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1. Introduction

In [6], Kim and Roush proved undecidability for diophantine equations for rational function fields
over a subfield of a p-adic field of odd residue characteristic. Our interest went out to improving their
methods so they would also work in the case of residue characteristic 2. While the present paper
follows some of the structure of Kim and Roush’s proof, our proof is a general one that handles both
p odd and p = 2. We also simplify many of the methods of Kim and Roush by working more in the
context of the theory of quadratic forms. However, we only deal with p-adic fields (as opposed to
subfields of p-adic fields).

This result fits in with other results concerning Hilbert’s Tenth Problem. In his famous list of
23 problems, Hilbert asked for an algorithm that solves the following question: given a polynomial
with integer coefficients in any number of unknowns, does this polynomial have an integer zero? In
1970 Matiyasevich proved, building on earlier work of Davis, Putnam and Robinson, that recursively
enumerable sets are Diophantine (called the DPRM theorem). From this it follows that there is no
algorithm to decide whether a polynomial over the integers has integer zeros. The undecidability of
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diophantine equations has been shown for many other rings and fields, [9] gives an overview of what
is known.

For rational function fields K (t), to prove diophantine undecidability (i.e. a negative answer to
Hilbert’s Tenth Problem) it suffices to give an existential definition of the valuation ring at t . This
method was first used by Denef [3] in characteristic zero, in general the result can be stated as
follows:

Theorem 1.1. (See [9, Theorem 2.3].) Let K be a field and let K0 denote the prime subfield of K . Let t be a
transcendental element over K . Suppose that there exists an existential formula ψ(x) such that the following
hold:

1. for every x ∈ K0(t) such that vt(x) � 0, ψ(x) holds;
2. for every x ∈ K (t) such that ψ(x) holds, we have vt(x) � 0.

Then the existential theory of K (t) is undecidable.

Therefore, the aim of this paper is really to give an existential definition of the predicate
“vt(x) � 0” (we do not need to restrict to the prime field as in Theorem 1.1). This can easily be
reduced to giving an existential definition of “vt(x) is even”, this reduction is done implicitly in The-
orem 5.3. We will use quadratic forms to define “vt(x) is even”.

In Section 2 of this paper, we start with some basic definitions and theorems about quadratic
forms, we give a refined Dirichlet density theorem for global fields and we introduce Newton polygons
which immediately give the valuations of the zeros of a polynomial.

At various places in their proof, Kim and Roush take an element of K (t) (where K is a p-adic field),
apply a variable transformation which might live over a finite extension of K and then go the residue
field (this is the rational function field over a finite field). The resulting functions are called “edge
functions”. They then reason with these functions and lift back to K (t). Since our proof also needs
to work for even residue characteristic and we want to work with quadratic forms, we cannot do
this anymore. Instead, in Section 3, we define a kind of quadratic reciprocity symbol for polynomials
over K . In the case of odd residue characteristic, this symbol can be defined completely in terms of
the residue field. However, it is actually a lot more natural not to look at the residue field at all. We
also prove a quadratic reciprocity law for this symbol. Section 4 contains our main result regarding
quadratic forms: if f ∈ K [t] has a particular Newton polygon, then certain quadratic forms over K (t)
involving f and an unknown function s ∈ K (t) can be made isotropic. This is then used in Section 5
to give an existential definition of “vt(x) � 0”. Also in this last section, we use an elliptic curve to give
an existential definition of the constants K in K (t).

2. Definitions

We start with some definitions and properties of quadratic forms. We state Milnor’s exact se-
quence, giving a local-global principle for the Witt ring W (K (t)) of a rational function field over a
general base field K , and the well-known fact that a Pfister form is isotropic if and only if it is hy-
perbolic. We assume that the reader is familiar with the basic theory of quadratic forms, in particular
the Witt ring. We refer to [7] or [10].

Definition 2.1. Let K be a field of characteristic �= 2. For α1, . . . ,αn ∈ K ∗ , the quadratic form

n⊗
i=1

〈1,αi〉 = 〈1,α1,α2, . . . ,αn,α1α2, . . . ,α1α2 · · ·αn〉

is called an n-fold Pfister form.
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Theorem 2.2. (See [7, Ch. X, Theorem 1.7].) Let K be a field of characteristic �= 2, ϕ a Pfister form over K . If ϕ
is isotropic, then ϕ = 0 in the Witt ring W (K ).

Let p(t) be a monic, irreducible polynomial over K . An arbitrary quadratic form ϕ of dimension n
over K (t) can be written as ϕ1 ⊥ 〈p(t)〉ϕ2 with ϕ1 = 〈u1, . . . , ur〉 and ϕ2 = 〈ur+1, . . . , un〉 where the
ui(t) are polynomials coprime with p(t). Denote the reduction of a polynomial u(t) modulo p(t) with
u(t). Then ϕ1 = 〈u1, . . . , ur〉 and ϕ2 = 〈ur+1, . . . , un〉 are called the first and second residue forms of ϕ .
We denote the second residue class map

W
(

K (t)
) → W

(
K [t]/(p)

) : ϕ 	→ ϕ2

with δp .

