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a b s t r a c t

A local active coordinates approach is employed to obtain bifurcation equations of twisted
double homoclinic loops. Under the condition of one twisted orbit, we obtain the existence
and uniqueness and of the 1–1 double homoclinic loop, 2–1 double homoclinic loop, 2–1
right homoclinic loop, 1–1 large homoclinic loop, 2–1 large homoclinic loop and 2–1 large
period orbit. For the case of double twisted orbits, we obtain the existence or non-existence
of 1–1 double homoclinic loop, 1–2 double homoclinic loop, 2–1 double homoclinic loop,
2–2 double homoclinic loop, 2–1 large homoclinic loop, 1–2 large homoclinic loop, 2–2
large homoclinic loop, 2–2 right homoclinic loop, 2–2 large homoclinic loop, 2–2 left
homoclinic loop and 2–2 large period orbit. Moreover, the bifurcation surfaces and their
existence regions are given. Besides, bifurcation sets are presented on the 2 dimensional
subspace spanned by the first two Melnikov vectors.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and hypotheses

During the last two decades, bifurcation problems of homoclinic and heteroclinic loops of planar systems have been
investigated by many authors [1–15]. In [13], Shil’nikov studied the codimension 1 homoclinic bifurcation problem with
two complex conjugated eigenvalues. He pointed that if the eigenvaluesα and β verify Reα = Re β < 1, then the dynamical
behavior in a small neighborhood of the homoclinic orbit is chaotic. Recently, the bifurcation problems of homoclinic and
heteroclinic loops in high dimensional systems have been comprehensively studied as well [16–22]. Among all these works,
not many concern the bifurcation of double homoclinic loops. However, nowadays, there is an increasing interest in the
subject, for example, see [23–32]. In [23,32], the attention mainly goes to the perturbation of the Hamiltonian planar
vectors fields and their results focus on the number of limit cycles and their distributions by using method taken from
bifurcation theory and qualitative analysis. In [24], by using normal form theory and Poincaré return maps, the stability of
the planar double homoclinic loop is studied. In [31], one proved the existence of two families of homoclinic orbits in the
small neighborhood of the double homoclinic loops of a planar system. In [30], the authors established the classification
for the set of nonwandering points, homoclinic orbits and limit cycles, respectively. In [29], the author described the
topological equivalence class of Xµ|Ωµ for a C

3-dynamical system Xµ in general position, whereΩµ is a set of trajectories in a
neighborhood of the double homoclinic loop. In [26,28], the author shows the existence of Lorenz attractors in the unfolding
of a double homoclinic loop with a resonance condition on eigenvalues. While in [27], the author proves that perturbations
of the initial stable double homoclinic loop can lead to the creation of a Lorenz attractor. In [25], with the same configuration
below, the existence of an invariant set (shift type) in the variant centermanifold (an intersection of a center stablemanifold
and a center unstable manifold) is obtained for conservative and reversible vector fields.
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For a fixed r , we consider the following C r system

ż = f (z)+ g(z, µ), (1)

where z ∈ Rm+n+2,m ≥ 0, n ≥ 0,m + n > 0, µ ∈ Rl, l ≥ 2, 0 ≤ ‖µ‖ � 1, f (0) = 0, g(z, 0) = 0, here ‖ · ‖ denotes the
scalar product. Conversely with these articles cited above, the degeneracy of the unperturbed vector field

ż = f (z), (2)

comes from exclusively form the double homoclinicity, and various bifurcation manifolds and the corresponding existence
regions are concretely given.
First of all, we assume that:

(H1) System (2) has a hyperbolic equilibrium at the origin and the relevant linearization matrix Df (0) has simple
eigenvalues: λ1, λ2i (i = 1, 2, . . . ,m), ρ1, ρ2j (j = 1, 2, . . . , n) satisfying

−Re ρ2j < −ρ1 < 0 < λ1 < Re λ2i.

With no strong resonance between ρ1 and λ1 being allowed, we can always assume that ρ1 > λ1 without loss of
generality.

Thanks to the Implicit Function Theorem, since the equilibrium of the unperturbed system (located at the origin for
µ = 0) is hyperbolic, this equilibrium persists and admits a continuation for small values of ‖µ‖. Up to a translation, one
can assume that the equilibrium is always located at the origin.
Moreover we assume that Df (0) satisfies the Sternberg condition of order Q with Q = K([ λ2m

λ1
] + [

ρ2n
ρ1
]) + 2, where K

is the Q -smoothness of Df (0), and r ≥ 3Q , so that system (1) is uniformly CK linearizable according to [33]. Hence, up to a
CK diffeomorphism, there exists a small neighborhood U of 0 in Rm+n+2, such that for all µ ∈ Rl, 0 ≤ ‖µ‖ � 1 and for all
(x, y, u, v) ∈ U , system (1) has the following CK−1 (K ≥ 4) normal form:

ẋ = λ1(µ)x, ẏ = −ρ1(µ)y, u̇ = λ2(µ)u, v̇ = −ρ2(µ)v. (3)

Here, λ2(µ) is anm×m diagonal matrix with λ21, λ22, . . . , λ2m as its diagonal elements and ρ2(µ) is an n× n diagonal
matrix with ρ21, ρ22, . . . , ρ2n as its diagonal elements.
Besides, we make the following assumptions:

(H2) System (2) has double homoclinic loops Γ = Γ1 ∪ Γ2,

Γi = {z = ri(t) : t ∈ R, ri(±∞) = 0}

and dim(Tri(t)W
s
∩ Tri(t)W

u) = 1, i = 1, 2, whereW s andW u designate the stable and unstable manifold respectively
and TAW is the tangent space ofW at A.

(H3) Let e±i = limt→∓∞
ṙi(t)
|ṙi(t)|

, then e+i ∈ T0W
u, e−i ∈ T0W

s are unit eigenvectors corresponding to λ1 and−ρ1, respectively.
Moreover, e+1 = −e

+

2 , e
−

1 = −e
−

2 .

(H4) Span{Tri(t)W
u, Tri(t)W

s, e+i } = Rm+n+2 as t � 1, Span{Tri(t)W
u, Tri(t)W

s, e−i } = Rm+n+2 as t � −1. (see Fig. 2)

Remark 1.1. For the existing loop Γ , (H3) is generic, which guarantees that Γ has no orbit flip. While (H4) says that both
homoclinic orbits are not of the inclination to flip. If both H3 and H4 hold, the orbit is called non-critically twisted.

With the above assumptions, the double homoclinic loops, say Γ1,Γ2, are of codimension 2. Besides, a non-degenerate
homoclinic orbit Γ is called a non-twisted homoclinic orbit if the unstable manifoldW u has an even number of half twists
along the homoclinic orbit. It is called a twisted homoclinic orbit ifW u has an odd number of half twists along Γ , see [34]
for more details. We shall study the problems of p–q double homoclinic loops, p–q left (or right) homoclinic loop, p–q large
homoclinic loop and p–q large period orbit bifurcated from the twisted double homoclinic loops in an arbitrarily high-
dimensional system.Here, ‘‘left’’ or ‘‘right’’means the corresponding orbit circulates in the small neighborhoodof the original
double homoclinic loops whereas it just takes infinite time in the neighborhood of one orbit of the double homoclinic loops,
either Γ1 or Γ2. ‘‘Large’’ means that the corresponding orbit moves around in the small neighborhood of the original double
homoclinic loops and it takes an infinite time in the neighborhood of each homoclinic orbit. In addition, ‘‘p–q’’ refers to the
rounding number in each orbit’s neighborhood. Precisely speaking, the p–q loop will round Γ2p cycles, while it has winding
number q in a small neighborhood of Γ1. (see Fig. 1)
The present paper is organized as follows. After giving some preliminary results in Section 2, we obtain the bifurcation

equations with a single twisted orbit in Section 3 and in Section 4, we give the bifurcation results in this case. In Section 5,
we study the bifurcation of double twisted orbits.
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Fig. 1. Illustration of orbits definition.

