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The energy loss of a fast charged particle probe incident on a two-dimensional graphene
sheet is examined here. The fast particle motion is taken to be perpendicular to the 2D
graphene sheet, which is considered to be in the degenerate limit of zero temperature.
The response dynamics of the 2D graphene layer are described in the random phase
approximation and the energy loss for particle motion perpendicular to the 2D graphene
layer is calculated as a function of the velocity of the charged particle.

1. Introduction

The remarkable conduction properties of graphene have inspired intense and widespread
research on its unusual properties. It is of interest to study its response to all probes,
and in this paper we examine fast particle energy loss spectroscopy for graphene in the
perpendicular case.

We analyze fast particle energy loss in terms of the effective potential V (1) at space-time
point 1 = (r1; t1) induced by the Coulomb potential it impresses,

U(2) =
Ze

[r2 − R(t2)]
, (1)

at space-time point 2 = (r2; t2), polarizing the 2D graphene sheet. The frictional energy
loss is assumed to be small, so that the motion of the charged particle is approximately
uniform, i.e.,

R(t2) = vt2 + R0, (2)

where R0 is the initial position vector of the charged particle.
The impressed potential, U , which is dynamically screened by the polarized graphene

sheet (lying on the xy-plane), is characterized by an inverse dielectric function K(1, 2)
describing its nonlocal relation to the effective potential, V , through

V (1) =

∫
d42 K(1, 2) U(2) ; K(1, 2) =

δV (1)

δU(2)
, (3)
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(d42 = dr2dt2). This inverse dielectric function for the graphene sheet (in 3D), K(1, 2),
is related to the direct dielectric function, ε(1, 2), through
∫

d43K(1, 3) ε(3, 2) =

∫
d43ε(1, 3) K(3, 2) = δ4(1 − 2) . (4)

The induced charge density, ρ, associated with V (1),

ρ(1) =

∫
d43 R(1, 3) V (3) =

∫
d43

∫
d44 R(1, 4) K(3, 2) U(4) , (5)

is described in terms of the density perturbation response function, R(1, 3) = ∂ρ(1)
∂V (3)

(“ring

diagram”). Considering the contribution of the perturbed density to the effective poten-
tial, we have

V (1) = U(1) +

∫
d43 vc(1 − 3) ρ(3) , (6)

where

vc(1 − 3) =
e

|r1 − r3| δ(t1 − t2) , (7)

is the instantaneous inter-electron Coulomb interaction of the graphene plasma. Taking
the variational derivative of Eq. (6) with respect to U(2) and using the chain rule of
variational differentiation, we have

K(1, 2) = δ4(1 − 2) −
∫

d44 α(1, 4) K(4, 2) , (8)

where α(1, 2) is the polarizability, which will be written in a form that describes both
the free electron response and an additive static background term α0 = ε0 − 1 (ε0 is the
background dielectric constant) as

α(1, 2) = −
∫

d43 vc(1 − 3) R(3, 2) + α0δ
4(1 − 2)

= ε(1, 2) − δ4(1 − 2) . (9)

Combining Eqs. (8) and (9), we obtain an integral equation for K(1, 2),

K(1, 2) =
1

ε0

δ4(1 − 2) +
1

ε0

∫
d44

∫
d43vc(1 − 3) R(3, 4) K(4, 2) .

Applying the operator ∇2
1 to the above equation, we get

∇2
1

[
K(1, 2) − 1

ε0

δ4(1 − 2)

]
= − 4πe

ε0

∫
d44R(1, 4) K(4, 2) . (10)

Comparing Eqs. (5) and (10), we obtain the perturbed density, ρ (1), as

ρ(1) = − ε0

4πe

∫
d42 ∇2

1

[
K(1, 2) − 1

ε0

δ4(1 − 2)

]
U(2) . (11)
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The force per unit volume on the electron plasma due to the passing charged particle
is −ρ(1) ∇1V (1) and the reaction force on the fast particle is

f = e

∫
d3r1ρ(1) ∇1V (1) = − ε0

4π

∫
d3r1 ∇2

1

[
V (1) − 1

ε0

U(1)

