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Abstract

For stormwater system design, flood estimation and many other environmental assessment tasks, design rainfall is an essential
input. Estimation of design rainfall is generally made using a regionalization technique based on a regional database of observed
rainfalls. Many countries have derived their own generalized design rainfall data, which are generally expressed in the form of inten-
sity–duration–frequency (IDF) curves. In Qatar, situated in an arid region, the existing IDF data were developed in 1991 using a
limited data set. This paper presents the development of new IDF data for the State of Qatar using the method of L-moments
and the index regional frequency analysis approach. The daily rainfall data from 32 stations located in Qatar and nearby Gulf coun-
tries have been used to form a homogeneous region. It has been found that the Pearson Type 3 distribution best fits the 24-h dura-
tion annual maximum rainfall data in the Qatar region. For the ungauged case, a prediction equation is developed where mean
annual maximum rainfall is expressed as a function of climatic and physiographic characteristics. From a leave-one-out validation,
it has been found that the developed prediction equation can estimate mean annual maximum rainfall with a median relative error of
about 5.5%. Finally, an approximate method is used to obtain design rainfalls for other durations due to the limitations of contin-
uous pluviograph data in Qatar. The new set of IDF curves is based on a much bigger dataset than the existing 1991 IDF curves. It
is expected that the new IDF curves will have wider application in Qatar and will provide a statistically sound basis for storm water
design, flood and environmental studies. The method can be applied to other middle-eastern states and similar arid countries in the
world.
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1. Introduction

In the planning and design of an urban stormwater
drainage system, water infrastructures, flood control mea-
sures and various environmental and ecological studies,
design rainfall estimates are needed (Madsen et al., 2009).
Design rainfall is defined as the rainfall depth associated
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with a given average recurrence of interval (ARI) and
duration. Design rainfall is more commonly known as
intensity–duration–frequency (IDF) rainfall data. Many
countries in the world have derived their own IDF data
using a regional data set of rainfall stations over the coun-
try. For example, design rainfall in Australia was derived in
1987 (I. E. Aust., 1987), which now has been upgraded in
2013 (Johnson et al., 2012). Similarly, NERC (1975)
derived design rainfall data in the UK, Ben-Zvi (2009)
for Israel, and Hershfield (1961) and Bonnin et al. (2006)
for USA.

To derive IDF data, regional frequency analysis is pre-
ferred over the at-site estimation to achieve consistency in
estimation over space. Moreover, a regional approach
allows estimation of design rainfall at any arbitrary loca-
tion within the region, in particular at ungauged locations.
In the regional frequency analysis approach, recorded
rainfall data within a ‘homogeneous region’ are pooled to
compensate the scarcity of temporal data with the spatial
data i.e. recorded rainfall data from other stations in the
region. In a homogeneous region, it is assumed that all
the sites within the region have the same regional growth
curve/factors, but the at-site scaling factor (e.g. mean or
median value) is unique for each site which reflects the var-
iation of at-site characteristics governing rainfall genera-
tion. In many cases, product moment estimation method
has been adopted such as the use of Log-Pearson Type 3
(LP3) distribution with product moments for Australia in
1987 (I. E. Aust., 1987). The problem with the product
moment estimation is that it suffers more from sampling
variability and outliers in the data series.

The homogeneity of a proposed region can be tested by
a number of methods. For example, Wiltshire (1986)
proposed a method to test the regional homogeneity based
on the coefficient of variation (Cv) of the observed hydro-
logical data; however, the test was found to have low
power (Fill and Stedinger, 1995). Dalrymple (1960) pro-
posed a homogeneity test based on the sampling distribu-
tion of the standardized 10 year annual maximum flow
assuming an Extreme Value Type 1 distribution. The
regions studied by this method were found to be homoge-
neous in most of the cases suggesting that the test was
not very powerful. Chowdhury et al. (1991) proposed a test
based on the L coefficient of variation (L Cv) and L coeffi-
cient of skewness (L skewness) on the assumption of an
underlying GEV distribution. The problem with these dis-
tribution-specific tests is that when the hypothesis of homo-
geneity is rejected, it remains doubtful whether the region is
heterogeneous or whether it is homogeneous but has some
other parent distribution (Hosking and Wallis, 1993).