2. Preliminaries

As in the meaning of the first approximation, the tangent vector bundles, situated in the tangent space bundles are
confined on the homoclinic loops, which is the intersection of the stable manifold and the unstable manifold, inherit and
exhibit sufficiently the properties (such as the geometry, the invariance, the contractibility, the expansiveness, etc.) of the
system near the loop. Our aim is then to select carefully some tangent vector bundles along the loops and some others
complement to them to form amoving frame so as to obtain the simplest form. Let us consider the linear variational system
of (2)

ż = Df (ri(t))z, (4)

and its adjoint system

ż = −(Df (ri(t)))∗z. (5)

Denote ri(t) = (rxi (t), r
y
i (t), r

u
i (t), r

v
i (t)) and take T

0
i , T

1
i to be large enough such that

ri(−T 1i ) = ((−1)
iδ, 0, δui , 0), ri(T 0i ) = (0, (−1)

iδ, 0, δvi ),

where ‖δui ‖, ‖δ
v
i ‖ = O(δ

α), i = 1, 2, α = minj,k{Re ρ2j/ρ1, Re λ2k/λ1} > 1, and δ is small enough so that

{(x, y, u, v) : |x|, |y|, ‖u‖, ‖v‖ < 4δ} ⊂ U .

We state the following lemma which can be found in [18,20].

Lemma 2.1. There exists a fundamental solution matrix Zi(t) = (z1i (t), z
2
i (t), z

3
i (t), z

4
i (t)) for system (4) with

z1i (t) ∈ (Tri(t)W
u)c ∩ (Tri(t)W

s)c,

z2i (t) = −ṙi(t)/|ṙ
y
i (T

0
i )| ∈ Tri(t)W

u
∩ Tri(t)W

s,

z3i (t) ∈ Tri(t)W
uu,

z4i (t) ∈ Tri(t)W
ss
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satisfying

Zi(−T 1i ) =


ω11i ω21i 0 ω41i
ω12i 0 0 ω42i
ω13i ω23i Im×m ω43i
0 0 0 ω44i

 , Zi(T 0i ) =


1 0 ω31i 0
0 (−1)i ω32i 0
0 0 ω33i 0
ω̄14i ω24i ω34i In×n

 ,
where, as T ji � 1 (i = 1, 2, j = 0, 1), ω12i detω

33
i detω

44
i 6= 0, (−1)

iω21i < 0, ‖ω24i ‖ � 1, ‖ω̄14i ‖ � 1, |(ω12i )
−1ω11i | �

1, ‖(ω12i )
−1ω13i ‖ � 1; ‖(ω

21
i )
−1ω23i ‖ � 1, ‖(detω

44
i )
−1ω4ki ‖ � 1, for k 6= 4; ‖(detω

33
i )
−1ω3ki ‖ � 1, for k 6= 3.

Remark 2.1. In the above lemma, W uu stands for the strong unstable manifold while W ss stands for the strong stable
manifold.

As is well known from the matrix theory, system (5) has a fundamental solution matrix Φi(t) = (Z−1i (t))∗ =
(φ1i (t), φ

2
i (t), φ

3
i (t), φ

4
i (t)). Introduce the local active coordinates Ni = (n1i , 0, n

3
i , n

4
i ), then we parametrized a point

z = (x, y, u, v) near the orbits Γi in the section Si(t) by the coordinates (n1i , n
3
i , n

4
i ). And the section Si(t) can be written as

Si(t) = {z = ri(t)+ Zi(t)N∗i = ri(t)+ z
1
i (t)n

1
i + z

3
i (t)n

3
i + z

4
i (t)n

4
i }. (6)

Choose the cross sections, for i = 1, 2,

S0i = {z = Si(T
0
i ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U, S1i = {z = Si(−T

1
i ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U .

With the above notation, system (1) has the following form

ṅji = (φ
j
i(t))

∗gµ(ri(t), 0)µ+ o(‖µ‖), i = 1, 2; j = 1, 3, 4, (7)

which is CK−2 and produces the transition maps P1i : S
1
i → S0i , i = 1, 2. Here, gµ is the derivative of g with respect to µ.

Integrating both sides of (7) from−T 1i to T
0
i , we have

n ji (T
0
i ) = n

j
i (−T

1
i )+M

j
iµ+ o(‖µ‖), i = 1, 2; j = 1, 3, 4,

where Ni(T 0i ) = (n
1
i (T

0
i ), 0, n

3
i (T

0
i ), n

4
i (T

0
i )), Ni(−T

1
i ) = (n

1
i (−T

1
i ), 0, n

3
i (−T

1
i ), n

4
i (−T

1
i )), and M

j
i =

∫ T0i
−T1i
(φ
j
i(t))

∗gµ(ri(t),

0) dt , i = 1, 2; j = 1, 3, 4 are Melnikov vectors (see for example [17,18,20–22]).

Remark 2.2. The Melnikov vectors in the case j = 1 are given by

M1i =
∫ T0i

−T1i

(φ1i (t))
∗gµ(ri(t), 0) dt =

∫
+∞

−∞

(φ1i (t))
∗gµ(ri(t), 0) dt for i = 1, 2.

3. Bifurcation equations with single twisted orbit

We now study the case of a single twisted orbit which means that the following hypothesis is satisfied.

(H5) The orbit Γ1 is nontwisted and Γ2 is twisted, that is, ω121 > 0 and ω122 < 0.

Consider the map P01 : S
0
1 → S12 , q

0
1 7−→ q12, P

0
2 : S

0
2 → S12 , q̄

0
2 7−→ q̄12 and P

0
2 : S

0
2 → S11 , q

0
2 7−→ q11 induced by the flow

of (3) in the neighborhood U of z = 0. Set the flying time from q01 to q
1
2 as τ1, q̄

0
2 to q̄

1
2 as τ2, q

0
2 to q

1
1 as τ3 and the Shilnikov

time sk = e−λ1τk , k = 1, 2, 3 (see Fig. 2). Then we have

P01 : q
0
1(x
0
1, y

0
1, u

0
1, v

0
1)→ q12(x

1
2, y

1
2, u

1
2, v

1
2),

x01 = s1x
1
2, y12 = s

ρ1/λ1
1 y01, u01 = s

λ2/λ1
1 u12, v12 = s

ρ2/λ1
1 v01,

P
0
2 : q̄

0
2(x̄
0
2, ȳ

0
2, ū

0
2, v̄

0
2)→ q̄12(x̄

1
2, ȳ

1
2, ū

1
2, v̄

1
2),

x̄02 = s2x̄
1
2, ȳ12 = s

ρ1/λ1
2 ȳ02, ū02 = s

λ2/λ1
2 ū12, v̄12 = s

ρ2/λ1
2 v̄02,

P02 : q
0
2(x
0
2, y

0
2, u

0
2, v

0
2)→ q11(x

1
1, y

1
1, u

1
1, v

1
1),

x02 = s3x
1
1, y11 = s

ρ1/λ1
3 y02, u02 = s

λ2/λ1
3 u11, v11 = s

ρ2/λ1
3 v02,

where for k = 1, 2, 3, sλ2/λ1k = diag(sλ21/λ1k , sλ22/λ1k , . . . , sλ2m/λ1k ), sρ2/λ1k = diag(sρ21/λ1k , sρ22/λ1k , . . . , sρ2n/λ1k ) are diagonal
matrices of orderm and n respectively.
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Fig. 2. Poincaré map with single twisted orbit.

To be more precise, let

S1i+ = {q ∈ S
1
i | yq > 0}, S1i− = {q ∈ S

1
i | yq < 0},

S0i+ = {q ∈ S
0
i | xq > 0}, S0i− = {q ∈ S

0
i | xq < 0}, i = 1, 2.

Then,

P01 : S
0
1+ → S12−, P

0
1 : S

0
1− → S11−, P02 : S

0
2− → S11+, P

0
2 : S

0
2+ → S12+.

