k >k
Besell® _ M1Besell  _ Aellgell  _ &
SiBisy  |Iskllcos i ||skllcos dr T aj cos? ¢y

Multiplying these inequalities from k; to & > k; and using the geometric inequality, we get

1/(k—ki+1) 1/(k—ki+1)
ﬁ i < ﬁ [1Bssi|?
a, cos? ¢; = Py S;Bs;

i=k;

< 1 = ||Bisi|?

= k— kl + 1 —t SI-TBI‘SZ‘

< 1 Z [|Bisi|

k— k] + 1 i—0 S?B,’Si
k+1

<My ——,
k—k+1
where the last inequality follows from (3.6). Therefore we obtain for any k£ large enough

k k k—ki+1
h— —(h— k—Fk +1 !
2 (k—ky+1) (k—ky+1) 1
||cos P = ||/1,~ M, -
¢ < )al : < k+1 )

i=ky i=k
k k—ki+1 k-1
G —(h— k—k +1 ‘
_ | I (k—ki+1) (k—ki+1) 1 I I -1
= <i_0 /L*) al Ml (k—|—1> 11 }“i
k _ kl + 1>k—k1+1 ki —1 }Aﬁl
k+1 Ii:IO o

where the last inequality follows from (3.7). Since k; is a fixed index, the above inequality implies
that when £ is sufficiently large, say k=k’, (3.14) holds. [

> o (allMll

Lemma 3.6. Under conditions (1) and (2) in Assumption (A), we have for an arbitrary v > 0

Z IXe1 —x"||" < o0 (3.15)
k=0

and
> 1 < oo, (3.16)
k=0

where 1, = max{|jxy — x*||", |1 —x*||"}

Proof. Denote f. = f(x*). First, we show that there is a constant a; > 0 such that

feot = fe <1 = asc08’ ¢ )(fi — 1) (3.17)
for all k£ sufficiently large. Indeed, (2.11) implies

Sis1 — [ <Ufi — f) + 01908k
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To show (3.17), it therefore suffices to verify that there is a constant a;, > 0 such that when £ is
sufficiently large

gisi < — ayco8” P fi — f)- (3.18)

Since x* satisfies g(x*) = 0, by Taylor’s expansion, there is a constant M3 > 0 such that f; —
S <Ms||x, — x*||* for all k large enough. Thus from (3.11) and (3.13) we deduce that when £ is
sufficiently large

9ise = —llgil Isellcos ¢

—d[lgel?

< cos’ ¢y
< —aym’|lx — x*|Pcos” ¢y

2
’ m
< —4a; M, cos” ¢ (fi — fo).

Putting a, = a,m3/M; yields (3.18). Hence we get (3.17).
Now we prove (3.15). From Lemma 3.5 and the above discussion, we see that there exists an
index k; > 0 such that when k£ >4j, (3.14) and (3.17) hold. Therefore

Jest = fo < (1 —azco8® ) fi — f)

A

k
< (S — LTI — ascos® §)
i=k
- X . k—k{+1
< (fk,’ — 1) k—k +1 Z(l — as cos’ ¢i)]
1

PR
i=k|

. k—k{+1
1 2
= —f) |1 _a3m§005 ¢z:|

k—k+1

F—
i=k|

r . 1/(k—k]+1)T
<y —f)|1-a (Hcosz<f>i>

‘ VOe—k{+1) /11 —1J(k—k[+1)
= —f) |l —a <H cos’ d)z) H cos’ dh)
i=0 i=0

k—k{+1

i=0

— e —l/(k—kll+l) k*k{+1
1
k+1)/(k—k! +1
< i = f) |1 = aad e ><Hcos2¢i) ,

where the last inequality follows from (3.14) in Lemma 3.5. Since 4| is a constant, the second term
in the last square bracket tends to a positive constant as k£ goes to infinity. Therefore, it follows that
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there is a constant p; € (0,1) such that when k is sufficiently large, fi11 — fi <(fiy — f*)plf_k‘lﬂ.
By Taylor’s expansion and (3.12), we have fi,; — f. =>(m/2)||xi;1 —x*||* for all k sufficiently large.
Therefore, we get

2 12
e =l < | ZCiws = £

K1 |2 2 k
—Jh LJﬁ—ﬂﬂ Jh
£ as mk-

Hence we obtain (3.15) for an arbitrary v > 0.
Finally, since t; <||x; — x*||" + ||xx1 — x*||", (3.16) follows from (3.15) directly. [

