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a b s t r a c t

In this paper, we define soft nexuses over a nexus N . After that we define the notions
cyclic soft nexus, prime and maximal soft subnexuses and we obtain some results about
the above definitions. Finally, we define the integer number induced by soft nexus (α, A)
and denoted by |(α, A)| and show that for any n ∈ ℵ, there exists soft nexus (α, A), such
that |(α, A)| = n.
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1. Introduction

Dealing with uncertainties is a major problem in many areas such as economics, engineering, environmental science,
medical science and social science. These kinds of problem cannot be deal with classical methods, because classical methods
have inherent difficulties. To overcome these kinds of difficulties, Molodtsov [1] proposed a completely new approach,
which is called soft set theory, for modeling uncertainty. Then Maji [2] introduced several operations on soft sets. Aktas
and Cagman [3] defined soft groups and obtained the main properties of these groups. Moreover, Feng [4–6] compared soft
setswith fuzzy sets and rough sets. Beside, Jun [7] defined soft ideal on BCK/BCI-algebras and Feng [8] defined soft semirings,
soft ideal on soft semirings and idealistic soft semirings. Sun [9] defined the concept of soft modules and studied their basic
properties.

During the past several decades, a major interest in the Space Structures Research, was the development of convenient
methods for the generation and processing of information about structural configurations. The work in this area eventually
resulted in the creation of an algebra, called ‘formex algebra’; see [10–12].

The concepts of formex algebra are general and can be used in many different fields. In particular, the ideas may
be employed for the generation of geometric information about various aspects of structural systems such as element
connectivity, nodal coordinates, local and support positions. The information generated may be used for different purposes
such as graphic visualization and input data for structural analysis.

The practical use of formex algebra is through a programming language called ‘Formian’. The origins of Formian date
back to the late seventies and the current state of the language is described in [12].

Formex algebra has proved to be an elegant and convenient tool for generating and processing geometric information.
However, there is another development that can be of great help in the systematic processing of all kinds of information.
This development involves the use of a mathematical object called a ‘plenix’ (plural ‘plenices’).

The concept of a plenix allows complex processes on sets of mathematical objects to be formulated with ease and
elegance. In particular, the use of plenices is ideally suited to processes involving digital computers. The analysis of large
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Fig. 1.1. A graphical representation of a plenix called P .

Fig. 1.2. Dendrogram of plenix Q .

and complex engineering structures involves an enormous amount of data and results which need to be handled efficiently.
A powerful tool for organizing these pieces of information is provided by the theory of plenices. Detailed studies about the
application of plenices as data organizers can be found in [11,12].

The basic idea of a plenix has been further developed as a mathematical object for general use as can be found in [12,13].
The aim of the study in [14] is to create a new abstract algebraic system and to investigate the properties of this system.

Fundamentally, a plenix is a mathematical object consisting of an arrangement of a mathematical object. A plenix is
like a tree structure in which every branch is a mathematical object. For instance, Fig. 1.1 is a graphic representation of a
plenix, consisting of a sequence of elements, each of which consists of a sequence of elements and so on. The graphical
representation of plenix P in Fig. 1.1 is referred to as the ‘dendrogram’ of P .

The following construct is another way to represent a plenix P .

⟨8, ⟨{6, 1}, 9⟩, [0, 1], ⟨{}, TRUE, 3⟩, [4, 4]⟩.

Plenix P has five primary elements each of which is called a ‘principal panel’.
That is,

8 ⟨{6, 1}, 9⟩ [0, 1] ⟨{}, TRUE, 3⟩ [4, 4]

are the principal panels of plenix P in Fig 1.1. Here, the second and the fourth principal panels themselves are plenices.
Two plenices are considered equal if they are identical. Also, anymathematical object can be a panel of a plenix provided

that it has a clear definition of equality.
The term ‘primion’ is used to refer a mathematical object that is not a plenix and the term ‘nonprimion panel’ is used to

refer a panel of a plenix that is not a plenix. In the example of Fig. 1.1

8 {6, 1} 9 [0, 1] {} TRUE 3 [4, 4]

are primion panels of plenix P of Fig. 1.1 and

⟨{6, 1}, 9⟩ ⟨{}, TRUE, 3⟩

are ‘nonprimion’ panels of P . Another example of a plenix is

Q = ⟨[7, 1, 0], ⟨⟩, ⟨5, 3, ⟨2, FALSE⟩, 0⟩⟩.

In this plenix the first principal panel is a vector and the second principal is an ‘empty plenix’, that is, a plenix that has no
principal panels. A dendrogram of Q is shown in Fig. 1.2.

Every panel of a plenix may be associated with a sequence of positive integers that indicates the position of a panel in
the plenix. Such a sequence of positive integers is referred to as the ‘address’ of the panel. For instance, referring to plenix
Q , Fig. 1.2, the addresses of the panels are given in the following Table 1.1.
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Table 1.1
Addresses the panels of Q .

