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a b s t r a c t

A non-linearmodel is proposed for predicting the rate of passenger flow in a transit system,
and its chaotic characteristic is observed. Using wavelets analysis, the passenger flow data
for a whole day are decomposed in a multi-scale way to obtain decomposition sequences.
Subsequently, a neural network approach is used to predict the sequences. Finally the
passenger flow value can be predicted when the predicted sequences are reconstructed.
Results show that the present approach is a feasible method for passenger flow prediction.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There exist many methods of linear sequence forecasting in the open literature, such as the regression forecasting
method [1], the time series prediction method [2], etc. Almost all existing methods infer future trends on the basis of
a changing time sequence in the past. Non-linear problems are the focus of research in many fields currently, and the
forecasting methods includes the Jenkins forecasting method [3], the Markov forecasting method [4], the Grey forecasting
method [5], the multi-objective forecasting method [6], etc. Recently, the neural network and the wavelet network have
been applied in the transportation field. Though much progress has been made in non-linear forecasting, there are few
studies discussing how to forecast the passenger flow in a transit system because of the regularity and randomness of the
passenger flow rate, and traditional forecasting methods always lead to inaccurate results. A newmethod is, therefore, very
much needed.

This paper aims at improving the prediction accuracy for passenger flow forecasting. Firstly, the principal component
analysis method is used to observe whether passenger flow data possess chaotic characteristics. Secondly, the passenger
flowdata are decomposed in amulti-scaleway to obtain decomposition sequenceswhich include a smooth and approximate
signal and a series of interferences signals with similar frequency and random characteristics on the same scale. Thirdly, a
neural network approach is used to obtain predicted sequences with the decomposition sequences as input. Finally, the
passenger flow value can be predicted when the predicted sequences are reconstructed. Empirical analysis shows that the
proposed model is effective and its precision is preferable.

2. Chaos recognition

2.1. A summary of the chaos recognition method

Chaos [7] is a phenomenon which seems regular and random in a deterministic system. It commonly exists as complex
motion and natural phenomena. In addition, it also shows its complexity and randomness in a system. Many different
methods of chaos recognitionhave appeared, such as the power spectrummethod [8], the Lyapunovmethod [9], the Poincaré
section method [10] and the principal component analysis method [11]. Comparative studies show that the principal
component analysis method can obtain a preferable performance among alternatives. On the basis of fewer data, it can
effectively identify chaotic signals by using the principal component spectrum. When the principal component spectrum
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is a straight line with negative slope and it passes through a fixed point, then the signal is chaotic. Hence, the principal
component analysis method is easy to observe and analyze.

2.2. The principal component analysis method

The basic steps of the principal component analysis method are summarized as follows [12]:
1. A one-dimensional time series {x1, x2, . . . , xn} is given, and its the sampling time interval is τ . Then the phase space is

reconstructed with the embedded dimension of d. The trajectory matrix Xl×d (l = N − (d − 1)) that is formed by the time
series is given by

Xl×d =
1

l
1
2

 x1 x2 . . . xd
x2 x3 . . . xd+1
. . . . . . . . . . . .
xl xl+1 . . . xN

 . (1)

2. Next, the covariance matrix A is computed as

Ad×d =
1
l
XT
l×dXl×d. (2)

3. Then, the eigenvalues λi (i = 1, 2, . . . , d) and eigenvectors Ui (i = 1, 2, . . . , d) of the covariance matrix A are worked
out. The eigenvalues are arranged in descending order: λ1 ≥ λ2 ≥ · · · ≥ λd, the sum of which is computed as

γ =

d−
i=1

λi. (3)

4. Finally, let index i form the X axis, and let ln(λi/γ ) form the Y axis; then the principal component spectrum is obtained.
Due to the significant differences between the chaotic signal and the noise signal, the principal component spectrum of the
noise is a straight line that is parallel to the X axis. However, the principal component spectrum of the chaotic signal is a
straight line through the fixed point with negative slope.

3. Non-linear prediction

The transit passenger flow data are regarded as a signal S with lengthN . The approximate signal and random interference
signals can be obtained when the signal S is decomposed. A neural network approach is used to predict the sequences with
the decomposition sequences used for training and testing. The passenger flow value can be predicted when the predicted
sequences are reconstructed ultimately.