Lemma 3.7. Let Assumption (A) hold. Denote Q = G(x*)~"2, H, =B}, H,., = B;.\,. Then there
are positive constants b;, i =1,2,...,7 and o € (0, 1) such that for all k sufficiently large

1Biot — G lgr <1+ bye)|Be — GGllo.r + oty + bir (3.19)
and
[Heor — G) Hlo-1,r (V1 — o 4 batic + bsri) | He — G(xX™) | o-1.  + beTi + borr, (3.20)
where t;, = max{||x; — x*[|", |[xki1 — x|}, |Allo.r = 1QTAO||r, || - ||F is the Frobenius norm of a
matrix and
—1 H, — G *\—1
L = ”Q [ k* _l(x ) ]yk” ) (321)
[ = G(x*) -1, r[| Oyl
In particular, {||Bi||} and {||H;||} are bounded.
Proof. From the update formula (2.12) we get
. .. BusisiB T
IBess = G = [B1 - Gy — Pty 20
S DSk YiSk g, p
oy BesesiBie | vk ViV _ ViVk
< ||Br — G(x™) — B T T, T
Si DSk ViSk g, F Yisk  ViSkllig F
T T
< (14 byt)|[Be — GGH)|g.r + bati + ‘ Pede e (3.22)
Yisk  TieSkllg, F
where the last inequality follows from the inequality (49) in [10]. Moreover,
‘ ¥ |l _ ’ r + s )0+ rs)” ik
vese o Viskllg g (7 + resi) sk sl
_ ’ Ye5k (Ve A s )k + 1esi)" — (0 1) Usipeyi
(yx + rkSk)TSk(Vsz) OF

Vesk(esy + sivi F resesy) — lsell* vk
(1 + rOllse P (7 se)

:]/‘k

OF
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Tese(est + sevr + resist) — lIselPvad
(i + 7o) llselP(vesi) e
2 vescUlvesi e + lseville + rellsesi le) + lsellPlveve
r (i + 7)) Ise | (v se)
" el s Nl sell =+ sell Nvell 4 7ellsell®) 4 sl el
(1 4 7o) P (7 se)
3017ell> 4 7icllyel llse | )
— ol (3.23)
e+ OOk 2]

By the positive definiteness of G(x*), we see from (3.12) that when £ is sufficiently large

< 0l

|F

<7l|Q]

1OlI7

<

V/TSk = (9(x41) — g(xk))T(xk+1 — X)) = m| Xy — xk||2 = mHSkHZ-

Notice that r, — 0 by (3.10), 1y + 1 =¢ by (3.2), and ||y¢|| = |lg(xxs1) — g < L||sx|| by (1.2). Tt
then follows from (3.23) that there is a positive constant c; such that for all £ sufficiently large
yky;f — M <C3I"k.

T T
‘ Yisk  VieSkllg, F

Combining this and (3.22), we get (3.19).
Now we prove (3.20). We will use Lemma 3.1 in [4] to do this. First, it is well-known that the
inverse update formula of (2.12) is given by

(s — Hiyi)sg +silse — Hiy)' (s — Hiyi)sisi

H,..,=H, +
o ¢ J’/;rsk (J’Zsk)2
Spyr st SpS¥
_<I— kTyk>Hk<1_y{;k>+ ]’frk'
YieSk Vi Sk Vi Sk

This is the dual form of DFP update formula in the sense that H; < B, Hiy1 <> Byy1 and s < yy.
We also have
10k — O~ sill < (1O | yx — O s«
= 1O |y — G )sic|
= |01l llyx — G(x")sk + rese|

[ 1
<ol / Gxi + T )8 dt — G(r*)s

+rk||SkH]

[ r1
<loll| [ \|G<xk+rsk>—G(x*)\\dr\skn+rk||skr]