Panel Address

[7, 1, 0] (1)
⟨⟩ (2)
⟨5, 3, ⟨2, FALSE⟩, 0⟩ (3)
5 (3, 1)
3 (3, 2)
⟨2, FALSE⟩ (3, 3)
0 (3, 4)
2 (3, 3, 1)
FALSE (3, 3, 2)

An address (i, j, k) refers to the kth principal panel of the jth principal panel of the ith principal panel of the plenix. For
example, the address of 0 is (3, 4), indicating the 4th principal panel of the 3rd principal panel of the plenix.

The set of the addresses of all the panels of a plenix is called the ‘address set’ of that plenix. For instance, the set

{(1), (2), (3), (3, 1), (3, 2), (3, 3), (3, 4), (3, 3, 1), (3, 3, 2)}

is the address set of plenix Q . The address set of a plenix P is denoted by AP .
Let p and q be two panels of plenices P and Q , respectively. Then p and q are said to ‘correspond’ to each other provided

that the address of p in P is identical to that of q in Q . For example, consider two plenices

P1 = ⟨⟨1, 5⟩, 4, ⟨3, 7, 2⟩⟩

and

P2 = ⟨⟨0, 124⟩, 8, ⟨9, 9, 9⟩⟩.

Every panel of plenix P1 has a corresponding panel in plenix P2 and vice versa. Two plenices that have such a relationship
are said to have the same ‘constitution’. The constitution of a plenix is the arrangement of its panels. This arrangement can
be explicitly represented by the address set of the plenix. Therefore, two plenices have the same constitution provided that
they have the same address set. For example, both plenices P1 and P2 have the same address set which is

AP1 = AP2 = {(1), (2), (3), (1, 1), (1, 2), (3, 1), (3, 2), (3, 3)}.

It is possible to define an equivalence relation on the set of all plenices, as follows:

P ∼ Q ⇔ P and Q have the same constitution.

The equivalence class of P is defined as the set of all plenices which have the same constitution as P . The equivalence class
of P is denoted by [P]. For example, the above two plenices, P1 and P2 are in the same equivalence class. The equivalence
class of P , that is [P], may be viewed in two different ways. First, it may be viewed as a set that contains all the plenices
whose constitution is the same as that of P , as discussed above. Alternatively, [P] may be viewed as a mathematical
object that represents the constitution of P . Such a mathematical object is called a ‘nexus’. The nexus of P represents the
constitution of P as well as that of all the plenices that have the same constitution as P . On the other hand, the most direct
representation of the constitution of a plenix is the address set of the plenix. Bolourian in [13], defined nexus and properties
of this structure algebra such as subnexuses, cyclic nexuses and homomorphism of nexuses are studied in detail. Moreover,
Afkhami et al. [15], defined the notion of fraction over a nexuses and studied its basic properties.

The main purpose of this paper is to introduce basic notion of soft nexuses. Moreover, the prime and maximal soft
subnexuses are introduced and illustrated with a related example.

2. Basic results on nexuses

Definition 2.1 ([13]). An address, is a sequence of ℵ ∪ {0}, such that ai = 0 implies ai+k = 0 for all k ≥ 0. The sequence
of zero is called the empty address and is denoted by (). If (a1, a2, . . . , an, 0, 0, 0) is a nonempty address, we denote this
address by (a1, a2, . . . , an).

Definition 2.2 ([13]). A nexus N is a set of addresses with the following properties.

(i) If (a1, a2, . . . , an) ∈ N , then (a1, a2, . . . , an−1, t) ∈ N , for all 0 ≤ t ≤ an,
(ii) If (a1, a2, . . .) ∈ N , then (a1, a2, . . . , an) ∈ N for all n ≥ 1.

Example 2.3. Consider the set N = {(), (1), (2), (3), (1, 1), (1, 2), (3, 1), (3, 2)}; this set has the above two properties and
so it is a nexus. However, the set A = {(), (1), (2), (2, 2)} is not a nexus, because (2, 2) is an element of A, but (2, 1) is not
included in A.
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Definition 2.4 ([13]). Let w be an element of N . The level of w is said to be:

(i) n, if w = (a1, a2, . . . , an−1, an).
(ii) ∞, if w is an infinite sequence of N .
(iii) 0, if w = ().

The level of w is denoted by l(w).

If l(w) < ∞, we say that w is finite length. Nexus N is called finite length, whenever every element of N be finite length.

Definition 2.5 ([13]). Let w = {ai}i∈ℵ, v = {bi}i∈ℵ be two elements of nexus N . Then we said that w ≤ v, if l(w) = 0 or one
of the following cases satisfies.

Case 1: If l(w) = 1, then l(v) ≥ 1 and w = (a1) that a1 ≤ b1.
Case 2: If 1 < l(w) ≤ n, then l(v) ≥ l(w) and w = (b1, b2, . . . , bl(w)−1, al(w)) that al(w) ≤ bl(w).
Case 3: If l(w) = ∞, then v = w.

Theorem 2.6 ([13]). For a nexus N, the following conditions are satisfied.

