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Abstract

In this paper we investigate relationships between closure-type properties of hyperspaces over
a spaceX and covering properties f.
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0. Introduction

Let X be a Hausdorff space. By*ave denote the family of closed subsetskflf A is
a subset off and.A a family of subsets ok, then we write
A°=X\A and A°={A° Ac A},
A" ={Fe2X: FNA#0},
AT ={Fe2*: FcA}
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The most known and popular among topologies dnig the Vietoris topology =
V™ v VT, where thdower Vietoris topology/~ is generated by all set~, A C X open,
and theupper Vietoris topology™ is generated by se8™, B open inX.

Let A be a subset of2. Then theupperA-topology denoted by ™ [23] is the topology
whose subbase is the collection

[(D)": Dea}uf2¥).
We consider here two important special cases:

(1) A isthe family of all finite subsets of, and
(2) A is the collection of compact subsetsXf

The correspondingi*-topologies will be denoted bg™ andF™, respectively and both
have the collections of the above kind as basic sets. F'héopology is known as the
upper Fell topologyor theco-compact topologyf6].

Let us fix some terminology and notation that we need.

Let A and B be sets whose elements are families of subsets of an infinité.sBten
(see [28,12]):

S1(A, B) denotes the selection principle:

For each sequende\,,: n € N) of elements of4 there is a sequend®,,: n € N) such
that for eachn b, € A, and{b,,: n € N} is an element o8.

Siin(A, B) denotes the selection hypothesis:

For each sequenagl,: n € N) of elements of4 there is a sequenad,: n € N) of
finite sets such that for eaehB, C A, and(J, .y B» is an element of.

For a spacé€X, ) and a pointt € X we consider the following setd and5:

O: the collection of open covers of;

£2: the collection ofw-covers ofX;

K: the collection ofk-covers ofX;

27 (or shortly2,): the se{A C X \ {x}: x € A}.

Let us recall that an open covélrof a spaceX is called anw-cover[7] (respectively
ak-cover[19]) if every finite (respectively compact) subsetdis contained in a member
of Y and X is not a member dff/. (To avoid trivialities we suppose that considered spaces
are infinite and non-compact.) Let us mention tkiat 2.

The propertyS:(O, O) was introduced by Rothberger in [24] and is called now the
Rothberger propertysee also [28,12,21]). The prope&y, (O, O) is known as théenger
property[20,9,21,28,12]. A spac& hascountable fan tightned4,2] if for eachx € X it
satisfiesSsin (2, £2,). X hascountable strong fan tightneg25] if for eachx € X the
selection principles1(£2,, £2,) holds.
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We consider only spaces having property that eaetover §-cover) of X contains
a countablev-subcover k-subcover), and so all covers are supposed todomtable

A number of results in the literature show that for a Tychonoff speadosure prop-
erties of the function spaces, (X) andC,(X) of continuous real-valued functions dh
endowed with the topology of pointwise convergence or with the compact-open topology
can be characterized by covering propertieXalefined or characterized by using selec-
tion principles. We refer the reader to [1,2,7,25-27,16-19,29,22,13].

In this paper we show, in a similar spirit, that closure properties of spaces of closed
subsets of a spaceé, endowed with appropriate topologies, can be characterized in terms
of covering properties ok .

For similar investigation see [4,8,14,15].

In Section 1 we consides; selection principles in hyperspaces and give complete
proofs of the results, while in Section 2, in which we stugly; selection principles, the
most of proofs are omitted being similar to the proofs of the corresponding results from
Section 1. Section 3 contains results involving the notions of groupability and weak groupa-
bility introduced recently in the literature.

1. The Rothberger-like selection principles

In this section we study when hyperspac2s, z+) and(2X, F+) have countable strong
fan tightness. Related questions are also considered.

Theorem 1. For a spaceX the following statements are equivalent

(1) (2%, z") has countable strong fan tightness
(2) Each open seY C X satisfiess,($2, £2).

Proof. (1) = (2): Let (U,: n € N) be a sequence aef-covers ofY. Then(Us: n e N) is
a sequence of subsets of andY ¢ e Cl,+ Uy) for eachn € N. Indeed, givem, let (F¢)*
be az*-neighborhood of’¢. ThenF is a finite subset of so that there is & < 4, such
that F C U. ThusY C U C F¢,i.e.U¢ € (F)* NUS. Therefore Y € Cly+ (US). Since
(2%, z*) has countable strong fan tightness there is a sequéricen € N) such that for
eachn, U, € U, andY® € Clz+ ({US: n € N}). We claim that{U,,: n € N} is anw-cover
of Y. Indeed, letS be a finite subset df. Then(S¢)* is az*-neighborhood o¥ ¢ and thus
(ST N{US: n € N} #0; let U be a member of this intersection. Then frarfi C S€ it
follows S C Uy.