Equipped with these formulae, we calculate the relations between

q2ji (x
2j
i , y

2j
i , u

2j
i , v

2j
i ), q2j+1i (x2j+1i , y2j+1i , u2j+1i , v

2j+1
i ), P0i (q

2j
i ) = q

2j+1
i+1

and their new coordinates N2ji (n
2j,1
i , 0, n2j,3i , n2j,4i ),N2j+1i (n2j+1,1i , 0, n2j+1,3i , n2j+1,4i ) for i = 1, 2,where q13 = q

1
1, and similar

relations for q̄2j2 and q̄
2j+1
2 = P

0
2(q̄

2j
2 ). Using (6) and according to the expressions of Zi(−T

1
i ) and Zi(T

0
i ),we obtain

n̄2j,12 = x̄
2j
2 − ω

31
2 (ω

33
2 )
−1ū2j2 , n̄2j,32 = (ω

33
2 )
−1ū2j2 ,

n̄2j,42 = v̄
2j
2 − δ

v
2 − ω̄

14
2 x̄
2j
2 + (ω̄

14
2 ω

31
2 − ω

34
2 )(ω

33
2 )
−1ū2j2 ,

n̄2j+1,12 = (ω122 )
−1ȳ2j+1i − (ω122 )

−1ω422 (ω
44
2 )
−1v̄

2j+1
2 ,

n̄2j+1,32 = ū2j+12 − δu2 − ω
13
2 (ω

12
2 )
−1ȳ2j+1i + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1v̄

2j+1
2 ,

n̄2j+1,42 = (ω442 )
−1v̄

2j+1
2 ,

n2j,1i = x
2j
i − ω

31
i (ω

33
i )
−1u2ji , n2j,3i = (ω

33
i )
−1u2ji ,

n2j,4i = v
2j
i − δ

v
i − ω̄

14
i x
2j
i + (ω̄

14
i ω

31
i − ω

34
i )(ω

33
i )
−1u2ji ,

n2j+1,1i = (ω12i )
−1y2j+1i − (ω12i )

−1ω42i (ω
44
i )
−1v

2j+1
i ,

n2j+1,3i = u2j+1i − δui − ω
13
i (ω

12
i )
−1y2j+1i + [ω13i (ω

12
i )
−1ω42i − ω

43
i ](ω

44
i )
−1v

2j+1
i ,

n2j+1,4i = (ω44i )
−1v

2j+1
i ,

and

x2j+1i ≈ (−1)iδ, x̄2j+12 ≈ δ, y2ji ≈ (−1)
iδ, ȳ2j2 ≈ δ, i = 1, 2.

From the above, we obtain the following Poincaré maps:

F1 = P12 ◦ P
0
1 : S

0
1 → S02 ,

n2,12 = −(ω
12
2 )
−1sρ1/λ11 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ11 v01 +M

1
2µ+ o(‖µ‖),

n2,32 = u
1
2 − δ

u
2 + ω

13
2 (ω

12
2 )
−1sρ1/λ11 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ11 v01 +M

3
2µ+ o(‖µ‖),

n2,42 = (ω
44
2 )
−1sρ2/λ11 v01 +M

4
2µ+ o(‖µ‖),

F 2 = P12 ◦ P
0
2 : S

0
2 → S02 ,

n̄2,12 = (ω
12
2 )
−1sρ1/λ12 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ12 v̄02 +M

1
2µ+ o(‖µ‖),
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n̄2,32 = ū
1
2 − δ

u
2 − ω

13
2 (ω

12
2 )
−1sρ1/λ12 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ12 v̄02 +M

3
2µ+ o(‖µ‖),

n̄2,42 = (ω
44
2 )
−1sρ2/λ12 v̄02 +M

4
2µ+ o(‖µ‖),

F3 = P11 ◦ P
0
2 : S

0
2 → S01 ,

n2,11 = (ω
12
1 )
−1sρ1/λ13 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ13 v02 +M

1
1µ+ o(‖µ‖),

n2,31 = u
1
1 − δ

u
1 − ω

13
1 (ω

12
1 )
−1sρ1/λ13 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ13 v02 +M

3
1µ+ o(‖µ‖),

n2,41 = (ω
44
1 )
−1sρ2/λ13 v02 +M

4
1µ+ o(‖µ‖).

Now, the successor function

G(s1, s2, s3, u11, ū
1
2, u

1
2, v

0
1, v̄

0
2, v

0
2) = (G

1
1,G

3
1,G

4
1,G

1
2,G

3
2,G

4
2,G

1
3,G

3
3,G

4
3)

= (F1(q01)− q̄
0
2, F 2(q̄

0
2)− q

0
2, F3(q

0
2)− q

0
1)

is given by the following:

G11 = −(ω
12
2 )
−1sρ1/λ11 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ11 v01 − s2δ + ω

31
2 (ω

33
2 )
−1sλ2/λ12 ū12 +M

1
2µ+ o(‖µ‖),

G31 = u
1
2 − δ

u
2 + ω

13
2 (ω

12
2 )
−1sρ1/λ11 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ11 v01 − (ω

33
2 )
−1sλ2/λ12 ū12 +M

3
2µ+ o(‖µ‖),

G41 = −v̄
0
2 + δ

v
2 + (ω

44
2 )
−1sρ2/λ11 v01 + ω̄

14
2 δs2 − [ω̄

14
2 ω

31
2 − ω

34
2 ](ω

33
2 )
−1sλ2/λ12 ū12 +M

4
2µ+ o(‖µ‖),

G12 = (ω
12
2 )
−1sρ1/λ12 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ12 v̄02 + s3δ + ω

31
2 (ω

33
2 )
−1sλ2/λ13 u11 +M

1
2µ+ o(‖µ‖),

G32 = ū
1
2 − δ

u
2 − ω

13
2 (ω

12
2 )
−1sρ1/λ12 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ12 v̄02 − (ω

33
2 )
−1sλ2/λ13 u11 +M

3
2µ+ o(‖µ‖),

G42 = −v
0
2 + δ

v
2 + (ω

44
2 )
−1sρ2/λ12 v̄02 − ω̄

14
2 δs3 − [ω̄

14
2 ω

31
2 − ω

34
2 ](ω

33
2 )
−1sλ2/λ13 u11 +M

4
2µ+ o(‖µ‖),

G13 = (ω
12
1 )
−1sρ1/λ13 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ13 v02 − s1δ + ω

31
1 (ω

33
1 )
−1sλ2/λ11 u12 +M

1
1µ+ o(‖µ‖),

G33 = u
1
1 − δ

u
1 − ω

13
1 (ω

12
1 )
−1sρ1/λ13 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ13 v02 − (ω

33
1 )
−1sλ2/λ11 u12 +M

3
1µ+ o(‖µ‖),

G43 = −v
0
1 + δ

v
1 + (ω

44
1 )
−1sρ2/λ13 v02 + ω̄

14
1 δs1 − [ω̄

14
1 ω

31
1 − ω

34
1 ](ω

33
1 )
−1sλ2/λ11 u12 +M

4
1µ+ o(‖µ‖).

Therefore, there is a correspondence between the solution Q = (s1, s2, s3, u11, ū
1
2, u

1
2, v

0
1, v̄

0
2, v

0
2) of

(G11,G
3
1,G

4
1,G

1
2,G

3
2,G

4
2,G

1
3,G

3
3,G

4
3) = 0

with s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, and the existence of 1–1 double homoclinic loops, 2–1 double homoclinic loops, 2–1 right
homoclinic loop, 1–1 large homoclinic loop, 2–1 large homoclinic loop and 2–1 large period orbit of system (1).
Solving (u12, v̄

0
2, ū

1
2, v

0
2, u

1
1, v

0
1) from (G

3
1,G

4
1,G

3
2,G

4
2,G

3
3,G

4
3) = 0 and substituting it into the equations (G

1
1,G

1
2,G

1
3) = 0,

we obtain the following bifurcation equations

−(ω122 )
−1sρ1/λ11 − s2 + δ−1M12µ+ h.o.t. = 0,

(ω122 )
−1sρ1/λ12 + s3 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1sρ1/λ13 − s1 + δ−1M11µ+ h.o.t. = 0.

(8)

4. Bifurcation results with single twisted orbit

In this section, we study the existence, uniqueness and non-coexistence problem of p–q double homoclinic loops,
p–q right homoclinic loop, p–q left homoclinic loop together with p–q large homoclinic loop and p–q large period orbit
for a nontwisted orbit Γ1 and a twisted Γ2. Similarly, we can consider the corresponding problem for twisted Γ1 and
nontwisted Γ2.
Firstly, we have the following result concerning the uniqueness and the incoexistence.

Theorem 4.1. Assume that hypotheses (H1)–(H5) hold. Then, for ‖µ‖ sufficiently small, system (1) has at most one 1–1 double
homoclinic loop, or one 2–1 double homoclinic loop, or one 2–1 right homoclinic loop, or one 1–1 large homoclinic loop, or
one 2–1 large homoclinic loop or one 2–1 large period orbit in the small neighbourhood of Γ . Moreover these orbits do not
coexist.