(i) (N, ≤) is a lower semilattice.
(ii) For a = {ai}i=∞

i=1 and b = {bi}i=∞

i=1 ,1 a ∧ b = (a1, a2, . . . , ai−1, ai ∧ bi), where i is the smallest index such that ai ≠ bi and
ai ∧ bi = min{ai, bi}.

Example 2.7. Consider the nexusN = {(), (1), (2), (3), (1, 1), (1, 2), (2, 1)}. Then ()∧a = () for all a ∈ N, (1)∧a = (1) for
all a ≠ (), (2)∧ (3) = (2)∧ (2, 1) = (2), (2)∧ (1, 1) = (2)∧ (1, 2) = (1), (3)∧ (1, 1) = (3)∧ (1, 2) = (1), (3)∧ (2, 1) =

(2), (1, 1) ∧ (1, 2) = (1, 1), (1, 1) ∧ (2, 1) = (1).

Example 2.8. Let N be a nexus and a = (2, 3, 4, 5, 8, 10), b = (2, 3, 4, 6, 12, 16) be two elements of N , then a ∧ b =

(2, 3, 4, 5).

Definition 2.9 ([13]). Let N be a nexus. A nonempty subset S of N is called a subnexus of N provided that S itself is a nexus.
The set of all subnexuses of N is denoted by SUB(N). {()} is said to be the trivial subnexus of N .

Example 2.10. Consider the nexus

N = {(), (1), (2), (3), (1, 1), (1, 2), (3, 1), (3, 2), (3, 3)}.

The following sets are some subnexuses of N .

{()} {(), (1)} {(), (1), (2), (3), (3, 1), (3, 2)}.

Theorem 2.11 ([13]). Let S be a subset of nexus N. S is a subnexus of N if and only if a ∈ S, b ∈ N and b ≤ a imply that b ∈ S.

Definition 2.12 ([13]). Let ∅ ≠ X ⊆ N . The smallest subnexus of N containing X is called the subnexus of N generated by X
and denoted by ⟨X⟩. If |X | = 1, then ⟨X⟩ is called a cyclic subnexus of N .

Example 2.13. Consider the nexus

N = {(), (1), (2), (3), (2, 1), (2, 2), (3, 1)},

then the subnexus of N generated by two addresses (3) and (2, 1) is

⟨(2, 1), (3)⟩ = {(), (1), (2), (3), (2, 1)}

and cyclic subnexus of N generated by {(2, 2)} is

⟨(2, 2)⟩ = {(), (1), (2), (2, 1), (2, 2)}.

Theorem 2.14 ([13]). Let ∅ ≠ X ⊆ N. Then

⟨X⟩ = {x ∈ N|∃a ∈ X, x ≤ a}.

In particular, if a = {ai}i∈ℵ then

⟨a⟩ = {(), (t1), (a1, t2), (a1, a2, t3), . . . , (a1, a2, . . . , an−1, tn), . . . , a|0 ≤ tn ≤ an, ∀n ∈ ℵ}.

1 a ∧ b is the greatest lower bound of a and b.
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Theorem 2.15 ([13]). Let M and K be two subnexuses of nexus N. Then M ∩ K and M ∪ K are subnexuses of N.

Theorem 2.16 ([13]). For a nexus N, the following assertions are satisfied.

(i) Every two elements of N are comparable if and only if N is a cyclic nexus.
(ii) If nexus N is cyclic and M ∈ SUB(N), then M is cyclic. In particular, (SUB(N), ⊆) is a chain.

Theorem 2.17 ([13]). Let N = ⟨(a1, a2, a3, . . . , an)⟩. Then

|N| =


i=n
i=1

ai


+ 1.

Definition 2.18 ([13]). LetM and N be two nexuses. Then the product of nexusesM and N , is defined as

M × N = {(a1, a2, . . . , an, b1, b2, . . . , bm)|(a1, a2, . . . , an) ∈ M, (b1, b2, . . . , bm) ∈ N}.

We contradict that, ()a = () and b() = b for all a ∈ N and b ∈ M .

We can see that, M × N is a nexus.

Example 2.19. If M = {(), (1), (2)} and N = {(), (1), (2), (2, 1)}, Then M × N = {(), (1), (1, 1), (1, 2), (1, 2, 1),
(2), (2, 1), (2, 2), (2, 2, 1)}.

Definition 2.20. A proper subnexus P of N is said to be a prime subnexus of N , if a ∧ b ∈ P implies that a ∈ P or b ∈ P for
any a, b ∈ P .

Example 2.21. Consider the nexus

N = {(), (1), (2), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}.

Then subnexus P = {(), (1), (2), (2, 1), (2, 2)} is a prime subnexus of N , but K = {(), (1), (2), (1, 1), (2, 1)} is not a prime
subnexus, because (1) = (1, 2) ∧ (2, 2) ∈ K , but (1, 2) ∉ K and (2, 2) ∉ K .

Theorem 2.22. Let {Pi}i∈I be a family of prime subnexuses of N and let P =


i∈I Pi be a proper subset of N. Then P is a prime
subnexus of N.

Proof. The proof is trivial. �

Definition 2.23. For a ∈ N , the set {b ∈ N | a ≤ b} is called an upper bound for {a} and is denoted by Ra.