(2) = (1): Let (A4,: n € N) be a sequence of subsets df &uch that a poins e 2¥
belongs to the*-closure ofA, for eachn. Then, as can be easily verified4¢: n € N)
is a sequence ab-covers ofS¢, and becauss® is anSi (2, 2)-set, there is a sequence
(A¢: n e N) such that for each, AS € AS and{AS: n € N} is anw-cover of S¢. It is
equivalent to the assertion théite Cl,+ ({A,: n € N}), so that the sequencd,,: n € N)
witnesses forA4,: n € N) that(2X, zt) has countable strong fan tightness

Theorem 2. For a spaceX the following statements are equivalent
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(1) (2%, FT) has countable strong fan tightness
(2) Each open seY C X satisfiess; (K, K).

Proof. (1) = (2): Let (U,: n € N) be a sequence di-covers ofY. ThenUs: n € N)
is a sequence of subsets of and Y e Clg+ Uy) for eachn € N. Indeed, fixn. Let K
be a compact subset &f. There is all € U,, such thatk c U C Y and thusY“ c U¢ C
K¢ ie Uce(K)T andY® e (K)'. So,U° € (K)T NUS, i.e. Y¢ € Cle+ (UE). Since
(2%, F1) has countable strong fan tightness there is a sequériten € N) such that for
eachn, U, eU, andY“ € Cle+({US: n € N}). We prove tha{U,: n € N} is ak-cover
of Y. Let K be a compact subset &f Then(K¢)™ is anF*-neighborhood ot ¢ and thus
(KT N{US: n e N} #£0; let US, belongs to this intersection. Théff, € (K°)*™ implies
K cUy,.

(2) = (1): Let (A,: n € N) be a sequence of subsets df &uch that a poins € 2
belongs to the=*-closure of A, for eachn. It is not hard to prove that4: n e N) is a
sequence df-covers ofS¢ and sinces is anS1 (IC, K)-set, there is a sequenc’: n € N)
such that for each, A{, € AS and{A;: n € N} is ak-cover of §¢. It is equivalent to
S € Cle+ ({A,: n € N}), so that the sequencd,,: n € N) witnesses fo(A,: n € N) that
(2%, F*) has countable strong fan tightnessa

Theorem 3. For a spaceX the following statements are equivalent

(1) 2X satisfiess; (2, 2%") for eachA e 2X;
(2) Each open seY C X satisfiesS1(/C, £2).

Proof. (1) = (2): Let (U,: n € N) be a sequence di-covers ofY. Then(Us: n € N)
is a sequence of subsets of ith Y e Clz+ (U°) for eachn € N (see the proof of the
previous theorem). Apply (1) to find a sequenit&: n € N) such that for each, U, € U,
andY* € Clz+ ({US: n € N}). Then{U,: n € N} is anw-cover ofY . Indeed, letS be a finite
subset ofY. Then(S¢)* is az*-neighborhood of ¢ and thus(S“)*™ N {US: n € N} # ¢;
let US be a member of this intersection. Then fréifi C S¢ it follows S C U;.

(2) = (1): Let (A,: n € N) be a sequence of subsets df &uch that a poin§ e 2¥
belongs to the="-closure ofA, for eachn. Then(AjS: n € N) is a sequence df-covers
of S¢ and becausé° is anS;(/C, £2)-set, there is a sequenca;,: n € N) such that for
eachn, A € AS and{A;: n € N} is anw-cover of S¢. The last fact is equivalent with
S € Clz+ ({A,: n e N}), and thus the sequenc¢a,: n € N) witnesses fo(A4,,: n € N) that
2X satisfies (1). O

After Theorems 1-3 it is natural to ask what happen« ikatisfiesS;(£2, £2), or
S1(KC, K), or S1(KC, £2). The next three theorems answer these questions.
Let D denote the family of dense subsets of a space.