[ 1
< QI s [l =2 el de -+ | s
0

[l

I 1
<101 M2 [ (el =]+ (1 = Dl =" de +
0

< [|Ql(Maic + 7) sl (3.24)
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where M, is the Holder constant for G in (3.9). Moreover, there exists a constant 4’ > 0 such that
for all £ large enough,
10yl = [10(g(xas1) — g(xi) + resi) |
> [|Q(g(xx+1) — g — 72l Osi|
2 b|xir = xil| = rel| QI llse
= (0" = el Q1D sl (3.25)
where the second inequality follows from the positive definiteness of G(x*) and the fact that x;, — x*.
Since r; — 0, (3.25) implies that there is a constant ¢/ > 0 such that ||Qyy| =c¢’||si|| holds for all &
sufficiently large. So, we get from (3.24)
107 s — Owell < () IO (Maic + 7:)[| Q- (3.26)

Since 7, — 0 by (3.16) and r, — 0 by (3.10), it is clear that when £ is sufficiently large,
0y — O 'si|| <P||Oyx|| for some constant § € (0,%). Therefore, from Lemma 3.1 in [4] (with

the identification s < yy, y < sp, B <> Hy, B Hy,, A < G(x*)~" and M « Q") (see also [1]),
there are constants « € (0,1) and b}, b5 > 0 such that

*\ — ’ 71S - *
1t — GO ) lgrr < (\/1 o +b4”QHékaQy"”> 1 = GO lgr s
G(x*) ]

1Oll
where ;, is defined by (3.21). Since (3.26), we have

sk = GG el s — @l

Ll (3.27)

10yl 10wl
10y~ 05l
1Oy« ll
< 1011 |0y — O "si]|
HkaH

< () NOIP(Mate + 7).
Combining this, (3.26) and (3.24) with (3.27), we get (3.20).
Finally, since Y .o, < oo and Y o, 7 < 00, (3.19) and (3.20) together with Lemma 3.3 in [4]
indicate that both ||By — G(x*)||o.r and ||H; — G(x*)~!||o-1 r converge. In particular, {||B;||} and
{||Hk||} are bounded. O

Now we establish superlinear convergence of MBFGS method.

Theorem 3.8. Let Assumption (A) hold. If the parameter o, in (2.11) is chosen to satisfy o, €
(0,3), then {x;} converges to x* superlinearly.

Proof. We first show that the Dennis—Moré condition

lim JBe = GOosill _ (3.28)

k=00 %]
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holds. Since /1 —1<1—1t, Vi € (0,1), ||sk|| — 0, ©x — 0 and {||H;||} is bounded, it follows from
(3.20) that there are positive constants M, and Ms such that for all £ sufficiently large

[His1 — GO*) o1 r < (1 = S0 Hy — G(x*) o1 7 + Myt + Msry,
Le.,

s He = GGl p < Hy = G(*) o1, 7 = [|Hier = G(*) o1, 7 + Mati + Msry.

Summing these inequalities we get

223l — GO g < o,
ke=F
where £ is a sufficiently large index such that (3.20) holds for all k>k. In particular, we have
limy o (3 ||Hy — G(x*) | o-1.r =0, ie.,
lim 107" (H = G&*) el —0
k=0 [|[Hy — G(x*) " o-1, || O ]?
However, since {||H; — G(x*)"'||o-1,r} is bounded, this inequality implies that
lim 107" (Hk — GG™) )| _
koo 10yl
Moreover we have
107! (Hy — GG™) el = |07 HW(G(™) = B)G(™) ™ w|
> |07 Hi(G(x™) = Bo)sil| = |07 Hi(G(x™) — Bi) (s — G(x*) 'y |
> |07 H{(G(x*) = Bo)sil| — Q7 HU(G(x*) = Bi) (¢ — GOx*) ™'y
—1 |7 Hi(G(x*) — B )G(x*) sy |- (3.30)

0. (3.29)

Note that
O™ Hi(G(x*) — By) (sx — G(x*) ')
=07 Hi/(G(x*) — B)G(x* ) (G(x sk — i)
= |07 Hi(G(x") — B)G(x") ' (G(x*) — G(xi))se + (G(xi)si — pi)]ll
<O HU(G(x") — BO)G) T {IIG(™) — Gl [Isell + |G )se — 7ell}
= o({|s[)
and
RO H(G() — BOGE™) st <r| 0 HU(Gx™) — BOGE) ™| lsell = o e,

where we used the fact that {||B;||} and {||H;||} are bounded (and hence uniformly nonsingular),
G is continuous and r, — 0. Therefore, it follows from (3.30) that for some constant m; > 0

|07 (Hy = GG™) el Zmi [(G(x™) = Bi)sil| — o[l D). (3.31)
On the other hand, we have from (3.5) in Lemma 3.1
10yl <NIQIHyell <L + MO Iswll- (3.32)