It is easy to check that for all a ∈ N,N − Ra is a prime subnexus of N .

Theorem 2.24. A proper subnexus P of a nexus N is prime if and only if P = N − Ra for some a ∈ N.

Proof. Let P be a prime subnexus of N . We show that there is a ∈ N such that N − P = Ra. Since N ≠ P , then there is b ∈ N
such that b ∉ P . Put a = min{x ∈ ⟨b⟩|x ∉ P}. We show that Ra = N − P . Let d ∈ Ra. Then a ≤ d, if d ∈ P , which is not true,
so Ra ⊆ N − P . Now let d ∈ N − P , we show that d ∈ Ra. If d ∉ Ra then a ≤ d and so d∧ a ≠ a. Thus d∧ a < a. On the other
hand, a ∈ ⟨b⟩ implies that d ∧ a ∈ ⟨b⟩. Since d ∧ a < a, then by hypothesis we get that d ∧ a ∈ P . Hence a ∈ P or d ∈ P ,
which is not true, because a ∉ P and d ∈ N − P . Therefore, N − P = Ra and so P = N − Ra. �

Definition 2.25. A proper subnexus M of nexus N is a maximal subnexus, if there exist no subnexus K of N , such that
M ⊂ K ⊂ N .

Example 2.26. If N = {(), (1), (2), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}, then subnexus U = {(), (1), (2), (1, 1), (1, 2),
(2, 1), (2, 2)} is a maximal subnexus, but T = {(), (1), (2), (2, 1), (2, 2), (2, 3)} is not maximal subnexus, since K =

{(), (1), (2), (1, 1), (2, 1), (2, 2), (2, 3)} is a subnexus such that T ⊆ K .

Theorem 2.27. If a nexus N does not have any maximal elements, then N does not have any maximal subnexus.

Proof. Let M be a subnexus of N . If M = N , then M is not a maximal subnexus. If M ≠ N , then there is a ∈ N such that
a ∉ M . Since a is not a maximal element, then there is b ∈ N such that a < b. So a ∉ M implies that b ∉ M and also b ∉ ⟨a⟩.
Hence b ∉ M ∪ ⟨a⟩ and so M ⊂ M ∪ ⟨a⟩ ⊂ N . Therefore M is not a maximal subnexus of N , i.e. any subnexus of N is not
maximal. �

Theorem 2.28. Let N be a finite length nexus and T be the set of all maximal elements of a nexus N. Then everymaximal subnexus
of N is of the form M = N − {m} for some m ∈ T .
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Proof. First, since N is of finite length, then T ≠ ∅ and N = ∪m∈T ⟨m⟩. Now letm ∈ T . We can see that N −{m} is a maximal
subnexus. Suppose thatM ≠ N be a maximal subnexus of N .M does not contain all maximal addresses of N . Now we show
that M must contain all of the maximal addresses of N unless one of them. Because if m1 and m2 are maximal addresses of
N such that m1,m2 ∉ M , then M ⊂ M ∪ ⟨m1⟩ ⊂ N . So M is not a maximal subnexus. Let m′ be the only maximal element
such that m′

∉ M . We show that M = N − {m′
}. We have M ⊆ N − {m′

}. Now let a ∈ N − {m}, so there is m′′
∈ T such

that a ≤ m′′, if a ∉ M , thenm′′
∉ M and soM ⊂ M ∪ ⟨a⟩ ⊂ N . ThusM is not the maximal subnexus of N , which is not true.

ConsequentlyM contains all addresses of N unless one of them. �

Definition 2.29. Let a = (a1, a2, . . . , an) ∈ N . Then
n

i=1 ai is called the integer number induced by a and denoted by |a|.
If a ∈ N and l(a) = ∞, then |a| = ∞. IfM ∈ SUB(N), then we define |M| = sup{|a| |a ∈ M}.

Example 2.30. In Example 2.26, |N| = sup{0, 1, 2, 3, 4, 5} = 5, |U| = sup{0, 1, 2, 3, 4} = 4 and |T | = 5.

3. Basic results on soft sets

Definition 3.1 ([2]). A pair (α, A) is called a soft set over U , where α is a mapping given by α : A → P(U).

Definition 3.2 ([2]). Let (α, A) and (β, B) be two soft sets over a common universeU . The bi-intersection of (α, A) and (β, B)
is defined as the soft set (ξ , C), satisfying the following conditions.

(1) C = A ∩ B.
(2) For all x ∈ A ∩ B, ξ(x) = α(x) ∩ β(x).

This is denoted by (α, A)⊓̃(β, B) = (ξ , C).

Definition 3.3 ([2]). Let (α, A) and (β, B) be two soft sets over a common universe U . The union of (α, A) and (β, B) is
defined as the soft set (δ, A ∪ B), satisfying the following conditions.

(1) C = A ∪ B.
(2) For all x ∈ A ∪ B

δ(x) =


α(x) if x ∈ A \ B
β(x) if x ∈ B \ A
α(x) ∪ β(x) if x ∈ A ∩ B.