Proof. Let Q = (s1, s2, s3, u11, ū
1
2, u

1
2, v

0
1, v̄

0
2, v

0
2) then

W =
∂(G13,G

1
1,G

1
2,G

3
3,G

3
1,G

3
2,G

4
3,G

4
1,G

4
2)

∂Q

∣∣∣∣
Q=0,µ=0

=

(W11 0 0
0 I3m 0
W13 0 I3n

)
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where Ik denotes the identity matrix of order k,

W11 = diag(−δ,−δ, δ), W13 = diag( ¯ω141 δ,
¯ω142 δ,−

¯ω142 δ)

are diagonal matrices. Notice that detW = −δ3 6= 0. According to the implicit function theorem, in the neighborhood of
(Q , µ) = (0, 0), there exists a unique solution si = si(µ), u1i = u

1
i (µ), v

0
i = v0i (µ), ū

1
2 = ū

1
2(µ), v̄

0
2 = v̄02(µ) satisfying

si(0) = 0, u1i (0) = 0, v
0
i (0) = 0, ū

1
2(0) = 0, v̄

0
2(0) = 0, for i = 1, 2.

Then, depending on the solutions si, one may have the following possibilities which have relations with the bifurcation
problem.
If s1 = s2 = 0, then necessarily s3 = 0. By the uniqueness, we see that the double homoclinic loop is persistent and it is

impossible to appear two different homoclinic loops near Γ2 forming bellows configuration.
If s2 = s3 = 0 and s1 > 0, then Γ2 is persistent, and meanwhile system (1) has a unique 1–1 large homoclinic loop.
If s1 = s3 = 0 and s2 > 0, then system (1) has a unique 2–1 double homoclinic loop.
If s1 = 0, s2 > 0, s3 > 0 or s3 = 0, s1 > 0, s2 > 0, then system (1) has a unique 2–1 large homoclinic loop.
If s2 = 0, s1 > 0 and s3 > 0, then system (1) has a unique 2–1 right homoclinic loop.
If s1 > 0, s2 > 0, s3 > 0, system (1) has a unique 2–1 large period orbit.
Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. �

Remark 4.1. If there exists any p− q large homoclinic (or periodic) orbit for large p and q, then from (H5), p = 2qmust be
satisfied. However, due to the uniqueness of solution, it is impossible for the 2q− q (q > 1) large homoclinic orbit to exist,
and all the 2q− q (q > 1) large periodic orbits are in fact the 2–1 large periodic orbit.

Remark 4.2. If s1 = s2 = s3 = 0 is the solution of Eq. (8), then G
j
1 = G

j
2, for j = 1, 3, 4, thus the first two equations of (8)

are the same.

In the forthcoming section, we study the different bifurcationmanifolds and their existence regions for the single twisted
orbit case.
By substituting s1 = s2 = s3 = 0 into the first two equations we obtainM12µ+ h.o.t. = 0. IfM

1
2 6= 0, then this equation

defines a manifold L2 of codimension 1 with a normal vectorM12 at µ = 0. One concludes that the first two equations of (8)
have solution s1 = s2 = s3 = 0 when µ ∈ L2 and ‖µ‖ � 1,which means that Γ2 is persistent.
Similarly, there is a codimension 1 manifold L1 defined by M11µ + h.o.t. = 0 with normal vector M

1
1 at µ = 0 such

that the third equation of (8) has solution s1 = s2 = s3 = 0 as µ ∈ L1 and ‖µ‖ � 1. Therefore Γ1 is persistent. Suppose
rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2 manifold with normal plane Span{M

1
1 ,M

1
2 } such that the double

homoclinic orbit Γ = Γ1 ∪ Γ2 is persistent for µ ∈ L12.
Substituting s2 = s3 = 0 into Eq. (8), we obtain

−(ω122 )
−1sρ1/λ11 + δ−1M12µ+ h.o.t. = 0,

δ−1M12µ+ h.o.t. = 0,

−s1 + δ−1M11µ+ h.o.t. = 0.

Therefore we get s1 = δ−1M11µ + h.o.t . If M
1
1µ > 0 then we have s1 > 0. Substituting it into the first two equations, we

obtain the codimension 2 bifurcation set H123 such that a 1–1 large homoclinic loop bifurcates and Γ2 persists. We have

H123 : −(ω
12
2 )
−1(δ−1M11µ)

ρ1/λ1 + δ−1M12µ+ h.o.t. = 0,

δ−1M12µ+ h.o.t. = 0,

which is well defined at least in the region {µ : M11µ > 0, M
1
2µ < 0,M

1
1µ = o(|M

1
2µ|

λ1/ρ1)}.
Similarly, if Eq. (8) has s1 = s3 = 0, s2 > 0 as its solution, we need to have

−s2 + δ−1M12µ+ h.o.t. = 0,

(ω122 )
−1sρ1/λ12 + δ−1M12µ+ h.o.t. = 0,

δ−1M11µ+ h.o.t. = 0.

As the first equation induces s2 = δ−1M12µ + h.o.t., so we can get the bifurcation manifold for a 2–1 double homoclinic
loop:

H213 : δ
−1M12µ+ h.o.t. = 0, δ−1M11µ+ h.o.t. = 0.

Accordingly, for rank{M11 ,M
1
2 } = 2, dimµ = ` > 2, and 0 < M

1
2µ << 1,we have H

2
13 ∩ {µ | s2(µ) > 0} 6= ∅, so there do

exist 2–1 double homoclinic orbits with these conditions. If not, there exist no 2–1 double homoclinic orbits.

Proposition 4.1. There exists no p–q large homoclinic loop for any p ≥ 2, q ≥ 1.
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Proof. If Eq. (8) has a solution with s1 = 0, s2 > 0, s3 > 0. One has

−s2 + δ−1M12µ+ h.o.t. = 0,

(ω122 )
−1sρ1/λ12 + s3 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1sρ1/λ13 + δ−1M11µ+ h.o.t. = 0,

which implies that

s2 = δ−1M12µ+ h.o.t., s3 = −δ−1M12µ+ h.o.t.

Hence, it is impossible to have a 2–1 large homoclinic loop bifurcation for system (1). Moreover, reminding ourselves of the
Remark 4.1, our proof is completed. �

If s2 = 0, s1 > 0, s3 > 0 is the solution of (8), we obtain

−(ω122 )
−1sρ1/λ11 + δ−1M12µ+ h.o.t. = 0,

s3 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1sρ1/λ13 − s1 + δ−1M11µ+ h.o.t. = 0.

Thus,

s1 = (ω122 δ
−1M12µ)

λ1/ρ1 + h.o.t., s3 = −δ−1M12µ+ h.o.t.

So the codimension 1 bifurcation manifold for the 2–1 right homoclinic loop is

H132 = {µ | −(ω
12
2 δ
−1M12µ)

λ1/ρ1 + δ−1M11µ+ h.o.t. = 0}

which is well defined at least in the region {µ : M11µ > 0,M
1
2µ < 0} and has normal vectorM

1
2 at µ = 0.

Letµ be situated in the neighborhood of H132 , differentiating Eq. (8), take values at H
13
2 , and denoting by siµ the gradient

of si(µ)with respect to µ, we get

−(ω122 )
−1ρ1(ω

12
2 δ
−1M12µ)

(ρ1−λ1)/ρ1s1µ − λ1s2µ + λ1δ−1M12 + h.o.t. = 0,

s3µ + δ−1M12 + h.o.t. = 0,

(ω121 )
−1ρ1(−δ

−1M12µ)
(ρ1−λ1)/λ1s3µ − λ1s1µ + λ1δ−1M11 + h.o.t. = 0.

Accordingly, we have s2µ = δ−1M12 + O(|ω
12
2 δ
−1M12µ|

(ρ1−λ1)/ρ1). Therefore, s2 = s2(µ) increases along the directionM12 in
a small neighborhood of H132 .
Suppose s3 = 0, s1 > 0, s2 > 0 is the solution of (8), then one has

−(ω122 )
−1sρ1/λ11 − s2 + δ−1M12µ+ h.o.t. = 0,

(ω122 )
−1sρ1/λ12 + δ−1M12µ+ h.o.t. = 0,

−s1 + δ−1M11µ+ h.o.t. = 0.