]
∇1V (1) , (12)

where use was made of Eq. (11). The first term of Eq. (12) integrates to zero, reflecting
the fact that there can be no “self force,” and we obtain

f = −Ze [∇1V (1)]|r1=R(t1) , (13)

where we employed

∇2
1U(1) = −4πZeδ3(r1 − R(t1)) . (14)

Substitution of V (1) from Eqs. (6) and (11) into Eq. (13) and Fourier transforming both
in space and time, we find

f = −4π (Ze)2

(
∇1

(∫
dz2

∫
d2p̄

(2π)2 eip̄·̄r1

×
∫

dpz

2π
eipzz2e−i(p̄·v̄+pzvz)t1e−i(p̄·R̄0+pzz0)K(z1, z2, p̄; ω = p̄ · v̄ + pzvz)

p̄2 + p2
z

))∣∣∣∣
r1=vt1+R0

,(15)

where v = v̄+vzẑ, r = (r̄, z), and p = (p̄, pz). Writing the force as f = f̄ +fzẑ, we obtain
for the force component perpendicular to the graphene sheet,

fz = −4π (Ze)2

∫
dz2

∫
d2p̄

(2π)2

∫
dpz

2π

eipz(z2−vzt1−z0)

p̄2 + p2
z

(
∂

∂z1

K(z1, z2, p̄; ω = p̄ · v̄ + pzvz)

)∣∣∣∣
z1=vzt1+z0

.(16)

Considering charged particle motion perpendicular to the graphene sheet, v̄ = 0, and the
resistive force of Eq. (16) reduces to

fz = −4π (Ze)2

∫
dz2

∫
d2p̄

(2π)2

∫ ∞

−∞

dpz

2π

eipz(z2−vzt1−z0)

p̄2 + p2
z

∂

∂z0

K(vzt1 + z0, z2, p̄; ω = pzvz) ,(17)

where p̄ = |p̄|. The quantity of interest here is the total work integral

W =

∫ ∞

−∞
dz0 fz, (18)

which may be evaluated by integration by parts as

W = 4π (Ze)2

∫
dz2

∫
dz̃0

∫
d2p̄

(2π)2

∫ ∞

−∞

dpz

2π
eipz(z2−z̃0) pz

p̄2 + p2
z

K2(z̃0, z2, p̄; ω = pzvz) , (19)

with z̃0 = z0 + vzt1, and we wrote K = K1 + iK2 where K1 (K2) represents the real
(imaginary) part of K. The inverse dielectric function K(z1, z2, p̄; ω) for a 2D plasma
sheet in 3D space is determined as

K(z1, z2, p̄; ω) =
1

κ
δ(z1 − z2) +

1

κ
δ(z2) e−p̄|z1| [K2D(p̄, ω) − 1

]
, (20)

where K2D (p̄, ω) is the 2D inverse dielectric function on the 2D plane. Substitution of
Eq. (20) into Eq. (19) and evaluation of the z̃0-integral yields the total work integral as

W =
4π

κ
(Ze)2

∫
d2p̄

(2π)2

∫ ∞

−∞

dpz

2π

2pzp̄

(p̄2 + p2
z)

2K2D
2 (p̄, ω = pzvz) . (21)
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2. Low Velocity Limit

The screening function may be written in terms of the real and imaginary parts as

K2D(p̄, ω) =
1

1 + α(p̄, ω)
=

ε1(p̄, ω) − iα2(p̄, ω)

ε2
1(p̄, ω) + α2

2(p̄, ω)
. (22)

The zero-temperature polarizability for doped/gated graphene (EF �= 0) was determined
[1–5] explicitly in the degenerate case, and the result is written below in terms of the den-
sity perturbation response function, R (expressed in terms of the dimensionless quantities

x = p̄/kF , ν = ω/EF , and R̃(p̄, ω) = R(p̄, ω) /D0, where D0 ≡ D(EF ) = (gsgvn/π)1/2 /γ
is the density of states at the Fermi energy, γ is essentially the 2D Fermi velocity, gs and
gv are the spin and valley degeneracies respectively, and we take � = 1 and α0 = 0):