Theorem 2.3 (Milnor exact sequence). Let K be a field of characteristic �= 2. Let i be the functorial map
W (K ) → W (K (t)). Let δ = ⊕

δp where the direct sum extends over all monic irreducible polynomials
p(t) ∈ K [t]. Then the following sequence of abelian groups is split exact:

0 → W (K )
i−→ W

(
K (t)

) δ−→
⊕

p

W
(

K [t]/(p)
) → 0.

Proof. See [7, Ch. IX, Theorem 3.1]. �
At some point, we will construct a polynomial over a p-adic field K with certain properties. To do

this, we will start from a polynomial in the reduction k[t], where k is the (finite) residue field of K ,
which we will find using the following generalization of Dirichlet’s density theorem:

Theorem 2.4. (See [1, Theorem A.10 with S0 = ∅].) Let F be a global field, S∞ a finite non-empty set of primes
of F , containing all archimedean primes when F is a number field. Let

A = {
x ∈ F : vp(x) � 0 for all p /∈ S∞

}
.

Suppose we are given a,b ∈ A such that aA + b A = A and for each p ∈ S∞ an open subgroup Vp ⊂ F ∗
p and

an xp ∈ F ∗
p . Suppose also that Vp has finite index in F ∗

p for at least one p ∈ S∞ .
Then there exist infinitely many primes p0 /∈ S∞ such that there is a c ∈ A satisfying

c ≡ a mod b,

c ∈ xpVp for all p ∈ S∞,

c A = p0.

Now we look at valued fields and we define the Newton polygon of a polynomial over a valued
field. For the theory of valuations, we refer to [4]. Let K be a field with a discrete henselian valua-
tion v . Let O denote the valuation ring. The fact that K is “henselian” means that the following holds:

Theorem 2.5 (Hensel’s Lemma). (See [4, Theorem 4.1.3].) For all f ∈ O[t] and a ∈ O such that v( f (a)) >

2v( f ′(a)), there exists a b ∈O such that f (b) = 0 and v(b − a) > v( f ′(a)).

Definition 2.6. Let f (t) = a0 + a1t + · · · + adtd be a polynomial over K with a0ad �= 0. The Newton
polygon of f is the lower convex hull of the points (i, v(ai)) in R2. A vertex of the Newton polygon
is a point (i, v(ai)) where two edges of a different slope meet. We call i the degree of the vertex
(i, v(ai)).
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The Newton polygon of a polynomial consists of a sequence of edges with strictly increasing slopes,
for which the following holds:

Theorem 2.7. (See [8, II (6.3), II (6.4)].) Let K be a field with a discrete henselian valuation v. Let f (t) =
a0 + a1t + · · · + adtd be a polynomial over K with a0ad �= 0. Denote the unique extension of v on the splitting
field of f also by v. If (r, v(ar)) − (s, v(as)) is an edge of the Newton polygon of f with slope m, then f has
exactly s − r roots α1, . . . ,αs−r with valuation v(α1) = · · · = v(αs−r) = −m. If the slopes of the Newton
polygon of f are m1 < · · · < mk then

f (t) = ad

k∏
j=1

f j(t), (1)

with f j(t) = ∏
v(αi)=−m j

(t − αi) ∈ K [t].

Definition 2.8. We define the factorization of f according to the slopes to be the expression ad
∏k

j=1 f j(t)
in (1). Note that the polynomials f j(t) are not necessarily irreducible over K . The Newton polygon of
each f j(t) has exactly one edge of slope m j .

Lemma 2.9. Let a,b ∈ K ∗ . If v(b) > v(a) + v(4), then a + b = x2a for some x ∈ K ∗ .

Proof. By assumption, v(a−1b) > 0, so 1 + a−1b ∈ O. Let f (t) = t2 − (1 + a−1b). Then v( f (1)) =
v(b) − v(a) > v(4) = 2v( f ′(1)). From Hensel’s Lemma follows that 1 + a−1b is a square. �
Lemma 2.10. Let f (t) = ∑d

k=0 bktk be a monic polynomial (i.e. bd = 1) whose Newton polygon has only one
edge. Let m := −v(b0)/d be the slope. Let α ∈ K . Then

v
(
bkα

k)� k
(
m + v(α)

) − dm = (k − d)
(
m + v(α)

) + dv(α).

Proof. This follows immediately from the fact that the Newton polygon of f has only one edge. �
Proposition 2.11. Let K be a field with a discrete henselian valuation v and let α ∈ K . Let f be a polynomial
over K of even degree with f (0) �= 0. Assume that the Newton polygon of f has only one edge, let m be the
slope. Assume that m �= −v(α) and let N ∈ N be such that

N >
v(4)

|m + v(α)| . (2)

Assume that f is of the form

f = a(t) + g(t)tN + z(t)t2N+deg g−deg z,

where a, g and z are polynomials over K . Assume that deg(g) and deg(z) are even and that deg(a) < N and
deg(z) < N.

If m < −v(α), then f (α) = z(α) in K ∗/K ∗2 . If m > −v(α), then f (α) = a(α) in K ∗/K ∗2 .

Remark that we can always take N = 1 in (2) if the residue characteristic is different from 2.
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Proof. Let d = 2N + deg(g) be the degree of f . Suppose first that the slope m of f is strictly smaller
than −v(α). Let c := z(α)α2N+deg g−deg z , whose leading term is the monomial of strictly lowest valu-
ation in f (α). We then have that

c−1 f (α) = c−1a(α) + c−1 g(α)αN + 1.