Hereafter,

s1 = δ−1M11µ+ h.o.t., s2 = (−ω122 δ
−1M12µ)

λ1/ρ1 + h.o.t.,

and the codimension of one 2–1 large homoclinic loop bifurcation manifold is

H123 = {µ | −(ω
12
2 )
−1(δ−1M11µ)

ρ1/λ1 − (−ω122 δ
−1M12µ)

λ1/ρ1 + h.o.t. = 0}

with normal vector M12 (resp. M
1
1 ) at µ = 0 as M12 6= 0(resp. M12 = 0), which is well defined at least in the region

{µ | M11µ > 0,M
1
2µ > 0}.

When µ ∈ H123 , based on (8) we get

−(ω122 )
−1ρ1(δ

−1M11µ)
(ρ1−λ1)/λ1s1µ − λ1s2µ + λ1δ−1M12 + h.o.t. = 0,

(ω122 )
−1ρ1[(−ω

12
2 δ
−1M12µ)]

(ρ1−λ1)/ρ1s2µ + λ1s3µ + λ1δ−1M12 + h.o.t. = 0,

−s1µ + δ−1M11 + h.o.t. = 0.

Thenwe have s3µ = −δ−1M12+O(|ω
12
2 δ
−1M12µ|

(ρ1−λ1)/ρ1) such that s3 = s3(µ) increases along the direction of the gradient
−M12 in a small neighborhood of H

12
3 .

Now, we study the 2–1 large period orbit bifurcation and its existence regions.
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Fig. 3. Bifurcation diagram in single twisted case as rank(M11 ,M
1
2 ) = 2.

Due to (8)1– (8)2, we get s2 + s3 = −(ω122 )
−1sρ1/λ11 + h.o.t., so s3 = o(s1). Because of this and owing to (8)3, we have

s1 = δ−1M11µ+ h.o.t.Meanwhile (8)1, (8)2 produce

s2 = δ−1M12µ− (ω
12
2 )
−1(δ−1M11µ)

ρ1/λ1 + h.o.t.,

s3 = −δ−1M12µ− (ω
12
2 )
−1(δ−1M12µ− (ω

12
2 )
−1(δ−1M11µ)

ρ1/λ1)ρ1/λ1 + h.o.t.

From the former lines we deduce that for µ sitting on the set H123 defined by

{µ | M11µ > 0and (9) is verified},

a 2–1 large period orbit persists, where

(ω122 )
−1(δ−1M11µ)

ρ1/λ1 < δ−1 M12µ < −(ω
12
2 )
−1(δ−1M12µ− (ω

12
2 )
−1(δ−1M11µ)

ρ1/λ1)ρ1/λ1 , (9)

and it is nonempty when rank {M11 ,M
1
2 } = 2.

With the above analysis, we state the following result:

Theorem 4.2. Suppose that (H1)–(H5) are fulfilled, then we have the following.

1. If M11 6= 0, there exists a unique manifold L1 with codimension 1 and normal vector M
1
1 at µ = 0, such that system (1) has a

homoclinic loop near Γ1 if and only if µ ∈ L1 and ‖µ‖ � 1.
If M12 6= 0, there exists a unique manifold L2 with codimension 1 and normal vector M

1
2 at µ = 0, such that system (1)

has a homoclinic loop near Γ2.
If rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2manifold and 0 ∈ L12 such that system (1) has an 1–1 double

homoclinic loop near Γ as µ ∈ L12 and ‖µ‖ � 1, namely, Γ is persistent.
2. In the region defined by {µ : M11µ > 0,M

1
2µ < 0,M

1
1µ = o(|M

1
2µ|

λ1/ρ1)}, there exists a unique bifurcation set H123 which
is tangent to L2 such that system (1) has one 1–1 large homoclinic loop and Γ2 persists as µ ∈ H123.
In the region defined by {µ : 0 < M12µ � 1}, there does exist a unique codimension 2 bifurcation manifold H

2
13 which is

tangent to L1 ∪ L2 at µ = 0with the normal plane span{M11 ,M
1
2 }when rank{M

1
1 ,M

1
2 } = 2, and for µ ∈ H

2
13, system (1) has

a unique 2–1 double homoclinic loop near Γ .
In the region defined by {µ : M11µ > 0,M

1
2µ < 0}, there exists a unique codimension 1 bifurcation set H

13
2 with normal

vector M12 (resp. M
1
1 ) at µ = 0 as M

1
2 6= 0 (resp. M

1
2 = 0,M

1
1 6= 0) such that for µ ∈ H

13
2 , system (1) has a unique 2–1 right

homoclinic loop near Γ .
In the region defined by {µ : M11µ > 0,M

1
2µ > 0}, there exists a unique 2–1 large homoclinic loop bifurcation manifold

H123 of codimension 1with normal vector M
1
2 (resp. M

1
1 ) at µ = 0 as M

1
2 6= 0 (resp. M

1
2 = 0,M

1
1 6= 0) such that for µ ∈ H

12
3 ,

system (1) has a unique 2–1 large homoclinic loop near Γ .
3. When µ belongs to the region H123 = {µ | M11µ > 0 and (9) is verified} which is bounded by H

13
2 and H

12
3 , system (1) has a

unique 2–1 large period orbit, and when µ is situated in the region {µ | M11µ ≤ 0}
⋃
{µ | M12µ ≤ (ω

12
2 )
−1(δ−1M11µ)

ρ1/λ1}⋃
{µ | M12µ ≥ −(ω

12
2 )
−1(δ−1M12µ− (ω

12
2 )
−1(δ−1M11µ)

ρ1/λ1)ρ1/λ1}, system (1) has no large period orbit. (See Fig. 3)
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Fig. 4. Poincaré map with double twisted orbits.

5. Bifurcation with double twisted orbits

5.1. Bifurcation equations with double twisted orbits

We now study the bifurcation problem of double twisted orbits, which means that the following hypothesis is verified.

(H6) Suppose that both Γ1 and Γ2 are twisted, that is, ω121 < 0 and ω122 < 0.

Let P01 , P
0
2, P

0
2 be the same as in Section 3 and let P

0
1 : S

0
1 → S11 (see Fig. 4) be given by

P
0
1 : q̄

0
1(x̄
0
1, ȳ

0
1, ū

0
1, v̄

0
1)→ q̄11(x̄

1
1, ȳ

1
1, ū

1
1, v̄

1
1),

x̄01 = s4x̄
1
1, ȳ11 = s

ρ1/λ1
4 ȳ01, ū01 = s

λ2/λ1
4 ū11, v̄11 = s

ρ2/λ1
4 v̄01,

where s4 = e−λ1τ4 and τ4 is the flying time from q̄01 to q̄
1
1, x̄

1
1 ≈ −δ, ȳ

0
1 ≈ −δ. Like before, we have

n̄2j,11 = x̄
2j
1 − ω

31
1 (ω

33
1 )
−1ū2j1 ,

n̄2j,31 = (ω
33
1 )
−1ū2j1 ,

n̄2j,41 = v̄
2j
1 − δ

v
1 − ω̄

14
1 x̄
2j
1 + (ω̄

14
1 ω

31
1 − ω

34
1 )(ω

33
1 )
−1ū2j1 ,

n̄2j+1,11 = (ω121 )
−1ȳ2j+11 − (ω121 )

−1ω421 (ω
44
1 )
−1v̄

2j+1
1 ,

n̄2j+1,31 = ū2j+11 − δu1 − ω
13
1 (ω

12
1 )
−1ȳ2j+11 + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1v̄

2j+1
1 ,

n̄2j+1,41 = (ω441 )
−1v̄

2j+1
1 ,

and

F4 = P11 ◦ P
0
1 : S

0
1 → S01 ,

n̄2,11 = −(ω
12
1 )
−1sρ1/λ14 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ14 v̄01 +M

1
1µ+ o(‖µ‖),

n̄2,31 = ū
1
1 − δ

u
1 + ω

13
1 (ω

12
1 )
−1sρ1/λ14 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ14 v̄01 +M

3
1µ+ o(‖µ‖),

n̄2,41 = (ω
44
1 )
−1sρ2/λ14 v̄01 +M

4
1µ+ o(‖µ‖).