This is denoted by (δ, A ∪ B) = (α, A)∪̃(β, B).

Definition 3.4 ([2]). Let (α, A) and (β, B) be two soft sets over a common universe U . ‘(α, A) AND (β, B)’, denoted by
(α, A)∧̃(β, B) and defined as (α, A)∧̃(β, B) = (γ , A × B), that is γ (x, y) = α(x) ∩ β(y), for all (x, y) ∈ A × B.

Definition 3.5 ([2]). Let (α, A) and (β, B) be two soft sets over a common universe U . ‘(α, A) OR (β, B)’, denoted by
(α, A)∨̃(β, B) and defined as (α, A)∨̃(β, B) = (η, A × B) that is η(x, y) = α(x) ∪ β(y), for all (x, y) ∈ A × B.

Definition 3.6 ([8]). For a soft set (α, A), the set

Sup(α, A) = {x ∈ A|α(x) ≠ ∅}

is called the support of the soft set (α, A). Soft set (α, A) is called non-null if Sup(α, A) ≠ ∅.

4. Soft nexuses

Definition 4.1. Let (α, A) be a non-null soft set over a nexus N . Then (α, A) is called a soft nexus on N if α(x) ∈ SUB(N), for
all x ∈ Sup(α, A).

Example 4.2. Let N = ⟨(1, 2), (2, 3)⟩, A = Z3 and α : A → P(N), given by α(0̄) = ⟨(1, 1)⟩, α(1̄) = ⟨(1, 2), (2, 1)⟩, α(2̄) =

⟨(1, 2), (2, 1)⟩, then (α, A) is a soft nexus over N .

Remark 4.3.


ℵ = {(a1, a2, . . . , am)|a1, a2, . . . , am,m ∈ ℵ}.

Example 4.4. Let N be a nexus, α : ⨿ℵ → P(N) given by

α(a) =


⟨a⟩ If a ∈ N
{()} o.w.
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Theorem 4.5. Let (α, A) and (β, B) be two soft nexuses over a nexus N. Then ⊓̃, ∪̃, ∧̃, ∨̃ of (α, A) and (β, B) are soft nexuses.

Proof. (α, A)⊓̃(β, B) = (ξ , A∩ B), that ξ(x) = α(x)∩β(x) for all x ∈ A∩ B. Since for all x ∈ A∩ B, α(x) and β(x) ∈ SUB(N),
then by Theorem 2.15, ξ(x) ∈ SUB(N).

Since the union of two subnexuses is a subnexus, therefore by Theorem 2.15, (α, A)∪̃(β, B) = (δ, A ∪ B) is a soft nexus.
For ∧̃, ∨̃, by similarity we can see that (α, A)∧̃(β, B), (α, A)∨̃(β, B) are soft nexuses. �

Now if we consider a partial ordered relation ⊆ on the set of all soft nexuses on N , then this set with ⊆ is a lattice and
for all soft sets (α, A) and (β, B) on N , we have

(α, A) ∧ (β, B) = (α, A)⊓̃(β, B)

and

(α, A) ∨ (β, B) = (α, A)∪̃(β, B).

Remark 4.6. In general, the set of all soft groups and soft rings (see [3,8]) over a group G or ring R with ⊓̃ and ∪̃ are not
lattices. But, the set of all soft nexuses over a nexus N with ⊓̃ and ∪̃ is a lattice.

Remark 4.7. On every countable set A = {ai}i=∞

i=1 , we can consider the following ordered

ai ≤ aj ⇔ i ≤ j.

Theorem 4.8. Let A = {ai}i=∞

i=1 be a countable set and {bi}∞i=1 ∈ N. Then there exists a one to one soft nexus (α, A) over a nexus
N such that

ai ≤ aj ⇔ α(ai) ≤ α(aj)

for all ai, aj ∈ A.

Proof. We define, α : A → P(N) given by α(ai) = ⟨(b1, b2, . . . , bi)⟩. It is trivial that (α, A) is a soft nexus over N . �

Definition 4.9. Let (α, A) and (β, B) be two soft nexuses over a nexus N . Then (β, B) is called a soft subnexus of (α, A), if it
satisfies the following.

(i) B ⊆ A
(ii) β(x) ∈ SUB(α(x)), for all x ∈ Sup(β, B).

Theorem 4.10. Every soft nexus (α, A) over a nexus N can be written as the union of soft subnexuses of (α, A).

Proof. Let N be a nexus and {Ni}
∞

i=1 be a subnexus of N . We take Ai = {a ∈ A|α(x) = Ni}. We define αi : Ai → P(Ni) given
by αi(a) = Ni. Then (αi, Ai) is a soft nexus over Ni and for all i = 1, 2, . . . , (αi, Ai) are soft subnexuses of (α, A) and we havẽi=∞

i=1 (αi, Ai) = (α, A). �

Lemma 4.1. Let N = ⟨(a1, a2, . . . , an)⟩ be a cyclic nexus and (α, A) be a soft nexus over a nexus N. Then

(i) {α(x)|x ∈ A} is a chain.
(ii) |Imα| ≤ 1 + (

n
i=1 ai).