Using Lemma 2.10, the inequality (2) implies

v
(
a(α) + g(α)αN)

� (−N)
(
m + v(α)

) + dv(α) = N
∣∣m + v(α)

∣∣ + v(c) > v(4) + v(c).

Therefore,

v
(
c−1 f (α) − 1

)
> v(4).

By Hensel’s Lemma applied to the polynomial x2 − (c−1 f (α)), we find that c−1 f (α) is a square. Since
α2N+deg g−deg z is a square, it follows that z(α) is in the same square class as f (α).

If the slope m of f is strictly bigger than −v(α), we let c := a(α). The constant term of c is the
monomial of strictly lowest valuation in f (α). Note that v(c) = −md. We then have that

c−1 f (α) = 1 + c−1 g(α)αN + c−1z(α)αd−deg z.

Using Lemma 2.10, the inequality (2) implies

v
(

g(α)αN + z(α)αd−deg z)� N
(
m + v(α)

) − dm = N
∣∣m + v(α)

∣∣ + v(c) > v(4) + v(c).

Therefore,

v
(
c−1 f (α) − 1

)
> v(4).

As before, we find that c−1 f (α) is a square; hence f (α) is in the same square class as c = a(α). �
3. A quadratic reciprocity symbol for polynomials

From now on, let K be a p-adic field, that is a finite extension of some Qp . Fix a uniformizer π
of K , i.e. a generator of the maximal ideal in the valuation ring O. We normalize the valuation on K
and all its finite extensions such that v(π) = 1. This means for example that v(

√
π ) = 1/2 in K (

√
π ).

Remark that v extends uniquely to the algebraic closure of K .
The structure of the Witt ring of p-adic fields is well known, in particular we know that I2(K ) ∼=

Z/2Z and that I3(K ) = 0 (see [7, Ch. VI, Corollary 2.15]). In this section, we will define a kind of
Legendre symbol for the function field K (t). This symbol can be seen as the second residue map of a
certain 3-fold Pfister form over K (t), and takes two values according to the isotropy of this quadratic
form. We will prove multiplicativity and a quadratic reciprocity law for this symbol.

Definition 3.1. Let q(t) be a monic irreducible polynomial over K and let α be a root of q in the
algebraic closure. For p(t) ∈ K [t], coprime to q(t), we define the Legendre symbol

(
p

q

)
= δq

(〈1,π〉〈1,−p(t)
〉〈

1,−q(t)
〉)

= 〈1,π〉〈1,−p(α)
〉 ∈ I2(K (α)

) ∼= Z/2Z.
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The second equality is justified because 〈−1〉ϕ = ϕ for ϕ ∈ I2(L). We denote this symbol multiplica-
tively with values in {−1,1}, despite the fact that the operation corresponds to addition of quadratic
forms in the Witt ring. This symbol is well defined for p(t) ∈ (K [t]/q(t))∗ .

For every n ∈ Z, we have (
p
q ) = (

πn p
q ) because of the factor 〈1,π〉 in the definition of the Legendre

symbol. For odd residue characteristic, this implies the following equivalent definition of the symbol:

(
p

q

)
= 1 ⇐⇒ π−v(p(α))p(α) is a square in K (α)∗,

where α is a root of q(t). For even residue characteristic, we cannot give such an easy equivalence.
Note that the symbol clearly depends on the choice of uniformizer π . To be consistent, we will work
all the time with one fixed uniformizer.

Next, we prove multiplicativity of the symbol.

Proposition 3.2. Let q(t) be a monic irreducible polynomial over K . Let p(t) and r(t) be polynomials over K ,
coprime to q(t). Then

(
pr

q

)
=

(
p

q

)(
r

q

)
. (3)

Proof. Let α be a root of q. The statement (3) is equivalent to

〈1,π〉〈1,−p(α)
〉 ⊥ 〈1,π〉〈1,−r(α)

〉 ⊥ −〈1,π〉〈1,−p(α)r(α)
〉 = 0.

We can simplify this to

〈1,π〉〈1,1,−1,−p(α),−r(α), p(α)r(α)
〉 = 0,

〈1,π〉〈1,−1〉 ⊥ 〈1,π〉〈1,−p(α),−r(α), p(α)r(α)
〉 = 0,

〈1,π〉〈1,−p(α)
〉〈

1,−r(α)
〉 = 0.

Since 3-fold Pfister forms are hyperbolic over K , the last equality is always true. �
In order to further study this quadratic reciprocity symbol, we need to use transfers. See [10, Ch. 2,

§5] for the definition and properties of the transfer map.

Proposition 3.3. Let K be a p-adic field and L a finite extension of K . Let s : L → K be a non-zero K -linear

map, s∗ : W (L) → W (K ) the corresponding transfer map. Then s∗ induces an isomorphism I2(L)
∼−→ I2(K ).