Since the introduction of L-moment based regional
homogeneity testing by Hosking and Wallis (1993), it has
been adopted widely in regional rainfall, flood and low flow
analyses (e.g. Alila, 1999; Madsen et al., 2002; Hewa et al.,
2007; Jakob et al., 2007; Abolverdi and Khalili, 2010; Lee
et al., 2010; Sarker et al., 2010; Yang et al., 2010;
Haddad et al., 2011; Gabriele and Chiaravalloti, 2012;
Zakaria et al., 2012; Pham et al., 2013). The advantages
of L-moments are that they are less affected by outliers
and extremes in the data (Hosking, 1990) and hence pro-
vide more accurate quantile estimates.

The limitation of continuous rainfall data at shorter res-
olution such as 6 min is a major problem in rainfall estima-
tion. However, in the urban stormwater system design,
shorter durations are more important than the longer ones,
since urban catchments are relatively smaller (e.g. individ-
ual house roof, few lots or smaller sub-divisions). To over-
come the limitations of the continuous rainfall data from
tipping bucket rain gauges, various degrees of approxima-
tions are adopted where daily rainfall data are used to
derive 24-h design rainfalls which are then used to estimate
shorter duration design rainfalls based on empirical adjust-
ment factors (Al-Layla et al., 1980; Bazaraa and Ahmed,
1991).

The currently recommended IDF data in Qatar were
based on the study by Bazaraa and Ahmed (1991). In this
analysis, 24-h duration rainfall data recorded at the Doha
International Airport for the period 1962–1989 were
adopted. A Gumbel distribution was fitted to the 24-h
annual maximum rainfall series using the method of
moments. To estimate 1-h duration rainfall, an approxi-
mate method proposed by Al-Layla et al. (1980) was
adopted where the ratios of the 2-year ARI_1 h duration
rainfall to T-year ARI_1 h duration rainfall were taken
to be 1.35, 1.60, 1.87, 2.10 and 2.32 for T = 5, 10, 25, 50
and 100 years, respectively. For 5, 10, 15, 30 and 120 min
durations, the ratios (1-h rainfall depth (mm)/D-hour rain-
fall depth (mm)) based on the USA data were then
adopted, which were 0.29, 0.45, 0.57, 0.79 and 1.25, respec-
tively for 5, 10, 15, 30 and 120 min durations.

Since the study by Bazaraa and Ahmed (1991), there are
additional rainfall data available in Qatar and surrounding
Gulf countries in terms of increased number of sites and
data length by about 20 years. Also, there have been nota-
ble advancements internationally in the statistical methods
for regional frequency analysis, which could enhance the
accuracy of the new IDF data for Qatar. Hence, this study
presents the development of new IDF data for Qatar using
the most up-to-date rainfall data and L-moment based
index frequency approach. The main focus of this paper
is to identify a homogeneous region for Qatar, select a best
fit probability distribution and develop a regional
prediction equation to estimate mean annual rainfall as a
function of readily available climate and catchment charac-
teristics data so that design rainfall can be estimated at any
arbitrary location in Qatar.

2. Study area and data description

This paper uses data from the Qatar region in the
Middle East. The climate in Qatar is arid, with rainfall
events concentrated in the period October to May. The
months June to September are usually completely dry.
The monthly average rainfall, based on 49 years of rainfall



Fig. 1. Average monthly rainfall at Doha International Airport during 1962–2011.

Fig. 2. Flooding of streets during significant storm, Qatar.