Theorem 4. For a spaceX the following statements are equivalent

(1) (2%, F") satisfiess; (D, D);
(2) X satisfiess; (K, K).
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Proof. (1) = (2): Let (U,: n € N) be a sequence of opdncovers ofX. For eachn,
A, :=UC is a dense subset ¢2X, F1). Indeed, let: be fixed and le{kK¢)* be a basic
open subset of2X, F+). There is a membet/k , of U, containingK. Thus we have
Uk, € (K&T andU;é,n e A, i.e. A, isadense seti@X, FT). Applying (1) one finds a
sequencéA,: n € N) such that for each, A, € A, and CE+ ({A1, Ao, ...}) = 2X. Letfor
eachn, AS = U, € U,. We claim that the sequenc#,,: n € N) witnesses fol4,: n € N)
that X satisfiess; (IC, K). Let C be a compact subset &f. Then(C¢)* contains some;
so thatU; = AY satisfiesC C U;, i.e.{U,: n € N} is ak-cover of X.

(2) = (1): Let (D,: n € N) be a sequence of dense subset®df F1). Let for eachn,
U, :=D;,. Thenld, is an operk-cover of X. To prove the last statement, [Etbe a com-
pact subset o. Pick a setD in (K)* N D,. We haveD¢ € U, and K C D¢. Apply
now (2) to (U,: n € N) and find a sequena@;: n € N) such that for each, DS € U,
and{Dj, D5, ...} is ak-cover forX. Itis easy to verify that the sequenc®,: n € N) is a
selector for the sequenc®,: n € N) which witnesses thal*, F+) satisfies (1). O

In a similar way we prove:

Theorem 5. For a spaceX the following are equivalent

(1) (2%, z") satisfiess1 (D, D);
(2) Allfinite powers ofX have the Rothberger properfye. X satisfiess1(£2, £2)).

Theorem 6. For a spaceX the following are equivalent

(1) 2X satisfiesSy(Dg+, Ds+);
(2) X satisfiess1(/C, £2).

At the end of this section we consider when the sp&2&sF+) and(2X, z+) have the
Rothberger property.

Recall that a family of subsets of a spacéis an-networkif for each open sel/ ¢ X
there is aM € & such thatM c U. For a spaceX let IT; (respectivelyll,) denote the
family of -networks ofX consisting of compact (respectively finite) subsetXofn this
notation we have:

Theorem 7. For a spaceX the following statements are equivalent

(1) (2%, FT) has the Rothberger property
(2) X satisfiess (I, IT}).

Proof. (1) = (2): Let(K,: n € N) be a sequence froifily. Then for each € N, (K5)* :=
{(K)T: K € K,} is an open cover of2X, Ft). To see this, fix: and letA € 2X. A€ is an
open subset ok, hence there is & € K, with K C A°. ThenA € (K)" so that(K$)™
is indeed an open cover ¢2%, F). By (1) pick for eachw, K, € K, such that the set
{(K$)T: n e N} is an open cover of2X, F+). We show tha{K,: n € N} is arx-network
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in X. LetU be an open subset &f. FromU*¢ € 2X it follows that there is somee N for
whichU¢ € (K{)™ holds, henc&; C U.

(2) = (1): Let (U,: n € N) be a sequence of open covers(®f, F); without loss of
generality one may suppose that for eachll elements oi4, are basic sets (2%, FT):
U, = {(Kfl’S)Jf: s € S}. For eachn, K, :={K, s: s € S} is am-network in X. Indeed,
if G C X is open, then for someéK; )" € U, we haveG® € (K )* which implies
Kns € G. Apply now (2) to the sequenadC,: n € N) to find setsK,, € K, n € N, such
that{K,: n € N} is ar-network inX. Without difficulties one verifies thgtK$)*: n € N}
is an open cover of2X, F) showing that (1) is true. O

Similarly, we have
Theorem 8. For a spaceX the following are equivalent

(1) (2%, z") has the Rothberger property
(2) X satisfiess; (11, I1,).

2. TheMenger-like selection principles

We investigate now the fan tightness of hyperspaces. As might expected the proofs of
theorems of this section are similar to the proofs of the corresponding results concerning
strong fan tightness. Thus we shall only give the proof of the following result.

Theorem 9. For a spaceX the following statements are equivalent

(1) (2%, z") has countable fan tightness
(2) Each open seY C X satisfiesSfin (£2, £2).