R̃(x, ν) = R̃+(x, ν) + R̃−(x, ν) , (23)

with

R̃+(x, ν) = R̃+
1 (x, ν) θ(ν − x) + R̃+

2 (x, ν) θ(x − ν) , (24)

where the real parts of the polarizability are

�R̃+
1 (x, ν) = −1 + 1

8
√

ν2−x2

{
f1(x, ν) θ(|2 + ν| − x) + sgn(ν − 2 + x) f1(x, −ν) θ(|2 − ν| − x)

+f2(x, ν) [θ(x + 2 − ν) + θ(2 − x − ν)]
}

, (25)

�R̃+
2 (x, ν) = −1 + 1

8
√

x2−ν2

{
f3(x, ν) θ(x − |ν + 2|) + f3(x, −ν) θ(x − |ν − 2|)

+πx2

2
[θ(|ν + 2| − x) + θ(|ν − 2| − x)]

}
, (26)

and the imaginary parts of the polarizability are

�R̃+
1 (x, ν) =

1

8
√

ν2 − x2

{
f3(x, −ν) θ(x − |ν − 2|)+πx2

2
[θ(x + 2 − ν) + θ(2 − x − ν)]

}
,(27)

�R̃+
2 (x, ν) = − θ(ν − x + 2)

8
√

x2 − ν2
[f4(x, ν) − f4(x, −ν) θ(2 − x − ν)] , (28)

where

f1(x, ν) = (2 + ν)

√
(2 + ν)2 − x2 − x2 ln

√
(2 + ν)2 − x2 + (2 + ν)

∣∣√
ν2 − x2 + ν

∣∣ , (29)

f2(x, ν) = x2 ln
ν −

√
ν2 − x2

x
, (30)

f3(x, ν) = (2 + ν)

√
x2 − (2 + ν)2 + x2 sin−1 2 + ν

x
, (31)
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f4(x, ν) = (2 + ν)

√
(2 + ν)2 − x2 − x2 ln

√
(2 + ν)2 − x2 + (2 + ν)

x
, (32)

and

R̃−(x, ν) = − πx2θ(x − ν)

8
√

x2 − ν2
− i

πx2θ(ν − x)

8
√

ν2 − x2
. (33)

In the low velocity limit we expand the imaginary part of the inverse dielectric function,
K2D

2 (p̄, ω), to linear order in ω = pzvz, obtaining

K2D
2 (p̄, ω) � K2D

2 (p̄, 0) + ω

(
∂

∂ω
K2D

2 (p̄, ω)

)∣∣∣∣
ω=0

= ω

(
∂

∂ω
K2D

2 (p̄, ω)

)∣∣∣∣
ω=0

, (34)

since K2D
2 (p̄, ω) is an odd function of frequency ω. Using Eq. (22), we write Eq. (34) as

K2D
2 (p̄, ω) � ω

vc(p̄) ∂
∂ω

R2(p̄, ω = 0)

[1 − vc(p̄) R1(p, 0)]2
, (35)

and substitution into Eq. (21) yields the total work integral as

|W | = −4π2vz

(
Ze2

κ

)2 ∫
d2p̄

(2π)2

1

p̄

∂
∂ω

R2(p̄, ω = 0)

[1 − vc(p̄) R1(p, 0)]2
, (36)

which, in terms of the dimensionless variables introduced above, can be recast as

|W | = −2πvz
D0pF

EF

(
Ze2

κ

)2 ∫ ∞

0

dx
∂
∂ν

R̃2(x, ν = 0)
[
1 − 2πe2D0

κpF

1
x
R̃1(x, ν = 0)

]2 . (37)