From (3.31), (3.32) and (3.29), we conclude that the Dennis—Moré condition (3.28) holds.
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Next we verify that 4 = 1 for all k£ sufficiently large. Since || pi| = ||Higx|| — 0, by Taylor’s
expansion we obtain

S+ pr) — o) — a19(ee) pe = (1 — 01)g(xe) " pe + %P;G(xk + 0c o) pi
=—(1—0)pBipr + %PZG(Xk + ékpk)pk
= (% - Gl)PZBkPk - %PZ(Bk -G + ékpk))pk
=— (5 — o) PG pe + o] pil ),
where 0; € (0,1) and the last equality follows from (3.28). Thus f(x;+ pi)— f(x¢) —019(x)T pr <0
for all k£ sufficiently large. In other words, 4, = 1 satisfies the first inequality of (2.11) for all &
sufficiently large.
On the other hand, we have
g + pe) i — 02900 pr = (9(xic + pi) — 9(x))" pie + (1 — 62)9(xx)" pi
= pEG( + O, p)pi — (1 — 02) plBipy
—/
= PG + 0, p) pi — (1 — 02) py G(xi) pic + o[ pel*)
=02 p G(xi) pic + o[l pe 1),
where 5; € (0,1). So we have g(x; + pi)" px = 0291 pr, which means that 4, =1 satisfies the second

inequality of (2.11) for all £ sufficiently large. Therefore, we assert that the unit stepsize is accepted
when £ is sufficiently large. Consequently, we can deduce that {x;} converges superlinearly. [

4. A practicable MBFGS method

In Section 3, we have proposed a general modification of BFGS method. We have also shown
that if 7, is chosen to satisfy (3.2) then under appropriate conditions, the modified BFGS method
converges globally. If in addition (3.10) holds, then the convergence rate is superlinear. In other
words, the global and superlinear convergence of MBFGS method depends on the choice of {r}.
Therefore, it is important to select {r;} appropriately so that it is practicable and satisfies (3.2) and
(3.10). The following theorem shows that r, = O(||gi||) is a suitable choice.

Theorem 4.1. Suppose that the level set Q is bounded. Let {x.} be generated by MBFGS method
with By being updated by (2.12). If the parameters ry, are chosen as ri = O||gi||, where ¥ <9, <V

for all k with some constants 0 <9 <V, then we have
li?linf llg]| = 0. (4.1)

If in addition, conditions (1)—(3) in Assumption (A) hold and the parameter o in (2.11) is chosen
to satisfy oy € (0,3), then {x;} converges superlinearly.

Proof. Denote by M an upper bound of {||gs|[} on Q. It is obvious that r; <9M. This means that
ry varies in a bounded interval [0, VM ].
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To prove (4.1), we assume to the contrary that ||g;|| =7 holds for all & with some constant y > 0.
Then we have
Vi Sk
s 1?

(1 — a2)gisk
[lsill®
where the first inequality follows from (2.11). This shows that inequality (3.2) holds with ¢ = 9y.

Therefore, by Theorem 3.1 we get a contradiction.
If in addition, conditions (1)—(3) in Assumption (A) hold, then we get from (3.12) that y[s; =
sp fol G(x; + s ) dt sy =m|s;||* for all k large enough. Thus

N +re= + Ollgel = — + Uy =1y,

ViSk
lsill2 7

This shows that (3.2) holds for all £ sufficiently large with ¢ = m.
Moreover, Lemma 3.6 indicates that conditions (1) and (2) in Assumption (A) imply >, [|xx —
x*|| < oo. Since
rie = Oellgill = Oellg ) — 9O < IL e — x|,

it follows that {r;} satisfies (3.10), i.e., condition (4) in Assumption (A) is fulfilled. Therefore,
from Theorem 3.8 we get the superlinear convergence of {x;}. This completes the proof. [J

Vi Sk
5]

+ Dellgell =

N + 1y =

5. Backtracking line search

In this section, we extend the results obtained in the previous sections to MBFGS method with
backtracking line search. Specifically, we consider the algorithm in which line search condition (2.11)
is replaced by the following inequality:

S+ A p) < f (k) 4+ 04y Pro (5.1)

where ¢ € (0,1) is a given constant and /; is the largest element in the set {I,p,p?, ...} with
p € (0,1) which satisfies (5.1).