3.1. Signal decomposition

After decomposition, the signal S produces two sets of parameters. One is the approximate signal cA1, which is filtered
by low-pass filter Lo_D. The other is the detailed signal cD1, which is obtained from the high-pass filter Hi_D. The two
signals are samples with a scale of 2. Then the low-frequency signal cA1 is regarded as a new signal to re-decompose.
This process is continued until a smooth and approximate signal and a series of noise interference signals with similar
frequencies have been elicited. Now, n + 1 groups of decomposition sequences (cD1, cD2, . . . , cDn and cAn) are given.
Among the decomposition sequences, cAn characterizes features of signal S, and the cDn (n = 1, 2, . . . , n) show the subtle
fluctuation.

An algorithm provided by theMallat system aims to decompose and reconstruct signals. Its ideology is: Let there be finite
energy signal Hjf which is an approximation of the sum of the approximate signal Hj−1f and the interference signal Dj−1f
with a resolution of 2j−1. Let ϕ be the scaling function, and letψ be the wavelet function; thus, the approximate signalHj−1f
and interference signal Dj−1f are defined as follows:

Hj−1f (x) =

+∞−
k=−∞

aj−1
k ϕ(2j−1x − k) (4)

Dj−1f (x) =

+∞−
k=−∞

dj−1
k ψ(2j−1x − k) (5)

where aj−1
k is the roughness coefficient in Eq. (4), and dj−1

k is the detailed coefficient in Eq. (5). Further, the approximate
signal of Hjf with a resolution of 2j−1 is given by

Hjf = Hj−1f + Dj−1f (6)

Hjf (x) =

+∞−
k=−∞

ajkϕj,k(x). (7)
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Fig. 1. Structure of the neural network.

For the signal decomposition, let f ∈ Vj; thus, Hjf = f . Eq. (6) can equivalently take the following form:

f =

−
k∈z

⟨f , ϕj−1, k⟩ϕj−1,k +

−
k∈z

⟨f , ψj−1, k⟩ψj−1,k. (8)

In such a case, the information of space Vj is decomposed into the sub-spaces Vj−1 andWj−1. Here, {⟨f , ϕj−1,k⟩} determines
the spacesVj−1, while {⟨f , ψj−1,k⟩}determines the spacesWj−1 separately.With such ameasure, Eq. (8) is used for computing
the inner product and then it can be written as

⟨f , ϕj−1,l⟩ =

√
2
2

−
k∈z

hk−2l⟨f , ϕj,k⟩

⟨f , ψj−1,l⟩ =

√
2
2

−
k∈z

(−1)kh1−k+2l⟨f , ϕj,k⟩.

(9)

3.2. Neural network simulation and prediction

The neural network is suitable for non-linear prediction [13]. The transit passenger flow data are decomposed into the
low-frequency signals cAn and high-frequency signals cDn (n = 1, 2, . . . , n). Due to the advantage that the neural network
approach can achieve arbitrary non-linearmapping, it is used to predict the sequences. Themodel structure has three layers
named the input layer, the hidden layer and the output layer, as shown in Fig. 1.

The wij and Tij are model parameters often called connection weights, and they are revised at the beginning of network
learning.

The values of the input nodes are xi, and the yi are the values of the hidden layer nodes; then value of the output layer
is Ol. The value of the expected output is tl. The logistic function is often used as a hidden layer transfer function, which is
shown as Eq. (10):

f (x) = logsig(x) =
1

1 + e−x
. (10)

The output nodes of the hidden layer and the output layer have themathematical representations shown in Eqs. (11) and
(12):

yi = f

−
j

wijxj − θi


= f (neti) (11)

Ol = f

−
i

Tliyi − θl


= f (netl) (12)

where θ is threshold value of each layer. The error function E leads to a decrease in the negative gradient direction, and it
can be computed as

E =
1
2

−
l

(tl − Ol)
2

=
1
2

−
l

(tl − f (Tlif (neti)− θl)). (13)

The parameters of the neural network are estimated such that the error function is minimized. Thus, the predicted
sequences are obtained from the output when the output error is less than 0.01.