Up to now, the successor function is given by

G(s1, s2, s3, s4, u11, ū
1
2, u

1
2, ū

1
1, v

0
1, v̄

0
2, v

0
2, v̄

0
1) = (G

1
1,G

3
1,G

4
1,G

1
2,G

3
2,G

4
2,G

1
3,G

3
3,G

4
3,G

1
4,G

3
4,G

4
4)

= (F1(q01)− q̄
0
2, F2(q̄

0
2)− q

0
2, F3(q

0
2)− q̄

0
1, F4(q̄

0
1)− q

0
1)

where

G11 = −(ω
12
2 )
−1sρ1/λ11 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ11 v01 − s2δ + ω

31
2 (ω

33
2 )
−1sλ2/λ12 ū12 +M

1
2µ+ o(‖µ‖),

G31 = u
1
2 − δ

u
2 + ω

13
2 (ω

12
2 )
−1sρ1/λ11 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ11 v01 − (ω

33
2 )
−1sλ2/λ12 ū12 +M

3
2µ+ o(‖µ‖),

G41 = −v̄
0
2 + δ

v
2 + (ω

44
2 )
−1sρ2/λ11 v01 + ω̄

14
2 δs2 − [ω̄

14
1 ω

31
2 − ω

34
2 ](ω

33
2 )
−1sλ2/λ12 ū12 +M

4
2µ+ o(‖µ‖),

G12 = (ω
12
2 )
−1sρ1/λ12 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ12 v̄02 + s3δ + ω

31
2 (ω

33
2 )
−1sλ2/λ13 u11 +M

1
2µ+ o(‖µ‖),
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G32 = ū
1
2 − δ

u
2 − ω

13
2 (ω

12
2 )
−1sρ1/λ12 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ12 v̄02 − (ω

33
2 )
−1sλ2/λ13 u11 +M

3
2µ+ o(‖µ‖),

G42 = −v
0
2 + δ

v
2 + (ω

44
2 )
−1sρ2/λ12 v−2 ω̄

14
2 δs3 − [ω̄

14
1 ω

31
2 − ω

34
2 ](ω

33
2 )
−1sλ2/λ13 u11 +M

4
2µ+ o(‖µ‖),

G13 = (ω
12
1 )
−1sρ1/λ13 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ13 v02 + s4δ + ω

31
1 (ω

33
1 )
−1sλ2/λ14 ū11 +M

1
1µ+ o(‖µ‖),

G33 = u
1
1 − δ

u
1 + ω

13
1 (ω

12
1 )
−1sρ1/λ13 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ13 v02 − (ω

33
1 )
−1sλ2/λ14 ū11 +M

3
1µ+ o(‖µ‖),

G43 = −v̄
0
1 + δ

v
1 + (ω

44
1 )
−1sρ2/λ13 v02 − ω̄

14
1 δs4 − [ω̄

14
1 ω

31
1 − ω

34
1 ](ω

33
1 )
−1sλ2/λ14 ū11 +M

4
1µ+ o(‖µ‖),

G14 = −(ω
12
1 )
−1sρ1/λ14 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ14 v̄01 − s1δ + ω

31
1 (ω1x

33)−1sλ2/λ11 u12 +M
1
1µ+ o(‖µ‖),

G34 = ū
1
1 − δ

u
1 + ω

13
1 (ω

12
1 )
−1sρ1/λ14 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ14 v̄01 − (ω

33
1 )
−1sλ2/λ11 u12 +M

3
1µ+ o(‖µ‖),

G44 = −v
0
1 + δ

v
1 + (ω

44
1 )
−1sρ2/λ14 v̄01 + ω̄

14
2 δs1 − [ω̄

14
1 ω

31
1 − ω

34
1 ](ω

33
1 )
−1sλ2/λ11 u12 +M

4
1µ+ o(‖µ‖).

Thereafter, there is a correspondence between the solution Q = (s1, s2, s3, s4, u11, ū
1
2, u

1
2, ū

1
1, v

0
1, v̄

0
2, v

0
2, v̄

0
1) of

(G11,G
3
1,G

4
1,G

1
2,G

3
2,G

4
2,G

1
3,G

3
3,G

4
3,G

1
4,G

3
4,G

4
4) = 0

with s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s4 ≥ 0, and the existence of 1–1 double homoclinic loop, 1–2 double homoclinic loop,
2–1 double homoclinic loop, 2–2 double homoclinic loop, 2–1 large homoclinic loop, 1–2 large homoclinic loop, 2–2 large
homoclinic loop, 2–2 right homoclinic loop, 2–2 large homoclinic loop, 2–2 left homoclinic loop and 2–2 large period orbit
of system (1).
From equation (G31,G

4
1,G

3
2,G

4
2,G

3
3,G

4
3,G

3
4,G

4
4) = 0, we can solve (u

1
2, v̄

0
2, ū

1
2, v

0
2, u

1
1, v̄

0
1, ū

1
1, v

0
1) as in the former section.

Substituting it into (G11,G
1
2,G

1
3,G

1
4) = 0, we obtain the bifurcation equations

−(ω122 )
−1sρ1/λ11 − s2 + δ−1M12µ+ h.o.t. = 0,

(ω122 )
−1sρ1/λ12 + s3 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1sρ1/λ13 + s4 + δ−1M11µ+ h.o.t. = 0,

−(ω121 )
−1sρ1/λ14 − s1 + δ−1M11µ+ h.o.t. = 0.

(10)

5.2. 2–2 bifurcations results with double twisted orbits

In this section, we study the existence, uniqueness and incoexistence problem of the p–q double homoclinic loops, p–q
large homoclinic loop, p–q left (right) homoclinic loop, p–q large period orbit for the double twisted homoclinic orbits Γ .
First, let us give the following result concerning the uniqueness and the incoexistence.

Theorem 5.1. Assume that (H1)–(H4) and (H6) hold. Then, for ‖µ‖ sufficient small, system (1) has at most one 1–1 double
homoclinic loops, one 1–2 double homoclinic loops, one 2–1 double homoclinic loops, one 2–2 double homoclinic loops,
one 2–1 large homoclinic loop, one 1–2 large homoclinic loop, one 2–2 large homoclinic loop, one 2–2 right homoclinic loop,
one 2–2 large homoclinic loop, one 2–2 left homoclinic loop or one 2–2 large period orbit in the small neighborhood of Γ . Moreover
these orbits do not coexist.

Proof. Let Q = (s1, s2, s3, s4, u11, ū
1
2, u

1
2, ū

1
1, v

0
1, v̄

0
2, v

0
2, v̄

0
1) and

W =
∂(G14,G

1
1,G

1
2,G

1
3,G

3
4,G

3
1,G

3
2,G

3
3,G

4
4,G

4
1,G

4
2,G

4
3)

∂(s1, s2, s3, s4, u11, ū
1
2, u

1
2, ū

1
1, v

0
1, v̄

0
2, v

0
2, v̄

0
1)
|Q=0, µ=0,

then detW = δ4 6= 0. Due to the implicit function theorem, in the neighborhood of (Q , µ) = (0, 0), there exists a unique
solution si = si(µ), u1i = u

1
i (µ), v

0
i = v0i (µ), ū

1
i = ū

1
i (µ), v̄

0
i = v̄0i (µ) satisfying si(0) = 0, u

1
i (0) = 0, v

0
i (0) =

0, ū1i (0) = 0, v̄
0
i (0) = 0, i = 1, 2.