Fig. 3. Flooding in Jeddah, Saudi Arabia in Nov 2009 (Wikipedia, 2013).
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record at the Doha International Airport is shown in
Fig. 1. The average annual rainfall measured at the Doha
International Airport from 1962 to 2011 is 76.6 mm. The
average annual rainfall at nearby airports such as Bahrain
International Airport, Manama (1948–2011), is 79.3 mm
and at the Sharjah Airport (1949–2011), UAE, is
101.4 mm. The precipitation varies over Qatar with the
highest rainfall in the northern part and the lowest in the
southern part close to the border with Saudi Arabia.

Rapid urban development has been a major feature in
many of the major cities in the Gulf region including Doha,
Qatar. This increases the impervious nature of already flat
terrain, thereby diminishing the rate of infiltration and
increasing runoff from the impervious surfaces. Elevated
ground water levels in Doha caused by intensive irrigation
and leaking wet utility systems further reduce the soil infil-
tration capacity. Previously installed soakaways have been
found to be inefficient in many instances, which contribute
additional runoff during the wet period. It is a common
phenomenon to have inadequate urban drainage facility
in arid regions like Qatar on the assumption that the rain-
fall is too low, and hence flooding would not be an issue.
However, damages due to flooding caused by intensive
storms can be significant even in such arid regions (example
shown in Figs. 2 and 3). Ponding of rain water on the roads
can cause traffic accidents, sometimes with fatal outcomes.
Severe rainfall often causes flood damage to properties in
this region. For example, 2009 Jeddah flood, resulting from
about 90 mm of rainfall over 4 h, caused 122 deaths and
sweeping of over 3000 cars.

For this study, initially a total of 35 sites were selected;
however, the finally adopted data set consisted 32 of these
sites. The reasons for deleting some of these sites are
explained in Section 4. The average record length of the
daily rainfall data from these selected 32 stations is
35 years. The distribution of record lengths is shown in
Fig. 4, which shows that most of the selected stations have
record lengths in the range of 30–40 years. In the data anal-
ysis, annual maximum rainfall series was extracted by using



Fig. 4. Histogram of record lengths of daily data of 32 rainfall stations.
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a computer program, which identified the maximum rain-
fall intensity in each year of the available historical data
for a 24-h duration at each of the selected sites. A partial
duration series could have been adopted, but it may have
issues of selection of independent events and hence was
not pursued.

Five climatic and catchment characteristics were
adopted to develop prediction equation for mean annual
rainfall: (i) latitude in degrees (LAT); (ii) longitude in
degrees (LON); (iii) shortest distance between the rain
gauge and the coastline in km (DCOAST); (iv) shortest dis-
tance between the rain gauge and the coastline along the
prevailing wind direction in km (DPWD); and (v) free
stretch over the sea along the prevailing wind direction in
km (DSEA).

3. Methods

An L-moment-based index regional frequency analysis
method, introduced by Hosking and Wallis (1993, 1997),
has been adopted in this study to develop new IDF data
for Qatar.

Hosking (1990) defined L-moments to be linear combi-
nations of the probability-weighted moments (PWMs),
introduced by Greenwood et al. (1979). For a random var-
iable X, PWMs may be defined as:

Mp;r;s ¼ E½X pðF X ðxÞÞrð1� F X ðxÞÞs� ð1Þ

where p, r, and s are real numbers. When r = s = 0, Eq. (1)
represents the ordinary product moment about the origin
of order p. L-moments are defined by:

kr ¼ E½XP �r�1F X ðxÞ� ð2Þ

where Pr
*(.) is the r-th shifted Legendre polynomial.

L-moments can conveniently be expressed in terms of
PWMs:

krþ1 ¼
Xr

k¼0

p�r;kbk ð3Þ
where bk ¼ M1;k;0 and

p�r;k ¼ ð�1Þr�k r

k

� �
r þ k

k

� �
ð4Þ

L-moment ratios, analogous to product moment ratios,
are defined as:

sr ¼
kr

k2

; r ¼ 3; 4; . . . ð5Þ

L-moments are more convenient than PWMs in that
they are more easily interpretable as measures of distribu-
tional shape. For example: k1 is the mean of the distribu-
tion, a measure of location; k2 is the measure of scale;
and s3 and s4 are measures of skewness and kurtosis,
respectively. L Cv = s = k2/k1 is analogous to the conven-
tional coefficient of variation Cv.