Proof. By Theorems 2.16 and 2.17, the proof is trivial. �

Definition 4.11. Let (α, A) and (β, B) be two soft nexuses over M and N , respectively. The product of soft nexuses (α, A)
and (β, B) is defined as (α, A) × (β, B) = (ρ, A × B), where ρ(x, y) = α(x) × β(y) for all (x, y) ∈ A × B. By Definition 2.18,
it is clear that (α, A) × (β, B) is a soft nexus overM × N .

Definition 4.12. Let (α, A) be a soft nexus over a nexus N . Then (α, A) is called a cyclic soft nexus, if for all x ∈

Sup(α, A), α(x) be a cyclic subnexus of N .

Lemma 4.2. Nexus N is a cyclic nexus if and only if every soft nexus (α, A) over a nexus N be cyclic.

Proof. Since every subnexus of a cyclic nexus N is cyclic, then every soft nexus (α, A) on N is cyclic. Now suppose that every
soft nexus (α, A) onN be cyclic. IfN = ⟨a, b⟩where a ≰ b, b ≰ a then defineα : Z3 → P(N) given byα(0̄) = ⟨a⟩, α(1̄) = ⟨a⟩
and α(2̄) = ⟨a, b⟩. We can see that (α, Z3) is a soft nexus over a nexus N , but is not cyclic, which is the contradiction. Thus
N is cyclic. �

Lemma 4.3. Every soft subnexus (β, B) of cyclic soft nexus (α, A) over a nexus N is cyclic.
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Proof. Suppose x ∈ B and x ∈ Sup(β, B). Since (β, B) ⊆ (α, A), thus B ⊆ A and β(x) ⊆ α(x) for all x ∈ B. Since (α, A) is
cyclic, hence α(x) = ⟨a⟩ for some x ∈ α(x). Thus by Theorem 2.14, β(x) = ⟨b⟩ for some b ∈ β(x). �

Lemma 4.4. Let (α, A) and (β, B) be two cyclic soft nexuses over a nexus N. Then (α, A)⊓̃(β, B) and (α, A)∧̃(β, B) are cyclic
soft nexuses. Also if A ∩ B = ∅, then (α, A)∪̃(β, B) is a cyclic soft nexus.

Proof. Suppose (α, A)⊓̃(β, B) = (ξ , A∩B). Thus ξ(x) = α(x)∩β(x), for all x ∈ A∩B. Now let x ∈ Sup(ξ , A∩B), α(x) = ⟨a⟩
and β(x) = ⟨b⟩. Thus by Theorem 2.14, ξ(x) is cyclic and so (ξ , A ∪ B) is cyclic.

By the definition of (α, A)∪̃(β, B), if A ∩ B = ∅, then since (α, A) and (β, B) are cyclic, the proof is trivial. �

Lemma 4.5. Let M ∈ Matm×n(ℵ) and A = {A1, A2, A3, . . . , An
}, where Ai is the ith column of M. Then there exist nexus N and

mapping α : A → P(N), such that (α, A) is a cyclic soft nexus over a nexus N.

Proof. we define the nexus N = ⟨A1, A2, A3, . . . , An
⟩ and α : A → P(N) given by α(Ai) = ⟨Ai

⟩. �

Definition 4.13. Let (α, A), (β, B) be two soft nexuses over a nexus N and (β, B) ⊆ (α, A). Then (β, B) is called a prime soft
subnexus of (α, A) if β(x) is a prime subnexus of α(x) for all elements in Sup(β, B).

Example 4.14. Let N be a nexus, M ≠ N ∈ SUB(N), α : N → P(N) given by α(a) = N − Ra and β : M → P(N) given by
β(a) = M − Ra. Then (β, B) is a prime soft subnexus of (α, A).

Example 4.15. Consider the nexus

N = {(), (1), (2), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}.

If α : A = {a, b, c} → P(N) given by

α(a) = ⟨(1, 2), (2, 2)⟩, α(b) = ⟨(1, 1), (2, 2)⟩, α(c) = ⟨(1, 2), (2, 2)⟩,

and β : A = {a, b, c} → P(N) given by

β(a) = ⟨(2, 2)⟩, β(b) = ⟨(2, 2)⟩, β(c) = ⟨(1, 2), (2, 1)⟩,

then (β, A) is a prime soft subnexus of (α, A).

Lemma 4.6. Let (β1, B1) and (β2, B2) be two prime soft subnexuses of soft nexus (α, A) over a nexus N. Then (β1, B1)∪̃(β2, B2)
and (β1, B1)∨̃(β2, B2) are prime soft subnexuses.

Proof. By the definitions of (β1, B1)∪̃(β2, B2), (β1, B1)∨̃(β2, B2) and the definition of prime subnexus, the proof is
trivial. �

Note that (β1, B1)⊓̃(β2, B2)(β1, B1)∧̃(β2, B2) are not prime soft subnexuses.