Proof. Recall that I2(L) and I2(K ) have 2 elements, so it suffices to prove that the non-zero element
of I2(L) maps to the non-zero element of I2(K ). Let ϕ be a 4-dimensional anisotropic Pfister form
over L, this means that ϕ �= 0 in I2(L). From [10, Ch. 6, Theorem 4.4], it follows that s∗(ϕ) is Witt
equivalent to the unique anisotropic 4-dimensional quadratic form over K , so s∗(ϕ) �= 0 in W (K ). �
Proposition 3.4. Let c ∈ K ∗ and q ∈ K [t] be a monic irreducible polynomial. Then

(
c

q

)
=

(
c

t

)deg q

.
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Proof. Let α be a root of q. Let ϕ = 〈1,π〉〈1,−c〉 considered in W (K (α)). Let s : K (α) � K be a K -
linear map. Proposition 3.3 says that ( c

q ) = 1 if and only if s∗(ϕ) = 0. By [10, Ch. 2, Theorem 5.6 and
Lemma 5.8], we have

s∗(ϕ) = 〈1,π〉〈1,−c〉s∗
(〈1〉L

) (
in W (K )

)

=
{ 〈1,π〉〈1,−c〉 (deg q odd),

0 (deg q even).

This proves the proposition. �
Next, we want to find a quadratic reciprocity law. For p a monic irreducible polynomial of degree

n we define the K -linear map

sp : K [t]/(p) → K

by sp(1) = sp(t) = · · · = sp(tn−2) = 0, sp(tn−1) = 1. This map gives us the transfer homomorphism

(sp)∗ : W
(

K [t]/(p)
) → W (K ).

For the prime at infinity, let (s∞)∗ = −id. Then

Theorem 3.5. (See [10, Ch. 6, Theorem 3.5].) Let K be a field of characteristic �= 2. Let δp : W (K (t)) →
W (K [t]/(p)) be the second residue class map with respect to the irreducible polynomial p or t−1 in case
p = ∞ and let (sp)∗ be the transfer homomorphism given above. For δ = ⊕

δp and s∗ = ∑
(sp)∗ the follow-

ing sequence is exact:

W
(

K (t)
) δ−→

⊕
p,∞

W
(

K [t]/(p)
) s∗−→ W (K ) → 0.

In particular,

∑
(sp)∗δp(ϕ) = 0

(
in W (K )

)

for every form ϕ ∈ K (t).

Using this theorem, we can prove a reciprocity law for our symbol.

Theorem 3.6. Let p(t) and q(t) be monic irreducible polynomials over K . Then

(
p

q

)
=

(−1

t

)deg p deg q( q

p

)
. (4)

Proof. Consider the quadratic form 〈1,π〉〈1,−p(t)〉〈1,−q(t)〉. The second residue class map applied
to this form is trivial, except possibly at p, q and ∞. In those cases we have that

δp
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = −〈1,π〉〈1,−q(β)
〉
,

where β is a root of p, and
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δq
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = −〈1,π〉〈1,−p(α)
〉
,

where α is a root of q. We claim that

δ∞
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = 〈1,π〉〈−1, (−1)deg p deg q〉.
Indeed, we find

δ∞
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = 0 = 〈1,π〉〈−1,1〉 (deg p even, deg q even),

δ∞
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = 〈1,π〉〈−1,1〉 (deg p odd, deg q even),

δ∞
(〈1,π〉〈1,−p(t)

〉〈
1,−q(t)

〉) = 〈1,π〉〈−1,−1〉 (deg p odd, deg q odd).

From Theorem 3.5, it follows that

(sp)∗
(〈1,π〉〈1,−q(β)

〉) + (sq)∗
(〈1,π〉〈1,−p(α)

〉) − 〈1,π〉〈−1, (−1)deg p deg q〉 = 0.

By definition and multiplicativity of the symbol, we have that

〈1,π〉〈1,−(−1)deg p deg q〉 =
(−1

t

)deg p deg q

.

From Proposition 3.3 now follows

(
p

q

)
=

(−1

t

)deg p deg q( q

p

)
. �

4. Isotropy of a certain class of quadratic forms

In this section, K denotes a p-adic field with fixed uniformizer π . Let O denote the valuation ring
of K .

Lemma 4.1. Let R be a ring and x, y ∈ R such that (x, y) = (1). Let ρ ∈ R∗ and N ∈N. Then (x+ρ yN , xyN ) =
(1).

Proof. Cubing the relation (x, y) = (1), we get (x3, x2 y, xy2, y3) = (1). Clearly, (x3, x2 y, xy2, y3) ⊆
(x2, y2); therefore, (x2, y2) = (1). We can continue this process by induction to get (x2n

, y2n
) = (1)

for all n, so also (x2, y2N) = (1). Let I := (x + ρ yN , xyN ). One can easily check that x2 = x(x +
ρ yN) − ρxyN ∈ I and y2N = ρ−1 yN(x + ρ yN) − ρ−1xyN ∈ I . It follows that (1) = (x2, y2N) ⊆ I ,
hence I = (1). �

The following is the main theorem regarding isotropy of quadratic forms.

Theorem 4.2. Let γ ∈ K ∗ . Let g ∈ K [t] with g(0) �= 0. If all the vertices of the Newton polygon of g have even
degree, then there exists an s ∈ K [t] such that both quadratic forms

〈1,π〉〈1,−γ 〉〈1,−s〉, (5)

〈1,π〉〈1, tg〉〈1,−ts〉 (6)

are isotropic over K (t).
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Proof. Without loss of generality, we may assume that g is a square-free polynomial (we can divide
out squared factors, this does not change the isotropy of (6)). Because of the factor 〈1,π〉 appearing
in (6), multiplying g with some power of π does not change the isotropy of that quadratic form.
Therefore, we may assume that the leading coefficient ε of g has valuation zero.