The main advantages of L-moments (over conventional
moments) are that L-moments, being linear functions of
the data, are subject to less bias, suffer less from the effects
of sampling variability, and are more robust than conven-
tional moments to extremes in the data. Conventional
moment estimators such as the sample variance and sample
coefficient of skewness require squaring and cubing the
observations respectively, which cause them to give greater
weight to the observations far from the mean; thus,
introduce a substantial bias and variance (Hosking, 1990;
Stedinger et al., 1992).

The L-moments are defined above for a probability dis-
tribution but in practice, these are generally estimated from
a finite sample. Given x1 6 x2 6 x3 6 . . . 6 xn is a finite
ordered sample, the unbiased estimator lr of kr is given by:

lrþ1 ¼
Xr

k¼0

p�r;kbk ð6Þ

where

br ¼
1

n

Xn

j¼1

ðj� 1Þðj� 2Þ . . . ðj� rÞ
ðn� 1Þðn� 2Þ . . . ðn� rÞ xj ð7Þ

The distributional parameters h1, h2, . . .,hp are related to
k1, s, s3, . . .,sp and are estimated by the corresponding sam-
ple L moments. From many research studies (Potter and
Lettenmaier, 1990; Meshgi and Khalili, 2009), it has been
found that index flood procedures, coupled with L

moments, yield robust and accurate flood quantile
estimation.

The L-moment-based index frequency approach can be
expressed by the following equation:

I iðT Þ ¼ �I i � X T ð8Þ

where Ii(T) is T-year rainfall quantile (for a given duration)
at site i, �I i is site-specific scaling factor e.g. mean annual
maximum rainfall (for the given duration). For gauged site,
�I i is taken as the at-site mean value and for an ungauged
site it is estimated from regional prediction equation,
expressed in the form of the mean annual rainfall as a func-
tion of climatic and physiographic characteristics. Here, XT
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is the regional growth factor, which is the same for all the
sites (gauged or ungauged) within the homogeneous region.

The implementation of the L-moment based index fre-
quency approach by Hosking and Wallis (1993, 1997)
involves the following five steps: (a) Data screening using
a discordant measure (Di), where a site with Di P 3 is
regarded as discordant. Any site flagged out as discordant
needs to be examined for data error and the other physical
reason for possible removal from the proposed homoge-
neous region. (b) Testing for regional homogeneity: The
heterogeneity measure (Hi) is calculated based on a Monte
Carlo simulation. For H1 < 1, the proposed region is
regarded as ‘acceptably homogeneous’, for 1 6 H1 < 2,
the region is regarded as ‘possibly heterogeneous’ and for
H1 P 2, the region is regarded as ‘definitely heteroge-
neous’. (c) Identification of best-fit distribution: This is
based on a Z statistic; for a number of candidate distribu-
tions, the distribution(s) exhibiting jZDIST j 6 1:64 may be
considered to be acceptable. (d) Computation of a regional
growth curve, which involves estimation of the weighted
average growth curve, which is applicable to any site within
the homogeneous region. (e) Quantile estimation: For the
gauged site, obtain rainfall quantiles using Eq. (8). For
ungauged sites, a regional prediction equation to estimate
mean annual maximum rainfall is developed based on
gauged sites’ data. The most commonly adopted methods
to develop such a prediction equation include multiple lin-
ear regression based on either the ordinary least squares
(OLS) regression (Rahman, 2005) or generalized least
squares regression (Stedinger and Tasker, 1985; Haddad
and Rahman, 2012). In this paper, we have adopted the
OLS regression approach.