Proof. (1) = (2): Let U,: n € N) be a sequence ef-covers ofY. Then(l: n e N) is
a sequence of subsets of andY*¢ e Cl,+ (4¢) for eachn (see the proof of Theorem 1). As
(2%, z*t) has countable fan tightness there is a sequeyiten € N) such that for each,
V, is afinite subset af, andY € Clz+ ({,ey V5)- We prove that J, . Vs IS anw-cover
of Y. Indeed, letS be a finite subset of . Then(S¢)* is az*-neighborhood o¥ ¢, hence
there is aU; in (S)* N, en Vi # 9. It follows from Uf € S thatS C Uy.

(2) = (1): Let (A,: n € N) be a sequence of subsets df and letS € 2X belong to
the z+-closure ofA, for eachn. Then(AS: n € N) is a sequence ab-covers ofs¢ and
becauses© satisfiesSyin(§2, £2) there is a sequena#s;: n € N) such that for each, 5
is a finite subset ofd;; and|J, .y B;; is anw-cover of S¢. It implies S € Clz+ (U, en Bn)-
Therefore, the sequenes,: n € N) witnesses folA,: n € N) that(2X, z+) has count-
able fan tightness. O

The proofs of the following theorems are omitted.

Theorem 10. For a spaceX the following statements are equivalent
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(1) (2%, FT) has countable fan tightness
(2) Each open seY C X satisfiesS;in (IC, K).

Theorem 11. For a spaceX the following statements are equivalent

(1) 2 satisfiesssin(225, 22") for eachA € 2X;
(2) Each open seY C X satisfiesSiin (IC, £2).

Theorem 12. For a spaceX the following statements are equivalent

(1) (2%, F1) satisfiessgin (D, D);
(2) X satisfiesSsin (K, K).

Theorem 13. For a spaceX the following are equivalent

(1) (2%, z7) satisfiesSsin (D, D);
(2) X satisfiesSsin(£2, £2), i.e. each finite power o has the Menger property.

Theorem 14. For a spaceX the following are equivalent

(1) 2X satisfiesSfin(Dg+, Dz+);
(2) X satisfiesSsin(IC, £2).

3. Set-tightness

The set-tightness, (X) of a spaceX is countable if for eactd subset ofX and each
x € A there is a sequend@,: n € N) of subsets ofd such thatx € [ J{A,: n € N} but
x ¢ A, for eachn € N (see [11]). The set tightness of the function spacgX) was
studied in [26].

Theorem 15. For a spaceX the following statements are equivalent

(1) (2%, F*) has countable set-tightness

(2) For each open setY c X and eachk-coverl{ of Y there is a countable collection
{U,: n € N} of subsets ot/ such that na; is a k-cover of Y and |, .U, is @
k-cover ofY.

Proof. (1) = (2): LetY be an open subset &f and letl/ be ak-cover ofY. ThenA = U*
is a subset of ¥ andY ¢ belongs to th&*-closure ofA. Since(2X, F) has countable set-
tightness there is a family4,,: n € N} of subsets ofd such that for each, Y¢ ¢ Clz+ (A,)
butY® € Clg+ (J{As: n € N}). Let for eachn, U, = AS. Then for eachr, U, C U and the
family {U4,: n € N} witnesses fot/{ that (2) is true.

(2) = (1): Let A be a subset of ® and letS € Cl-+ (A). ThenS¢ is an open subset
of X andU/ = AC is its k-cover. Apply (2) toS¢ andl/ and choose subsetf, Uy, ... of
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U such thatl J, .U, is ak-cover of ¢ but nol, is such a cover. If we put for eaeh
A, =US we get a countable family of subsetsfsuch that for each, S ¢ Cl+ (A,) but
Se C|F+(UneN"4n)' O

The following corresponding result on the sp&2&, z*) is proved similarly.
Theorem 16. For a spaceX the following statements are equivalent

(1) (2%, z") has countable set-tightness

(2) For each open seY C X and eachw-coverl/ of Y there is a countable collection
{U,: n € N} of subsets off such that nd/; is anw-cover ofY and | J,.yU, is an
w-cover ofY .

4. T-tightness

The T-tightnessof a spaceX is countable if for each uncountable regular cardjnal
and each increasing-sequencéF,: « < p) of closed subsets of the set J{F,: « < p}
is closed (see [11]). In [26] th&-tightness of function spaces, (X) was studied, while
in [13] the same question was considered for spagéx).