Let g = ε
∏n

i=1 gi be the factorization according to the slopes of g . Write gi = ∏
j gi j , where the

gij are monic and irreducible. Let ni denote the degree of gi , let mi = −v(gi(0))/ni denote the slope
of gi and di the denominator of mi ∈ Q. Then the degree of every gij must be a multiple of di .

Let N be an odd integer which is a multiple of all odd di and large enough such that

N > v(4)/min
i �= j

|mi − m j| and N > deg g.

In order to find s, we write s = ε
∏n

i=1
∏

j si j and define si := ∏
j si j . The chosen si j will satisfy the

following properties:

(i) si j is coprime to tg .
(ii) si j is monic irreducible with slope mi .

(iii) si j has even degree.
(iv) For all i, κ , λ with i �= κ , the following equality holds:

(
si

gκλ

)
=

(
gi

gκλ

)
. (7)

By Theorem 2.3 it suffices to solve the quadratic forms (5) and (6) locally at primes associated
with irreducible polynomials in K [t] to solve them globally. Indeed, if all the second residue maps of
such a quadratic form are zero, then this form is Witt equivalent to an anisotropic form ϕ over K .
Since the dimension of ϕ is at most 4, the isotropy of (5) and (6) follows.

The second residue map of (5) is trivially zero, except at the irreducible factors si j of s. For each
si j , this second residue form is 〈1,π〉〈1,−γ 〉 over K [t]/(si j). So property (iii) is sufficient to prove
that (5) is isotropic: Proposition 3.4 implies that (

γ
si j

) = 1 for each irreducible factor si j of s.

To prove that 〈1,π〉〈1, tg〉〈1,−ts〉 is isotropic over K (t), we need to consider the second residue
forms at t and at each gij and si j . The isotropy of these forms is equivalent to the following three
conditions:

(
sg

t

)
= 1, (8)

(
ts

gi j

)
= 1 for all i, j, (9)

(−tg

si j

)
= 1 for all i, j. (10)

If conditions (9) and (10) are fulfilled, then (8) follows automatically (because we chose the leading
coefficient of s to be equal to ε):

(
sg

t

)
=

(
ε

t

)∏
i, j

(
si j

t

)(
ε

t

)∏
i, j

(
gij

t

)

=
∏
i, j

(−1

t

)deg si j
(

t

si j

)∏
i, j

(−1

t

)deg gi j
(

t

gi j

)
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=
(−1

t

)deg s(−1

t

)deg g ∏
i, j

(−g

si j

)∏
i, j

(
s

gi j

)

=
∏
i, j

[(−ε

si j

)∏
μ,ν

(
gμν

si j

)]∏
i, j

[(
ε

gij

)∏
κ,λ

(
sκλ

gij

)]

=
∏
i, j

[(−ε

t

)deg si j ∏
μ,ν

(−1

t

)deg gμν deg si j
(

si j

gμν

)]∏
i, j

[(
ε

t

)deg gi j ∏
κ,λ

(
sκλ

gij

)]
= 1

since the degree of s and of g is even.
Using multiplicativity and property (7), we find

(
ts

gi j

)
=

(
εt

gi j

)∏
μ

(
sμ
gij

)
=

(
εt

gi j

)(
si

gi j

) ∏
μ �=i

(
gμ

gij

)

=
(

si

gi j

)(
tg/gi

gi j

)
.

Since the degree of each si j is even, we have

(−tg

si j

)
=

(
t

si j

)(−ε

si j

)∏
κ,λ

(
gκλ

si j

)
=

(
si j

t

)∏
κ,λ

(
si j

gκλ

)
.

Therefore, the conditions (9) and (10) become

(
si

gi j

)
=

(
tg/gi

gi j

)
for all i, j, (11)

(
si j

t

)
=

∏
κ,λ

(
si j

gκλ

)
for all i, j. (12)

Now we construct the si , satisfying properties (i)–(iv) and conditions (11) and (12). For this, we
will have to distinguish two cases, according to the parity of di , the denominator of the slope mi .

Case 1. di is odd.

In this case, we will have only one irreducible factor si = si1 with slope mi . Using (7) and (11), we
can rewrite the right-hand side of condition (12) as

∏
κ,λ

(
si

gκλ

)
=

∏
κ �=i,λ

(
si

gκλ

)∏
j

(
si

gi j

)

=
∏

κ �=i,λ, j

(
gij

gκλ

)∏
j

(
tg/gi

gi j

)

=
∏

κ �=i,λ, j

(−1

t

)deg gκλ deg gi j
(

gκλ

gij

)∏
j

(
tg/gi

gi j

)
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=
∏
κ �=i

(−1

t

)deg gκ deg gi ∏
j

(
ε−1 g/gi

gi j

)∏
j

(
tg/gi

gi j

)

=
∏

j

(
ε−1t

gi j

)
=

∏
j

(
ε−1

t

)deg gi j
(−1

t

)deg gi j
(

gij

t

)
=

(
gi

t

)
.