Example 4.16. Consider the nexus N = ⟨(1, 2), (2, 3)⟩, A = {1, 2}, α : A → P(N) given by

α(1) = N, α(2) = ⟨(1, 2), (2, 1)⟩

β1 : A → P(N) given by

β1(1) = N − {(2, 3)}, β1(2) = ⟨(1, 2), (2, 1)⟩

and β2 : A → P(N) given by

β2(1) = β1(1), β2(2) = ⟨(1, 1), (2, 2)⟩.

It is clear that (β1, A) and (β2, A) are prime soft subnexuses of (α, A), but (ξ , B1 ∩B2) = (β1, B1)⊓̃(β2, B2) is not a prime soft
subnexus, because ξ(2) = ⟨(1, 1), (2, 1)⟩ is not a prime subnexus of α(2). Since (1, 2) ∧ (2, 2) = (1) ∈ ξ(2), but neither
(1, 2) nor (2, 2) belong to ξ(2).

Theorem 4.17. Let (β1, B1) and (β2, B2) be two prime soft subnexuses of soft nexus (α, A) over a nexus N. Thus for all
x ∈ B1 ∩ B2, β1(x) = α(x) − Ra and β2(x) = α(x) − Rb, for some a, b ∈ α(x).

(i) If for all x ∈ B1 ∩ B2, a and b are two comparable addresses, Then (β1, B1)⊓̃(β2, B2) is a prime soft subnexus of (α, A).
(ii) If there exists x ∈ B1 ∩ B2, such that β1(x) = α(x)− Ra and β2(x) = α(x)− Rb, a and b are not comparable addresses, then

(β1, B1)⊓̃(β2, B2) is not a prime soft subnexus of (α, A).
(iii) Suppose (ii) does hold and B1 = B2 = A, then (β1, A)∪̃(β2, A) = (α, A).
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Proof. (i) Without loss of generality, suppose that x ∈ B1 ∩ B2, β1(x) = α(x) − Ra, β2(x) = α(x) − Rb and a ≤ b. So Rb ⊆ Ra
and α(x) − Ra ⊆ α(x) − Rb. Thus if (β1, B1)⊓̃(β2, B2) = (ξ , B1 ∩ B2), then ξ(x) = α(x) − Ra. Hence (ξ , B1 ∩ B2) is a prime
soft subnexus of (α, A).

(ii) Let x ∈ B1 ∩B2, β1(x) = α(x)−Ra, β2(x) = α(x)−Rb, a and b be incomparable. Thus a∧b < a and a∧b < b. So that
a∧ b ∉ Ra = α(x) − β1(x) and a∧ b ∉ Rb = α(x) − β2(x). Therefore a∧ b ∈ β1(x) ∩ β2(x). Consequently (β1, B1)⊓̃(β2, B2)
is not prime.

(iii) Let (ii) does hold and B1 = B2 = A. It is clear that (β1, B1)∪̃(β2, B2) ⊆ (α, A). Now suppose that x ∈ A and
c ∈ α(x) − β1(x), so c ∈ Ra. Hence a ≤ c. If c ∈ Rb then b ≤ c , so a, b ∈ ⟨c⟩ and it means that a and b are
comparable, that is not true. Therefore c ∉ Rb and so c ∈ α(x) − Rb = β2(x). Thus c ∈ (β1, B1)∪̃(β2, B2). Consequently
(β1, B1)∪̃(β2, B2) = (α, A). �

Theorem 4.18. A soft nexus (α, A) over a nexus N is cyclic if and only if every proper soft subnexus (β, B) of (α, A) is prime.

Proof. Let (β, B) be a proper soft subnexus of (α, A), x ∈ B and a ∧ b ∈ β(x). Thus a ∧ b ∈ α(x). Since α(x) is cyclic and
a, b ∈ α(x), then a ≤ b or b ≤ a. Hence a ∈ β(x) or b ∈ β(x). Conversely, suppose that every proper soft subnexus (β, B) of
(α, A) be prime, x ∈ A and a, b ∈ α(x). Consider β1 : A → P(N) given by β1(x) = α(x)−Ra, for all x ∈ A and β2 : A → P(N)
given by β2(x) = α(x)− Rb, for all x ∈ A. It is clear that (β1, A) and (β2, A) are prime soft subnexuses of (α, A). If a and b are
not comparable, by (ii) of Theorem 4.17, (β1, A)⊓̃(β2, A), it is a proper soft subnexus of (α, A), which is not prime, which is
a contradiction. Thus a and b are comparable and so by Theorem 2.16, α(x) is cyclic for all x ∈ A. �

Definition 4.19. A soft subnexus (β, B) of (α, A) is called a maximal soft subnexus, if it satisfies the following conditions.

(i) B = A.
(ii) β(x) be a maximal subnexus of α(x), for all x ∈ Sup(β, B).