However, in this case, the condition y;s; > 0 may fail to be fulfilled and the hereditary positive
definiteness of B, is not guaranteed any more. To cope with this defect, we further modify the vector
Vi as Vi = i + t||lgx||sk, where £ > 0 is determined by

_ ViSk
ty =1+ max < — ,05p. (5.2)
[Nals

Then it is easy to see that we always have yisi=||gil| |Isell*-
With this modification, we present the following algorithm.

Algorithm 2 (Modified BFGS method with backtracking line search).
Step 0: Choose an initial point xo € R”, an initial positive definite matrix B,, and constants
g €(0,1)and p € (0,1). Let £:=0.
Step 1: Solve the following linear equation to get p:

Bip+9gi=0. (5.3)
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Step 2: Find the smallest nonnegative integer j, say j;, satisfying

fG+p" p)< fx) + op’g; pi (5.4)
and let A, = p’*.
Step 3: Let the next iterate be x; . = x; + A pr.
Step 4: Update B, using the formula
BisesiBe | vii
SFBisi Visy®

By =By — (5.5)

where Sk = Xp1 — X = ;Lkpk and Vi = Vk + tngkHSk with I given by (52)

Step 5: Let k:=k + 1 and go to Step 1.

We note that the difference between Algorithms 1 and 2 lies in the line search (Step 2) and the
expression of yy.

Lemma 5.1. Suppose that the level set Q is bounded. Let {x;} be generated by Algorithm 2. If
llgk|| = holds for all k with some constant { > 0, then there are positive constants f3;, j=1,2,3
such that, for any k, the inequalities

[Bisil| <Billsill and  Bol|si||* <s7Bisi < Ps||sil)? (5.6)
hold for at least a half of the indices i € {1,2,...,k}.

Proof. It is easy to see that {x;} C Q and ||y,|| <C||s«|| for some positive constant C. By the choice
of #, we have yfsi=|\gill llsel*> ={llsk]|*>. Therefore, the proof follows from that of Theorem 2.1
in[2. O

Lemma 5.2. Let the level set Q be bounded. If ||gr||={ holds for all k with some constant { > 0,
then there is a positive constant A such that 2;=2 for all i € J ={i|(5.6) holds}.

Proof. It suffices to consider the case 4; # 1. By the line search rule, we see that A = /;/p does
not satisfy inequality (5.1), i.e.,

fGxi+ A pi) — f(x;) > alig] pi (5.7)
By the mean-value theorem and (1.2) we have
SO+ Ap)=f(x)+ }v/'g(xi)Tpi + Ag(x; + 0,2 pi) — g(x;))" pi
< f(xa) + Ag(xa)" pi + (AL pil |
where 0; € (0, 1). Substituting this into (5.7), we get for all i € J,
AL pill> > —(1 = 0)g(x:)" pi
= (1 —0)p;Bip;
> (1—a)pllpill

where the last inequality follows from (5.6). This means that A;>((1 — ¢)/L)B, and hence 4; =
Mp=(1—a)pp/L &2 />0 forallicJ. O

A global convergence theorem for Algorithm 2 is now stated as follows.
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Theorem 5.1. Let the level set Q be bounded and {x;} be generated by Algorithm 2. Then we
have

li{n inf ||gx|| = 0.

Proof. Suppose to the contrary that ||g,||>{ holds for all £ with some { > 0. Summing (5.1) we
have

00 > (—gisk)
k=0

> STBkSk
= ||ng2/11( _—
Z [Busel?

) SkBkSk

Cz Z ik SkBkSk

= IBesel?
Czﬂ Z SkBkSk
= || Bise|I*

Then, in a similar manner to the proof of Theorem 3.4, we can prove the theorem. [OJ

It is easy to see that if conditions (1) and (2) in Assumption (A) hold, then #, = 1 holds for all
k sufficiently large. Therefore, we can establish superlinear convergence of Algorithm 2 in a similar
manner to Theorem 3.2.

Theorem 5.2. Let conditions (1)—(3) in Assumption (A) hold. If the parameter o in (5.4) is chosen
to satisfy a € (0, %), then the sequence {x;} generated by Algorithm 2 converges to x* superlinearly.

Proof. Omitted. O
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