The expressions appearing in the above integrand are

∂

∂ν
R̃2(x, ν = 0) = − 1

2x

√
4 − x2θ(2 − x) θ(x) , (38)

and

R̃1(x, ν = 0) = −1 − πx

8
θ(x − 2) +

1

4x

(
2

√
x2 − 4 + x2 sin−1

(
2

x

))
θ(x − 2) . (39)

Substitution of the above two expressions into Eq. (37) yields

|W | = πvz
D0pF

EF

(
Ze2

κ

)2 ∫ 2

0

dx
x

√
4 − x2

(x + c)2 , (40)

where we have defined c = 2πe2D0/κpF . Executing the x-integral we obtain the following
expression for the total work integral

|W | = πvz
D0pF

EF

(
Ze2

κ

)2 [
cπ − 4 − 2 (c2 − 2)√

c2 − 4
cos−1

(
2

c

)]
. (41)

V. Fessatidis et al. / Physics Procedia 3 (2010) 1279–1285 1283



6 Fessatidis et al.

3. High Velocity Limit

In the case of a high velocity probe particle the principal contribution to energy loss
arises from the excitation of plasmons and consequently the denominator on the right
side of Eq. (22) must vanish and can not be subjected to any contrary approximation.
However, there is simplification due to the fact that the frequency argument at high
velocity, ω = pzvz dominates, driving the polarizability into its local limit. Thus, in the
high velocity case

K2D (p̄, ω) → K2D(0, ω) =
1

ε2D(0, ω)
, (42)

with ε2D (0, ω) the high frequency local dielectric function, which has the same structure
for graphene as it does for electrons with parabolic dispersion:

ε2D(0, ω) = 1 − ω2
p

ω2
, (43)

where ωp =
(
γe2√

nπgsgv/κ�
)1/2 √

p̄ ≡ λ
√

p̄ is the graphene plasma frequency [4]. The
imaginary part of the inverse dielectric function is obtained by letting ω → ω+i0+ (with 0+

a positive infinitesimal) in Eq. (43), resulting in K2(p, ω) = − πωp

2
(δ (ω − ωp) − δ (ω + ωp)).

The total work integral of Eq. (21) may be written using this form of K2(p, ω) for high
velocity as

W = − 4π

κ
(Ze)2

∫
d2p̄

(2π)2

∫ ∞

0

dpz
pzp̄

(p̄2 + p2
z)

2

ωp

vz

δ

(
pz − ωp

vz

)

= − 4π

κ

(
Ze

λ

vz

)2 ∫ ∞

0

dp̄

2π

p̄3

(
p̄2 + p̄

(
λ
vz

)2
)2 . (44)

Finally we employ an upper upper cutoff pc for the p̄-integral, with pc marking the max-
imum momentum for which the plasmon approximation is valid, namely γp < ω < 2EF

or p1/2 < λ/vF . The resulting total work in the perpendicular case is given by

W =
2

κ

(
Ze

λ

vz

)2 (
v2

z

v2
z + v2

F

− ln

(
1 +

v2
z

v2
F

))
. (45)

In Fig. 1 we plot the total work |W | (in units of (Zeλ/vz)
2/κ) as a function of vz (in

units of vF ) in the high velocity limit. It is important to note that while the high velocity
result in the plasmon approximation closely resembles that of a normal plasma with a
quadratic dispersion law, the case of graphene substantially differs in regard to density

dependence because ωp = (gsgve
2EF /2κ�2)

1/2 √
p̄ =

(
γe2√

ngsgv/κ�
)1/2 √

p̄, wherein the
Fermi velocity, γ, is independent of density and the Fermi energy involves density in the
form EF = γpF = γ (4πn/gsgv)

1/2, leading to ωp ∝ n1/4 instead of the usual n1/2.
In conclusion, we have presented explicit expressions for the energy loss of a fast charged

particle moving perpendicular to a two-dimensional graphene sheet. In particular, we have
considered both the low and high velocity limits and have stated the differences between
the normal two-dimensional plasma results and those in the presence of graphene.
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Figure 1. Plot of |W | (in units of (Zeλ/vz)
2/κ) as a function of vz (in units of vF ) in the

high velocity limit.
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