It indicates that, if s1 = s2 = s3 = s4 = 0, system (1) has a unique 1–1 double homoclinic loops, that is to say, the double
homoclinic loop Γ persists.
If s1 = s2 = s3 = 0, s4 > 0, then there exists a unique 1–2 double homoclinic loops, i.e. Γ1 becomes a 2-homoclinic

orbit and Γ2 persists.
If s1 = s3 = s4 = 0, s2 > 0, then there exists a unique 2–1 double homoclinic loops, namely, Γ2 becomes a 2-homoclinic

orbit and Γ1 persists.
If s1 = s3 = 0, s2 > 0, s4 > 0, system (1) has a unique 2–2 double homoclinic loop.
If s1 = s4 = 0, s2 > 0, s3 > 0, then Γ1 is persistent, and meanwhile system (1) has a unique 2–1 large homoclinic loop.
If s2 = s3 = 0, s1 > 0, s4 > 0, then Γ2 is persistent, and meanwhile system (1) has a unique 2–1 large homoclinic loop.
If s1 = 0, s2 > 0, s3 > 0, s4 > 0, there exists a unique 2–2 large homoclinic loop.
If s2 = 0, s1 > 0, s3 > 0, s4 > 0, system (1) has a unique 2–2 right homoclinic loop.
If s3 = 0, s1 > 0, s2 > 0, s4 > 0, there exists a unique 2–2 large homoclinic loop.
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If s4 = 0, s1 > 0, s2 > 0, s3 > 0, system (1) has a unique 2–2 left homoclinic loop.
If s1 > 0, s2 > 0, s3 > 0, s4 > 0, system (1) has a unique one 2–2 large period orbit.
Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. And all other cases are impossible based

on the definition of the Poincaré map. �

We now study the bifurcation problem for the double twisted orbits case. It can be remarked that if s1 = s2 = s3 =
0 (s1 = s3 = s4 = 0) is the solution of Eq. (10), then G

j
1 = G

j
2 (G

j
3 = G

j
4) for j = 1, 3, 4, thus the first (or last) two equations

of (10) are the same one.
By the same reason as in Section 4, if s1 = s2 = s3 = s4 = 0 is the solution of the first (or second) equation of (10), then

we have M12µ + h.o.t. = 0. In the case of M
1
2 6= 0, there exists a codimension 1 manifold L2 with a normal vector M

1
2 at

µ = 0, such that the first two equations of (10) have solution s1 = s2 = s3 = s4 = 0 as µ ∈ L2 and ‖µ‖ � 1, that is, Γ2
is persistent. Similarly, there is a codimension 1 manifold L1 defined byM11µ+ h.o.t. = 0 with normal vectorM

1
1 at µ = 0

when M11 6= 0 such that the third and the fourth equations of (10) have solution s1 = s2 = s3 = s4 = 0 as µ ∈ L1 and
‖µ‖ � 1,which indicates that Γ1 is persistent. Suppose rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2 manifold

with normal plane span{M11 ,M
1
2 } such that (10) has solution s1 = s2 = s3 = s4 = 0 as µ ∈ L12 and ‖µ‖ � 1, namely, the

double homoclinic orbit Γ = Γ1 ∪ Γ2 is persistent.
Suppose s1 = s2 = s3 = 0, s4 > 0 is the solution of (10). We have s4 = −δ−1M11µ+ h.o.t. forM

1
1µ < 0. Substituting it

into the last equation, we obtain the codimension 2 bifurcation set

H4123 : M
1
2µ+ h.o.t. = 0, M11µ+ h.o.t. = 0,

which is well defined at least in the region {µ : M11µ < 0}with normal plane span{M
1
1 ,M

1
2 } atµ = 0when rank{M

1
1 ,M

1
2 } =

2 such that a unique 1–2 double homoclinic loop bifurcates from Γ for µ ∈ H4123. That is, Γ2 persists, while Γ1 becomes a
2-homoclinic orbit.
Similarly, we get the bifurcation set

H2134 : M
1
2µ+ h.o.t. = 0, M11µ+ h.o.t. = 0,

such that (10) has solution s1 = s3 = s4 = 0, s2 > 0 as µ ∈ H2134, that is, system (1) has a 2–1 double homoclinic loop near
Γ . Clearly, H2134 which is well defined at least in the region {µ : M

1
2µ > 0}when rank{M

1
1 ,M

1
2 } = 2, has codimension 2 and

a normal plane span{M11 ,M
1
2 } at µ = 0.

If (10) has s1 = s2 = s4 = 0, s3 > 0 as its solution, then s3 = −δ−1M12µ+ h.o.t.. Hence, the bifurcation set

H3124 : M
1
2µ+ h.o.t. = 0, M11µ+ h.o.t. = 0,

(ω121 )
−1(−δ−1M12µ)

ρ1/λ1 + δ−1M11µ+ h.o.t. = 0,

where Γ persists and a 1–1 large homoclinic orbit bifurcates near Γ , is well defined at least in the region {µ : M11µ >

0,M12µ < 0}.When rank{M
1
1 ,M

1
2 } = 2, it has a codimension no less than 2.

Similarly, another bifurcation set

H1234 : M
1
2µ+ h.o.t. = 0, M11µ+ h.o.t. = 0,

− (ω122 )
−1(δ−1M11µ)

ρ1/λ1 + δ−1M12µ+ h.o.t. = 0,

such that Γ persists and a 1–1 large homoclinic orbit bifurcates near Γ for µ ∈ H12,3,4 is well defined at least in the region
{µ : M11µ > 0,M

1
2µ < 0}. It has a codimension no less than 2 as rank{M

1
1 ,M

1
2 } = 2.

Suppose s1 = s3 = 0, s2 > 0, s4 > 0 is the solution of (10). Consequently, we have s2 = δ−1M12µ + h.o.t., s4 =
−δ−1M11µ + h.o.t.. Substituting it into the second and fourth equation, the 2–2 double homoclinic loop bifurcation set
H2413 : M

1
1µ+h.o.t. = 0, M

1
2µ+h.o.t. = 0 is obtained, which is well defined at least in the region {µ : M

1
1µ < 0,M

1
2µ > 0}

as rank{M11 ,M
1
2 } = 2. It is of codimension 2 and has normal plane span{M

1
1 ,M

1
2 } at µ = 0.

When µ ∈ H2413 , system (1) has unique 2–2 double homoclinic loops near Γ .
Using the same reasoning, we can obtain the bifurcation set

H1324 : −(ω
12
2 )
−1(δ−1M11µ)

ρ1/λ1 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1(−δ−1M12µ)

ρ1/λ1 + δ−1M11µ+ h.o.t. = 0,

which is situated in the region {µ : M11µ > 0,M12µ < 0} such that (10) has a solution s2 = s4 = 0, s1 > 0, s3 > 0 as
µ ∈ H1324 and the corresponding system (1) has two 1–1 large homoclinic orbits near Γ .
Ulteriorly, as the similar analysis tells us that it is impossible for (10) to have a solution (s1, s2, s3, s4)with si = 0 and for

j 6= i, sj > 0 or si > 0 for i, j = 1, 2, 3, 4. So there exists no 2–2 large period orbit.
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Thanks to the above analysis, we have

Theorem 5.2. Suppose that (H1)–(H4), (H6) are valid, then

1. If M1i 6= 0, there exists a unique manifold Li with codimension 1 and normal vector M
1
i at µ = 0, such that system (1) has a

homoclinic loop near Γi if and only if µ ∈ Li and ‖µ‖ � 1, i = 1, 2.
If rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2manifold and 0 ∈ L12 such that system (1) has an 1–1 double

homoclinic loop near Γ as µ ∈ L12 and ‖µ‖ � 1, i = 1, 2 namely, Γ is persistent.
2. In the region defined by {µ : M11µ < 0}, there exists a unique codimension 2 bifurcation set H

4
123 such that system (1) has

one 1–2 double homoclinic loop and Γ2 persists.
In the region defined by {µ : M12µ > 0}, there exists a unique codimension 2 bifurcation set H

2
134 such that system (1) has

one 2–1 double homoclinic loop and Γ1 persists.
In the region defined by {µ : M11µ < 0,M

1
2µ > 0}, there exists a unique 2–2 double homoclinic loop bifurcation set H

24
13

of codimension 2 . For µ ∈ H2413 , system (1) has a unique 2–2 double homoclinic loop near Γ .
In the region defined by {µ : M11µ > 0,M

1
2µ < 0}, there exists a codimension 2 bifurcation set H

13
24 such that system (1)

has 1–1 large homoclinic orbits near Γ for µ ∈ H1324 .
In the region defined by {µ : M11µ > 0,M

1
2µ < 0}, there exist two bifurcation sets H

3
124 and H

1
234 with a codimension

no less than 2 , where Γ persists and an additional 1–1 large homoclinic orbit bifurcates near Γ for µ ∈ H3124 ∪ H
1
234 and

‖µ‖ � 1.
There exists no 2–2 large period orbit, 2–2 large homoclinic loop, 2–2 left homoclinic loop and 2–2 right homoclinic loop

near Γ .