Therefore, condition (12) becomes

(
si

t

)
=

(
gi

t

)
. (13)

Let

R =
∑

{(α,β)∈Z2|β�0∧α�miβ}

(
παtβ

)
O,

P =
∑

{(α,β)∈Z2|β�0∧α>miβ}

(
παtβ

)
O.

Clearly, R is an O-module in K [t], but one can check that it is actually a subring. Then P is a prime
ideal in R . It is not hard to see that the usual Euclidean division for polynomials works in R , provided
we divide by a polynomial whose leading term is not in P .

Let u := πmidi tdi and k = O/(π). From now on, a line over an element of R denotes reduction
modulo P . The quotient ring R/P is k[ū] (the variable ū is precisely the reduction of the element
u = πmidi tdi ). For a polynomial f (ū) ∈ k[ū], we define deg† f := di deg f . This is chosen such that
deg† f = deg f for all f ∈ R with leading term not in P .

Define hi := πmini gi . Since gi is monic of degree ni and slope mi , it follows that hi ∈ R . For gμ with
mμ > mi , we have πmμnμ gμ ∈ R and only the constant term of πmμnμ gμ does not vanish modulo P .
For gμ with mμ < mi , let Bi ∈ 2diZ such that Bi � nμ = deg gμ . Then π Bimi t Bi−nμ gμ ∈ R and only the
leading term of π Bimi t Bi−nμ gμ does not vanish modulo P . So we see that there exist A, B ∈ Z with
B even such that π At B g/gi = επ At B ∏

μ �=i gμ ∈ R \ P . The reduction modulo P of π At B g/gi is of the

form ρūG with ρ ∈ k∗ and G � 0.
We want to construct si using the ring R . Since the conditions (11) and (13) do not change if we

multiply si with a multiple of π , in reality we will construct c := πmi deg si si ∈ R . We define

a := hi + πmi N+AtN+B g/gi ∈ R,

b := hiu
N/di+G = πmi(N+di G)tN+di Ghi ∈ R.

We will construct c of the form c = a + qb for some q ∈ R . Using the fact that ( t
gi j

) = ( tN+B

gi j
) and

gij | hi , it is clear that si := π−mi deg cc = π−mi deg c(a + qb) satisfies (11) and (13). At the same time,
we will make sure that c is also of the form r + πmi etehi for some e ∈ 2diZ and r ∈ R with deg r �
deg hi + e − N . We claim that for such c, the following holds:

(
c

gκλ

)
=

(
hi

gκλ

)
for all κ , λ with i �= κ. (14)

Indeed, let α be a root of gκλ . If mi < mκ = −v(α), then by Proposition 2.11, the square class of c(α)

in K (α) is the same as πmi ehi(α). This implies (14). If mi > mκ , then the square class of c(α) in K (α)
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is the same as a(α). Since (g/gi)(α) = 0, this also implies (14). Using (
si

gκλ
) = ( c

gκλ
) and hi = πmini gi ,

it is clear that (14) implies (7).
The ideal P +(u) in R contains all παtβ ∈ R , except for π0t0. The constant term of hi has valuation

zero, therefore (hi) + P + (u) = (1). Note that a = hi +ρūN/di+G and b = hiūN/di+G . Since (hi, ū) = (1)

in R/P , Lemma 4.1 implies (a,b) = (1).
Let N ′ := N/di . We apply Theorem 2.4 to k = R/(P + (u)), F = k(ū), S∞ = {p∞}, then A = k[ū].

Take

V∞ = {
ūe′ + ce′−N ′ ūe′−N ′ + ce′−N ′−1ūe′−N ′−1 + · · · + c0 + c−1ū−1 + · · · ∣∣ e′ ∈ 2Z

}
⊆ k

((
ū−1)) = k∞

and x∞ = hi .
Because of Theorem 2.4, there exist infinitely many q1 ∈ k[ū] such that c := a + q1b ∈ k[ū] is irre-

ducible and in hi V∞ . There are infinitely many, so we may assume that deg† c � N + deg b.
Since c ∈ hi V∞ , we can write c = hi(ūe′ + r0), with r0 ∈ k((ū−1)) such that deg r0 � e′ − N ′ . Let

r1 = hir0 = c − hiūe′ ∈ k[ū], then deg† r1 � ni + e − N , with e = die′ . Choose a lift r1 ∈ R of r1 such that
deg r1 = deg† r1. Now let c̃ = r1 + πmi etehi ∈ R , then c̃ is a lift of c.

Let q1 ∈ R be a lift of q1. Lifting the equality c = a + q1b to R yields an error term which is in P ,
so there exists an f ∈ P such that

c̃ + f = a + q1b. (15)

Since the leading term of b is not in P , we can do Euclidean division of f by b: let f = q2b + r2 with
deg r2 < deg b. Plugging this into (15) gives c̃ + r2 = a + (q1 − q2)b.

Reducing the equality f = q2b + r2 modulo P gives 0 = q2b + r2. The leading term of b does not
vanish modulo P , so deg† r2 � deg r2 < deg b = deg† b. Since r2 is a multiple of b, it follows that r2 = 0.