To assess the accuracy of the developed regional fre-
quency analysis method, a leave-one-out (LOO) validation
method was adopted (Haddad et al., 2013). The LOO test
was based on (n � 1) sites in each of the n iterations, where
n is the number of sites in the adopted homogeneous region.
Initially, the first of the n sites in the list was excluded and
the regression coefficients were estimated using the (n � 1)
sites. In the second iteration, the first site was returned back
to the database and the second site in the list was excluded
and the regression coefficients were estimated using the
(n � 1) sites. The procedure was repeated until all the sites
were excluded one time in the model development phase.
In each of these n iterations, the evaluation statistics (Eqs.
(9)–(11)) was calculated using each model by applying the
model to the site, which was excluded in each step. The
LOO, in essence, offers an independent testing of the devel-
oped regional frequency model by assuming each of the sites
ungauged in each of the iterations.

Three evaluation statistics were used to assess the per-
formance of the developed regional frequency model as
described below. The relative error (RE) is computed based
on the following equation:

RE ¼ jyi � ŷij
yi

ð9Þ
where yi = observed quantile and ŷi is the model predicted
value. It should be noted that RE is based on absolute dif-
ferences between the observed and model predicted values.
The smaller the RE value, the more accurate the model is.

The Nash–Sutcliffe efficiency (E) is defined as below:

E ¼ 1�
Pn

i¼1ðyi � ŷiÞ2Pn
i¼1ðyi � �yiÞ2

ð10Þ

where �yi is the mean of the observed value. A model with
an E value equal to 1 indicates a perfect model.

The relative bias (Br) is calculated from Eq. (5). The clo-
ser the Br to 0, the smaller the relative bias associated with
the model.

Br ¼ 100

Pn
i¼1ðŷi � yiÞ

n�yi
ð11Þ
4. Results

The L-moments were calculated based on annual maxi-
mum series for 24-h duration. Three candidate regions
were formed as shown in Table 1. Region 1 consisted of
35 sites, which resulted in a ‘possibly heterogeneous region’
as H1 > 1. Three sites with high discordancy values were
excluded from Region 1 to form Region 2. The H value
for Region 2 was found to be smaller than 1.00 and hence
was considered to be ‘acceptably homogeneous’. Thereaf-
ter, the rain gauge in Sharjah UAE, which was located
far away from Qatar, was excluded to form Region 3,
which resulted in a slight improvement in H values. Finally,
Region 2 with 32 sites was taken as the final homogeneous
region, which contained 63 more data points than Region
3.

The summary of goodness-of-fit test is provided in
Table 2. The L-moment ratio diagram is provided in
Fig. 5. Two distributions exhibited jZDIST j 6 1.64, which
are Generalized Normal and Pearson Type 3 (PE3). Since
Generalized Normal distribution is rarely used in rainfall
and flood frequency analyses (Haddad and Rahman,
2011), PE3 was adopted in this study as the regional prob-
ability distribution to develop the regional growth curve.
Fig. 5 also supports the selection of PE3 distribution.

To estimate rainfall quantiles (for 24-h duration and dif-
ferent ARIs) for the 32 gauged sites, Eq. (1) was adopted
where mean annual maximum rainfall for 24-h duration
of the respective site was used and the derived regional
growth factors were based on PE3 distribution.

For the ungauged site application, mean annual maxi-
mum rainfall for 24-h duration needs to be estimated from
the regional prediction equation, which was developed
using a multiple linear regression technique using OLS esti-
mator. The derived model is provided by Eq. (12). The
equation was subjected to LOO validation, which provided
a coefficient of determination (R2) value of 76% (median
value), median relative error value of 5.48% (Eq. (2)),
relative bias value of 0.83 (Eq. (4)) and Nash–Sutcliffe



Table 1
Summary of homogeneity test results.

Region Number of sites H1 H2 H3 No. of discordant sites

Region 1 35 (1215 data points) 1.76 0.99 0.91 3
Region 2 32 (1185 data points) 0.95 0.57 0.46 0
Region 3 31 (1122 data points) 0.951 0.45 0.06 0

Table 2
Summary of goodness-of-fit test.