5.3. 1–1 bifurcations results with double twisted orbits

In the sequel, we give a further study of the 1–1 large homoclinic orbit and 1–1 large period orbit bifurcation for the case
of double twisted orbits.
Consider the following Poincaré maps:

F1 = P12 ◦ P
0
1 : S

0
1 → S02 , F3 = P11 ◦ P

0
2 : S

0
2 → S01

and the successor function

G(s1, s3, u11, u
1
2, v

0
1, v

0
2) = (G

1
1,G

3
1,G

4
1,G

1
2,G

3
2,G

4
2)

= (F1(q01)− q
0
2, F3(q

0
2)− q

0
1).

Using the same procedure as in Section 4, we have:

G11 = −(ω
12
2 )
−1sρ1/λ11 δ − (ω122 )

−1ω422 (ω
44
2 )
−1sρ2/λ11 v01 + s3δ + ω

31
2 (ω

33
2 )
−1sλ2/λ13 u11 +M

1
2µ+ o(‖µ‖),

G31 = u
1
2 − δ

u
2 + ω

13
2 (ω

12
2 )
−1sρ1/λ11 δ + [ω132 (ω

12
2 )
−1ω422 − ω

43
2 ](ω

44
2 )
−1sρ2/λ11 v01 − (ω

33
2 )
−1sλ2/λ13 u11 +M

3
2µ+ o(‖µ‖),

G41 = −v
0
2 + δ

v
2 + (ω

44
2 )
−1sρ2/λ11 v01 − ω̄

14
2 δs3 − [ω̄

14
2 ω

31
2 − ω

34
2 ](ω

33
2 )
−1sλ2/λ13 u11 +M

4
2µ+ o(‖µ‖),

G12 = (ω
12
1 )
−1sρ1/λ13 δ − (ω121 )

−1ω421 (ω
44
1 )
−1sρ2/λ13 v02 − s1δ + ω

31
1 (ω

33
1 )
−1sλ2/λ11 u12 +M

1
1µ+ o(‖µ‖),

G32 = u
1
1 − δ

u
1 − ω

13
1 (ω

12
1 )
−1sρ1/λ13 δ + [ω131 (ω

12
1 )
−1ω421 − ω

43
1 ](ω

44
1 )
−1sρ2/λ13 v02 − (ω

33
1 )
−1sλ2/λ11 u12 +M

3
1µ+ o(‖µ‖),

G42 = −v
0
1 + δ

v
1 + (ω

44
1 )
−1sρ2/λ13 v02 + ω̄

14
1 δs1 − [ω̄

14
1 ω

31
1 − ω

34
1 ](ω

33
1 )
−1sλ2/λ11 u12 +M

4
1µ+ o(‖µ‖).

Therefore, there is a correspondence between the solutions Q = (s1, s3, u11, u
1
2, v

0
1, v

0
2) of

(G11,G
3
1,G

4
1,G

1
2,G

3
2,G

4
2) = 0

with s1 ≥ 0, s3 ≥ 0, and the existence of 1–1 large homoclinic loops, and a 1–1 large period orbit of system (1).
Solve (u12, v

0
2, u

1
1, v

0
1) from (G31,G

4
1,G

3
2,G

4
2) = 0 and then substitute it into (G

1
1,G

1
2) = 0, we obtain the bifurcation

equation

−(ω122 )
−1sρ1/λ11 + s3 + δ−1M12µ+ h.o.t. = 0,

(ω121 )
−1sρ1/λ13 − s1 + δ−1M11µ+ h.o.t. = 0.

(11)

Similarly as in the former sections, we state the following results.

Theorem 5.3. Assume that (H1)–(H4), (H6) hold. Then, for a sufficiently small ‖µ‖, the system (1) has at most one 1–1 large
homoclinic loop or one 1–1 large period orbit in the small neighborhood of Γ . Moreover these orbits do not coexist.
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Fig. 5. 1–1 bifurcation diagram in double twisted case as rank(M11 ,M
1
2 ) = 2.

Proof. Let Q = (s1, s3, u11, u
1
2, v

0
1, v

0
2) and W =

∂(G12,G
1
1,G
3
2,G
3
1,G
4
2,G
4
1)

∂(s1,s3,u11,u
1
2,v
0
1 ,v
0
2 )

∣∣∣∣
Q=0,µ=0

. Then detW = −δ2 6= 0, According to the

implicit function theorem, in the neighborhood of (Q , µ) = (0, 0), there exists a unique solution si = si(µ), u1i =
u1i (µ), v

0
i = v0i (µ), satisfying si(0) = 0, u

1
i (0) = 0, v

0
i (0) = 0, i = 1, 2. Then if s1 = s3 = 0, by the uniqueness, we

can see that the double homoclinic loop is persistent; if s1 = 0, s3 > 0 or s3 = 0, s1 > 0, then system (1) has a unique 1–1
large homoclinic loop; if s1 > 0, s3 > 0, system (1) has a unique one 1–1 large period orbit.
Clearly, the uniqueness guarantees that all these kinds of orbits do not coexist. �

If (11) has s1 = s3 = 0 as its solution, thenM1i µ+ h.o.t. = 0, i = 1, 2. In the case ofM
1
2 6= 0, there exists a codimension

1 manifold L2 with normal vector M12 at µ = 0 such that the first equation of (11) has the solution s1 = s3 = 0 as µ ∈ L2
and ‖µ‖ � 1, that is, Γ2 persists. Similarly, there is a codimension 1 manifold L1 defined byM11µ+ h.o.t. = 0 with normal
vector M11 at µ = 0 such that the second equation of (11) has solution s1 = s3 = 0 as µ ∈ L1 and ‖µ‖ � 1, that is, Γ1
persists. Suppose rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2 manifold with normal plane span{M

1
1 ,M

1
2 } such

that the double homoclinic orbit Γ = Γ1 ∪ Γ2 is persistent.
If (11) has solution s1 = 0, s3 > 0, then s3 = −δ−1M12µ+ h.o.t. forM

1
2µ < 0. Substituting it into the second equation,

we obtain the bifurcation set

H31 : (ω
12
1 )
−1(−δ−1M12µ)

ρ1/λ1 + δ−1M11µ+ h.o.t. = 0,

which is well defined in the region {µ : M11µ > 0,M
1
2µ < 0}, such that system (1) has a unique 1–1 large homoclinic orbit

for µ ∈ H31 and ‖µ‖ � 1.
When µ ∈ H31 , from (11) we have

s3µ + δ−1M12 + h.o.t. = 0,

(ω121 )
−1ρ1(−δ

−1M12µ)
(ρ1−λ1)/λ1s3µ − λ1s1µ + λ1δ−1M11 + h.o.t. = 0.

As s1µ = δ−1M11 + O(|M
1
2µ|

(ρ1−λ1)/λ1), so s1 increases along the direction ofM11 for µ ∈ H
3
1 and ‖µ‖ � 1.

Similarly, we get the bifurcation set

H13 : −(ω
12
2 )
−1(δ−1M11µ)

ρ1/λ1 + δ−1M12µ+ h.o.t. = 0,

which is well defined in the region {µ : M11µ > 0, M12µ < 0}, such that (11) has solution s1 > 0, s3 = 0 as µ ∈ H13 ,
that is, system (1) has a unique 1–1 large homoclinic orbit near Γ for µ ∈ H13 and ‖µ‖ � 1. And s3 increases along the
direction−M12 .
Thus we have proved the following statement.

Theorem 5.4. Assume that (H1)–(H4), (H6) hold. Then

1. If M1i 6= 0, then there exists codimension 1manifold Li with normal vector M
1
i at µ = 0 such that Γi persists for µ ∈ Li and

‖µ‖ � 1, i = 1, 2.
If rank(M11 ,M

1
2 ) = 2, then L12 = L1 ∩ L2 is a codimension 2 manifold with normal plane span{M

1
1 ,M

1
2 } such that the

double homoclinic orbit Γ = Γ1 ∪ Γ2 is persistent as µ ∈ L12 and ‖µ‖ � 1.
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2. In the region defined by {µ : M11µ > 0, M
1
2µ < 0}, there exists a unique codimension 1 bifurcation set H

3
1 (resp. H

1
3 ) such

that system (1) has a unique 1–1 large homoclinic orbit for µ ∈ H31 (resp. H
1
3 ) and ‖µ‖ � 1.

3. There is a sector R bounded by H31 and H
1
3 such that system (1) has a unique 1–1 large period orbit for µ ∈ R and ‖µ‖ � 1.

(See Fig. 5)
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