Define c := c̃ + r2, q := q1 − q2 and r := r1 + r2. Then

c = a + qb = r + πmietehi,

which is of the required form. It remains to check that c is irreducible. Suppose c is reducible in
K [t], so c = c1c2 with c1, c2 ∈ K [t]. Without loss of generality we can assume that c1(0) = 1. Since
c2(0) = c(0) = hi(0) is a unit and c1 and c2 have slope mi , it follows that c1, c2 ∈ R . Therefore, we can
reduce modulo P to find c = c1 c2. Now the irreducibility of c together with deg† c = deg c implies
that c is irreducible.

Case 2. di is even.

In this case, every gij has even degree. The previous method will not work because every odd
degree monomial in R becomes zero in R/P . Instead we will find for each monic irreducible factor
gij of gi an irreducible si j . We set

si j = gij + pij

with pij ∈ R with deg pij < deg gij still to be determined. The coefficients of pij will be chosen to
have large valuation. By [11, Ch. II, §2, Exercice 2], si j will be irreducible if the valuation of pij is
sufficiently large (depending on gij).

Next, we want to check that

(
gij + pij

g

)
=

(
gij

g

)
for all (μ,ν) �= (i, j). (16)
μν μν
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This follows from Lemma 2.9 if v(pij(α)) > v(gij(α))+v(4) for each root α of gμν with (μ,ν) �= (i, j).
Since gij(α) �= 0 for each root α of gμν with (μ,ν) �= (i, j), we can enforce this condition by taking
the coefficients of pij to have large enough valuation. Clearly, (16) implies that (7) is satisfied.

Using (16), we rewrite condition (11):

∏
ν

(
siν

gij

)
=

(
tg/gi

gi j

)
,

(
si j

gi j

) ∏
ν �= j

(
giν

gij

)
=

(
tg/gi

gi j

)
,

(
pij

gi j

)
=

(
tg/gij

gi j

)
.

This condition will be satisfied if we choose pij such that pij ≡ π Atg/gij (mod gij) with deg pij <

deg gij for a large enough A. Using the fact that gij has even degree, the right-hand side of (12)
becomes

∏
κ,λ

(
si j

gκλ

)
=

(
si j

gi j

) ∏
(κ,λ) �=(i, j)

(
gij

gκλ

)
=

(
pij

gi j

) ∏
(κ,λ) �=(i, j)

(
gκλ

gij

)

=
(

tg/gij

gi j

)(
ε−1 g/gij

gi j

)
=

(
ε−1

gij

)(
t

gi j

)
=

(
gij

t

)
.

Since si j(0) and gij(0) are in the same square class, this is equal to (
si j
t ), therefore (12) is satisfied. �

This easily implies the following corollary, which corresponds to [6, Theorem 17].

Corollary 4.3. Let K be a p-adic field with uniformizer π and let γ ∈ K ∗ . Let g ∈ K [t] with g(0) �= 0. If all the
vertices of the Newton polygon of g have even degree, then the quadratic form

〈1,π〉〈1,−γ ,−t,−g〉
is isotropic over K (t).

Proof. It follows from Theorem 4.2 that there exists an s ∈ K [t] such that the quadratic forms (5) and
(6) are isotropic. By Theorem 2.2, these forms are zero in the Witt ring.

Therefore, in W (K ) we also have

0 = 〈1,π〉〈1,−γ 〉〈1,−s〉 ⊥ 〈−t〉〈1,π〉〈1, tg〉〈1,−ts〉,
0 = 〈1,π〉〈1,−γ ,−s, γ s,−t,−g, s, tgs〉,
0 = 〈1,π〉〈1,−γ ,−t,−g〉 ⊥ 〈1,π〉〈s〉〈−1, γ ,1, tg〉.

This implies

〈1,π〉〈1,−γ ,−t,−g〉 = −〈1,π〉〈s〉〈γ , tg〉 in W (K ).

Since the right-hand side has dimension 4 and the left-hand side dimension 8, it follows that the
left-hand side is isotropic. �
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5. Diophantine undecidability

In this section we will use the result of the previous section to give a diophantine definition of
the predicate “vt(x) � 0” in K (t). By Theorem 1.1, this implies that the existential theory of K (t) is
undecidable.

As before, K denotes a p-adic field with fixed uniformizer π . From now on, fix γ ∈ K ∗ such
that the quadratic form 〈1,π〉〈1,−γ 〉 is anisotropic over K (for the existence of such a γ , see for
example [7, Ch. VI, Corollary 2.15]). Throughout this section, we work with the following system of
two quadratic forms over K (t):

〈1,π〉 〈1,−γ ,−t,− f 〉, (17)

〈1,π〉 〈1,−γ ,−t,−γ f 〉 (18)

with f ∈ K (t). First, we prove a theorem which is analogous to [6, Proposition 7]. The quadratic forms
above are analogous3 to the quadratic forms appearing in the cited proposition.

Theorem 5.1. Let f ∈ K (t) such that vt( f ) is odd. Then one of the quadratic forms (17) or (18) is anisotropic
over K (t).