3.3. Signal reconstruction

In this section, predicted sequences are reconstructed for recovering the original signal. The approximate signal cAn and
the detailed signal cDn are reconstructed to obtain cAn−1 by low-frequency and high-frequency filtering. This process is
continued until the original signal ŝi emerges.
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Fig. 2. The passenger flow data for the third bus line on October 19th, 2009.
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Fig. 3. The passenger flow data for the third bus line on October 20th, 2009.

According to the orthogonality of function {ϕj,k}, thus, f = ϕj,k is extracted from Eq. (9), and it is given by

⟨ϕj,k, ϕj−1,l⟩ =

√
2
2

hk−2l⟨ϕj,k, ψj−1,l⟩ =

√
2
2
(−1)kh1−k+2l. (14)

When f = ϕj,k(x), the inverse form of the scale equation can be written as

ϕj,k(x) =

−
l∈z

√
2
2

hk−2lϕj−1,l(x)+

−
l∈z

√
2
2
(−1)kh1−k+2lψj−1,l(x). (15)

By computing the inner product of Eq. (15), the reconstruction formula is obtained, as shown in Eq. (16):

⟨f , ϕj,k⟩ =

−
l∈z

√
2
2

hk−2l⟨f , ϕj−1,l⟩ +

−
l∈z

√
2
2
(−1)kh1−k+2l⟨f , ψj−1,l⟩. (16)

The reconstructed signal s is the prediction for data for the bus passenger flow in the next period.

3.4. Error testing

In this section, the average absolute error andmean square error are adopted to represent differences between the actual
value and the predicted value.

Let there be an actual value si, and let ŝi be the predicted value; thus, the average absolute error is given by

AAE =
1
N

n−
i=1

si − ŝi
 . (17)

Further, the mean square error is written as

MSE =
1
N

 n−
i=1

(si − ŝi)2. (18)

4. Empirical analysis

This study investigates the third bus line in Liaoyuan City, Jilin Province. The whole length of the line is 13.5 km, and
line is equipped with 21 standard buses each of which can take 19 passengers. The average interval in the peak period and
off-peak hours is 3 min. From the railway station to the terminal named ‘Five-star’, 240 runs depart every day. Taking 3 min
as the interval, this study recorded the passenger flow data for October 19th, 2009, as shown in Figs. 2 and 3.

Using the principal component analysis method, the principal component spectra are as shown in Figs. 4 and 5.
The results from these figures show that the passenger flow data are in accordance with the chaos characteristic.
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Fig. 4. The principal component spectrum on October 19th.
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Fig. 5. The principal component spectrum on October 20th.
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Fig. 6. The decomposition sequences of the data for October 19th.

Further, the passenger flow data for October 19th and 20th are decomposed using the wavelet function db4; then, the
low-frequency signal cA3 and the high-frequency signals cDn (n = 1, 2, 3) are obtained, as shown in Figs. 6 and 7.

The neural network approach is used to predict the sequences, with the first half of cA3 and cDn (n = 1, 2, 3) as input.
The training and testing is continued until the error is below 0.01. Then, the predicted sequences are obtained, as shown in
Fig. 8.

The low-frequency section and the high-frequency section of the predicted sequences are reconstructed using the db4
wavelet function. Finally, the passenger flow value on October 21th can be predicted. Fig. 9 shows the comparison between
the predicted data and actual data.

The absolute error and the mean square error are computed as shown in Figs. 10 and 11.
The result of the comparison between the predicted data and actual data indicates that the proposed model has been

shown to be effective, and the error is acceptable.
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Fig. 7. The decomposition sequences of the data for October 20th.
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Fig. 8. The predicted sequences.
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Fig. 9. The comparison between the predicted data and actual data for October 21th.
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Fig. 11. The mean square error.

5. Conclusion

In this study, wavelet analysis and a neural network are applied to propose a non-linear model for predicting the rate
of passenger flow. The study concludes that transit passenger flow data have chaos characteristics. This promising result
illustrates that the non-linearmodel presented here is effective withminimal prediction error. Moreover, themodel reflects
the changes of the passenger flow objectively. Empirical results indicate that the proposed model can provide an effective
way to improve predictive performance. Therefore, it could provide a new approach for the prediction of passenger flow
and a theoretical basis for bus special planning.
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