Denote byT (£2) the following statement on a spa&e

For each regular infinite cardinal and each increasing-sequencelf,: o < p) of
families of open subsets of such thatl/ := (J{Uy: « < p} is anw-cover there is
ap < p so that{g is anw-cover ofX.

T (K) is defined in the similar way whenw*cover” is replaced byk-cover”.
Theorem 17. For a spaceX the following statements are equivalent

(1) (2%, z") has countabld -tightness
(2) Each open seY C X satisfiesT (£2).

Proof. (1) = (2): Let p be a regular uncountable cardinal andiet | J{Uy: « € p},
with U, C Ug wheneverr < B < p, be anw-cover ofY. For eachr < p let A, =US =
{U€: U ey} and A = J{Cly+ (Aqg): & < p}. Since thel -tightness of 2%, z*+) is count-
able, the set4 is a closed subset @2X,zT). We claimY¢ e Cly+ (A) = A. Let (F)™,
F afinite subset o, be a standard basit"-neighborhood ot ¢. Sincel/ is anw-cover
of Y and F C Y there is @& < p and an elementV € U such thatF C U. It implies
U e (FO)T, hence(F°)™ N Ag # 0, so thaty© € Clz+(Ag) C A. Further, fromy< e A it
follows Y¢ e Clz+(Ap) for somep < p. We prove thatfg is anw-cover ofY. Let S be a
finite subset of’. ThenY“ € (§¢)™ so that there is a membdre Ag N (S°)*. This means
SCAelp.
(2 = (1): Let (44: a < p), p a regular uncountable cardinal, be an increasing

p-sequence of closed subsets df. 2Ve have to prove thatl = | J{A,: « < p} is a
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closed set in2X,z*). Let S be an element in th&*-closure of A. For eachu < p let
Uy = A5 and putd = (J{U,: o < p}. Thenld is anw-cover of S¢. Apply (2) to ¢ and
the p-sequencéll,: o < p). There is 8 < p such that/g is anw-cover of S. It implies
SeClz+(Ag)=AgC A O

As before, similarly one proves:
Theorem 18. For a spaceX the following statements are equivalent

(1) (2%, F*) has countabld -tightness
(2) Each open seY C X satisfiesT (K).

5. TheHurewicz-like selection principles

In this section we need the notion of groupability [17].

An w-cover (ak-cover)l{ of a spaceX is groupable[16,17,13] if it can be represented
as a union of infinitely many finite, pairwise disjoint subfamiliés such that each finite
(compact) seft C X is contained in a member of, for all but finitely manyn. 29° (X9P)
will denote the family of groupable-covers k-covers) of a space.

In [9] (see also [10]) Hurewicz introduced a covering property, nowadays known as the
Hurewicz propertyin the following way. A spacé is said to have the Hurewicz property
if for each sequencé/,: n € N) of open covers oX there is a sequena®,: n € N) of
finite sets such that for eaeh V,, C U, and for eachx € X, for all but finitely manyn,
x € JVu. In [17] this property was described by 8a,-type property and it was shown
that all finite powers of a spacg have the Hurewicz property if and only ¥ satisfies
Stin(£2, £29P). Similarly, the propertys:($2, £29P) was characterized has this property if
and only if each finite power of has the Gerlits—Nagy property) [7] (= the Hurewicz
property as well as the Rothberger property).

Here we study the mentioned properties in the context of hyperspaces. For similar in-
vestigation see [14].

Call a countable elemem from D groupableif there is a partitionD = |, .y Dy, into
finite sets such that each open set of the space interBgdty all but finitely manyn.

Let DIP denote the family of groupable elementsTof

Theorem 19. For a spaceX the following statements are equivalent

1) (2%, F*) satisfiessy (D, D9);
(2) X satisfiess;(KC, K9P).

Proof. (1) = (2): Let U,: n € N) be a sequence of opdncovers ofX. For eachn,
A, :=Uf is a dense subset @@X, Ft). Use (1) and for each, pick anA,, € A, such that
A={A,: n e N}is a groupable dense subset(@F, FT); let the partition4 = Unen Br
witnesses that fact, i.e. each open subs&2df F+) meetsB, for all but finitely manyn.
Puty = A and for eacl, W, = BS. We claim thad is a groupablé-cover ofX and that
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W,’s witness that fact. LeK be a compact subset &f. Then(K¢)* is open in(2X, Ft)
and so there i8g such that for each > ng one finds a membes,, € B, with B, € (K°)™.
ThenBg belongs toV, andK C By.