Proof. Let fntn + fn+1tn+1 + · · · be the series expansion of f (with fn �= 0). By assumption, n is odd.
The first and second residue class forms of (17) at t are 〈1,π〉〈1,−γ 〉 and ϕ1 := 〈1,π〉〈−1,− fn〉.
The residue forms of (18) at t are 〈1,π〉〈1,−γ 〉 and ϕ2 := 〈1,π〉〈−1,−γ fn〉. By assumption
〈1,π〉〈1,−γ 〉 �= 0 in W (K ). Since

ϕ2 − ϕ1 = 〈1,π〉〈−1,−γ fn,1, fn〉
= 〈 fn〉〈1,π〉〈1,−γ 〉 �= 0 in W (K ),

it follows that ϕ1 �= 0 or ϕ2 �= 0. Suppose that ϕ1 �= 0 (the argument for ϕ2 �= 0 is completely
analogous). Since ϕ1 is a Pfister form, it follows from Theorem 2.2 that ϕ1 is anisotropic. Both residue
forms of (17) are anisotropic, therefore (17) is anisotropic. �

We prove a consequence of Corollary 4.3. Roughly speaking, we start from a given rational function
h and we construct a polynomial such that the vertices of its Newton polygon all have even degree.
It is similar to [6, Theorem 9].

Theorem 5.2. Let h ∈ K (t) be such that v∞(h) � −2 and vt(h) = 0. Then there exists c ∈ K such that, if we
let

f := h + ct2, (19)

both quadratic forms (17) and (18) are isotropic over K (t).

Proof. Since v∞(h) � −2 and vt(h) = 0, we can write h(t) = hN (t)
hD (t) with hN and hD polynomials such

that hN (0)hD(0) �= 0 and deg hN � deg hD + 2. Multiplying f with h2
D does not change the isotropy of

(17) and (18). We want to apply Corollary 4.3 with g = f h2
D , so

g = hNhD + ct2h2
D .

3 The letter b from Kim and Roush corresponds to our π ; a corresponds to our γ ; f corresponds to t · g and the forms are
multiplied with a factor 〈t〉.
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It is clear that g(0) �= 0 and deg g = 2 + 2 deg hD . We can choose c ∈ K such that v(c) is very low
(depending on the coefficients of hN and hD ). Namely, we can choose v(c) so low that the first edge
of the Newton polygon of g has vertices of degree 0 and degree 2. Choosing v(c) low enough, the
remaining vertices of the Newton polygon of g are the vertices of the Newton polygon of ct2h2

D , and
those also have even degree. So g satisfies the conditions of Corollary 4.3, and because multiplying g
with an element of K ∗ does not change the degree of the vertices of g , the isotropy of (17) and (18)
follows. �

We prove the next theorem similar to [2, Proposition 4.7], in which we relate the valuation at t to
the isotropy of our system of quadratic forms.

Theorem 5.3. Let x ∈ K (t). Then vt(x) � 0 if and only if there exists a c ∈ K such that the quadratic forms
(17) and (18) are isotropic with

f := 1 + t + t2x3

1 + tx3
+ ct2.

Proof. Define hN := 1 + t + t2x3, hD := 1 + tx3 and h := hN/hD .
Assume first that vt(x) � 0. Then vt(hN ) = 0 and vt(hD) = 0 such that vt(h) = 0. If v∞(x) � 1, then

v∞(hN ) = −1 and v∞(hD) = 0 such that v∞(h) = −1. If v∞(x) � 0, then v∞(hN) = −2 + 3v∞(x) and
v∞(hD) = −1 + 3v∞(x) such that v∞(h) = −1. In short, if vt(x) � 0, then vt(h) = 0 and v∞(h) = −1.
Theorem 5.2 gives us that there exists a c ∈ K such that (17) and (18) are isotropic.

Conversely, assume that vt(x) � −1. Then vt(hN ) = 2 + 3vt(x) and vt(hD) = 1 + 3vt(x) such that
vt(h) = 1. It follows that vt( f ) = 1. By Theorem 5.1, for every c ∈ K , one of the quadratic forms (17)
and (18) is anisotropic. �

Since quadratic forms being isotropic is a diophantine condition, the result in Theorem 5.3 is a
diophantine definition of the valuation ring at t in K (t), except for the part “there exists a c ∈ K ”. We
now prove that the constants are diophantine in K (t).

Proposition 5.4. K is diophantine in K (t).

Proof. Let E be the elliptic curve over K given by the equation y2 = x3 − x. Let y ∈ K with v(y) > 0.
We claim that there is an x ∈ K such that (x, y) lies on E(K ). Let f (x) = x3 − x − y2 ∈ O[x]. Since
v( f (0)) = 2v(y) > 2v( f ′(0)) = 0, it follows from Theorem 2.5 that there exists a b ∈ O such that
f (b) = 0. So

K = {
y1/y2

∣∣ (∃x1, x2 ∈ K )
(
(x1, y1) ∈ E(K ) ∧ (x2, y2) ∈ E(K ) ∧ y2 �= 0

)}
.

By Hurwitz’ Theorem [5, Ch. IV, Corollary 2.4], the curve y2 = x3 − x admits no rational
parametrization, so E(K (t)) = E(K ). This means

K = {
y1/y2

∣∣ (∃x1, x2 ∈ K (t)
) (

(x1, y1) ∈ E
(

K (t)
) ∧ (x2, y2) ∈ E

(
K (t)

) ∧ y2 �= 0
)};

hence K is diophantine in K (t). �
Corollary 5.5. In K (t), the relation vt(x) � 0 is diophantine.

Proof. The result follows immediately from Theorem 5.3 and Proposition 5.4. �
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