Example 4.20. Consider the nexusN = ⟨(1, 1), (2, 2), (3, 3)⟩. Now letα : Z4 → P(N) givenbyα(0̄) = ⟨(1, 1), (2)⟩, α(1̄) =

⟨(1, 1), (2, 1)⟩, α(2̄) = ⟨(1, 1), (3)⟩, α(3̄) = ⟨(2, 2), (3, 1)⟩, α(4̄) = ⟨(2, 2), (3, 2)⟩ and β : Z4 → P(N) given by
β(0̄) = ⟨(1, 1)⟩, β(1̄) = ⟨(2, 1)⟩, β(2̄) = ⟨(1, 1), (2)⟩, β(3̄) = ⟨(2, 2), (3)⟩, β(4̄) = ⟨(2, 2), (3, 1)⟩. Since for all x ∈ Z4, by
Theorem 2.28, β(x) is a maximal subnexus of α(x). So (β, Z4) is a maximal soft subnexus of (α, Z4).

Lemma 4.7. Every maximal soft subnexus of (α, A) is a prime soft subnexus.

Proof. Let (β, A) be amaximal soft subnexus of the soft nexus (α, A). Thus for all x ∈ Sup(β, A), β(x) is amaximal subnexus
of α(x). Hence by Theorem 2.28, for some maximal element m ∈ α(x), we have β(x) = α(x) − {m}. Since m is a maximal
element, then Rm = {m} and so α(x) − {m} = α(x) − Rm. So by Theorem 2.28, β(x) is a prime soft subnexus of (α, A). �

Theorem 4.21. A soft nexus (α, A) over a nexus N is cyclic, if and only if it has just one maximal soft subnexus.

Proof. Suppose that the soft nexus (α, A) over a nexus N is cyclic. Then for all x ∈ A, α(x) is a cyclic subnexus of N . Hence
α(x) = ⟨a⟩, for some a ∈ α(x). So α(x) has just one maximal address, that is a. Thus M = α(x) − {a} is the only maximal
subnexus of α(x). If for all x ∈ A, generator of α(x), denoted by aα(x) and β : A → P(N) defined by β(x) = α(x) − {aα(x)},
then (β, A) is the only maximal subnexus (α, A). Conversely, let (α, A) has just one maximal soft nexus (β, A) and x ∈ A. So
β(x) = α(x) − {a}, where a is the maximal address of α(x). We claim that α(x) = ⟨a⟩. Obviously, ⟨a⟩ ⊆ α(x). Now show
that α(x) ⊆ ⟨a⟩. To do so suppose that b ∈ α(x). If a and b are comparable, then b ≤ a and so b ∈ ⟨a⟩. If a and b are not
comparable, then there exists a maximal address m, such that b ≤ m. It implies that (β ′, A) where β ′(x) = α(x) − {m} and
β ′(y) = β(y), for all elements y ≠ x of A is anothermaximal soft subnexus of (α, A), that is a contradiction by the uniqueness
of maximal soft subnexus of (α, A). Therefore all addresses of α(x) is comparable with a. Hence by Theorem 2.16, (α, A) is
cyclic. �

Definition 4.22. Let (α, A) be a soft set over a nexus N . Then

sup{|α(x)||x ∈ A}.

It is called the integer number induced by (α, A) and denoted by |(α, A)|.

Theorem 4.23. Let U be the set of all soft nexuses over a nexus N. Then we have the following.

(i) Mapping f : (U, ⊆) → (ℵ, ≤), defined by f ((α, A)) = |(α, A)| is a homomorphism.
(ii) |(α, A) × (β, B)| = |(α, A)| × |(β, B)|.
(iii) |(α, A)∧̃(β, B)| ≤ |(α, A)|.
(iv) |(α, A)∨̃(β, B)| ≥ |(α, A)|.
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Proof. (i) If (α, A), (β, B) ∈ U and (β, B) ⊆ (α, A), then B ⊆ A and for all x ∈ B, β(x) ⊆ α(x). Thus |β(x)| ≤ |α(x)|. So
sup{|β(x)|x ∈ B} ≤ sup{α(x)|x ∈ A} and hence |(β, B)| ≤ |(α, A)|. Thus f is a homomorphism.

(ii)

|(α, A) × (β, B)| = sup{|α(x)β(y)|(x, y) ∈ A × B}
= sup{|α(x)|; x ∈ A} × sup{|β(y)|y ∈ B}
= |(α, A)| × |(β, B)|.

By similarity, we can see (iii) and (iv) hold. �

Theorem 4.24. Let n ∈ ℵ. Then there exist finite set A, nexus N and mapping α : A → P(N) such that (α, A) is a cyclic soft
nexus over a nexus N and |(α, A)| = n.

Proof. If N = ⟨(1, 1, . . . , 1)  
n-order

⟩, A = {a1, a2, . . . , an} and α : A → P(N), given by

α(a1) = ⟨1⟩, α(a2) = ⟨(1, 1)⟩, . . . , α(an) = ⟨(1, 1, . . . , 1)  
n-order

⟩.

Then we can see, (α, A) is a cyclic soft nexus over N and |(α, A)| = n. �

5. Conclusion

The relation between (cyclic) soft nexus, prime and maximal subnexuses are studied; moreover we have shown that
under suitable conditions the above notions are closed with respect to the main operators in soft sets theory. Finally a way
for making a cyclic soft nexus respect to any natural number is presented.
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