(2) = (1): Let (A,: n € N) be a sequence of dense subset&@dt FT). Let for eachn,
U, := AS. Thenld, is an operk-cover ofX. Applying (2) we find a sequend@/,: n € N)
such that for each, U, = AS, e U, andUf :={U1, Up, ...} is a groupable-cover for X:
there is a partitiori/ = [, . V» into finite sets such that each compact subsex aé
contained in a member af, for all but finitely manyr. Then one can easily check that
letting for eachn, B, =V, the partitionA = |, .y B, Witnesses that for the sequence
(A.: n e N) there is a selector showing th@¥, F+) satisfies (1). O

Similarly one proves:
Theorem 20. For a spaceX the following statements are equivalent

(1) (2X,F*) satisfiesStin(D, DP);
(2) X satisfiesSsn (IC, K9P).

Theorem 21. For a spaceX the following are equivalent

(1) (2%, z*) satisfiess1 (D, DIP);
(2) X satisfiess1(£2, £299).

Theorem 22. For a spaceX the following statements are equivalent

(1) (2%, z") satisfiessgn (D, DIP);
(2) X satisfiesSsin($2, £299), i.e. each finite power ot has the Hurewicz property.

For the next consideration we need the notion of weak groupability.

A countable open covér of a spaceX is weakly groupabl§l7] (respectivelyk-weakly
groupable[5)) if there is a partitiori/ = | J{U,: n € N} such that eachy, is finite, U, N
U, =¥ whenevem # n, and each finite (respectively compact) subseX o covered by
U, for somen € N,

OWIP (respectivelyO*"IP) denotes the family of open weakly groupable (respectively
k-weakly groupable) covers of a space.

In [3] a covering property of a spac&i(,(I", £2) in the notation from [12]) which is
intermediate between the Hurewicz property and the Menger property was characterized
as anSsin property, namely aSgin (2, ©"9). In [5] the propertySsin (K, O¥WIP) was con-
sidered. We characterize these two properties of a sgdmethe corresponding properties
of hyperspace&X, zt) and(2X, Ft), respectively.

Theorem 23. For a spaceX the following statements are equivalent

(1) (2%, z") satisfiesfor each sequenceA,: n € N) of dense subsets @2X, z*) there
are finite setd3,, C A, such that J, .y B, can be partitioned into finite sef%, n € N,
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such that{(C,,: n € N} is dense in2X, z*);
(2) X satisfiesSsin (£2, OWIP),

Proof. (1) = (2): Let (U,: n € N) be a sequence of opesrcovers ofX. Then (A4, =
US: n e N) is a sequence of dense subsets(®f, z1), so that there is a sequence
(B,: n € N) such that for each, B, is a finite subset of4,, andB =  J,,.y B, is a union
U,en G of finite, pairwise disjoint sets such thgf)C,: n € N} is dense in2X, z™). Let

V =B W, =C5,n € N. Then the set¥ andW,’s witness for(l4,: n € N) thatX belongs
to the classSsin (£2, OW9P),

Let F be a finite subset of. The open subs&F )™ of (2X, z+) meets{(C,: n € N},
i.e. there exists: € N such thaf\C,, € (F°)™. This means that C (Cn)¢ = W,
i.e.V is an open weakly groupable coverXf

(2) = (1): Let (A,: n € N) be a sequence of dense subsets2df, z+). For eachn,

U, := A, is anw-cover ofX. By (2) there is a sequenc®),: n € N) such that for each,

V, is a finite subset o/, andV = (J,.x V» is a weakly groupable open cover &f.
We have thad is a union of countably many finite, pairwise disjoint sy satisfying:
for each finite se# C X there is am with F C [JW,. Let us check that the sequence
(Bn: n € N), where for eacln, B, = W¢, shows that2X, z*) satisfies (1). Indeed, pick a
basic open sets¢)* of (2%, z*). Then there isn for which S c W, holds. It follows
AW =N By € (59T, i.e. the sef( B,: n € N} isdense in2X,z%). O

In a similar way one can prove
Theorem 24. For a spaceX the following are equivalent

(1) (2%, F1) satisfiesfor each sequenceA,: n € N) of dense subsets @%, F+) there
are finite setd3, C .A,, such that J, . B, can be partitioned into finite sefs, n € N,
such that{(C,: n € N} is dense in2X, FF);

(2) X satisfiesSgip (IC, OKWIP),
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