Distribution jZDIST j Acceptable

Generalized logistic 4.96 No
Generalized extreme value 1.98 No
Generalized normal 1.10 Yes
Pearson Type 3 0.61 Yes
Generalized Pareto 4.98 No

Fig. 5. L-moment ratio diagram for candidate probability distributions.

Table 3
Average rainfall depth ratios for Doha and Seeb Airport compared with
WMO and IMD ratios.

Time (min) 10 60 120 180 360 720 1440
Doha Airport 0.18 0.40 0.51 0.58 0.71 0.90 1.00
Seeb Airport 0.26 0.56 0.70 0.77 0.87 1.00 1.00
WMO 0.20 0.44 0.54 0.59 0.74 0.84 1.00
IMD 0.19 0.35 0.44 0.50 0.63 0.79 1.00
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efficiency of 0.60 (Eq. (3)). The plot of standardized resid-
ual and standardized predicted values did not reveal any
non-linearity or pattern in the residuals (see Fig. 6 for
example). A hypothesis test (at 10% significance level)
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Fig. 6. Standardized residual vs. predicted values for m
showed that the null hypothesis that the residuals being
normally distributed could not be rejected. These results
indicated that the developed regression model satisfied
the least squares model assumption satisfactorily and thus
confidence can be placed on the equation.

�I i ¼ �129:573þ 0:955ðLATÞ þ 2:506ðLONÞ
þ 0:120ðDCOASTÞ � 0:034ðDPWDÞ
þ 0:005ðDSEAÞ ð12Þ

The rainfall depth ratios provided by World Meteoro-
logical Organization (WMO) and Indian Meteorological
Organization (IMD) were compared with the rainfall depth
ratios derived from the observed data from the Seeb
(Oman) and Doha Airports (Qatar). The results are shown
in Table 3. The 10-min value for the Doha International
Airport was estimated based on the 10-min rainfall depth
ratio given for Seeb Airport and the ratio between the
1-h rainfall depth ratio of the Doha Airport and the Seeb
Airport as expressed by Eq. (13).
2.00 3.00 4.00 5.00
ized estimate

ean annual maximum 24-h duration rainfall model.



Fig. 7. Final set of derived IDF curves at Doha International Airport.
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P 10 min

P 24 h Doha
¼ P 1 h

P 24 hDoha

P 1 h

P 24 hSeeb

� ��
P 10 min

P 24 h Seeb
ð13Þ

To correct for the restricted duration (for 24-h dura-
tion), as per Dwyer and Reed (1995), a correction factor
of 1.16 was adopted to convert 24-h restricted to 24-h unre-
stricted rainfall quantile. To derive the complete set of IDF
curves, an approximate method based on the Kimijima
method (Eq. (14)) was adopted, in that the finally adopted
relationship was expressed by Eq. (15).

i ¼ a
ðte þ bÞ ð14Þ

iðT ; tÞ ¼ �I24 h � aD � 24
11:182 lnðT Þ þ 11:267

t0:8477 þ 7:0636

� �
ð15Þ

where �I24 h is the 24-h annual average maximum rainfall
intensity at the site of interest (mm/h), i(T, t) is the rainfall
intensity (mm/h) for ARI of T-year and duration of
t-minute and aD is the discretization adjustment factor.
An example IDF curve for the Doha International Airport
is shown in Fig. 7, which represents a consistent set of IDF
curves.

5. Conclusions

This study presents derivation of new IDF curves for
Qatar using data from 32 rainfall stations. The adopted
basic data set consisted of 24-h duration annual maximum
rainfall series. An L-moment based index method was
adopted to develop the regional growth factors. The pro-
posed region was found to be acceptably homogeneous
as the H values were found to be smaller than 1. The
best-fit distribution was found to be Pearson Type 3. For
an ungauged site application, a prediction equation was
developed where mean annual maximum rainfall was
expressed as a function of climatic and physiographic
characteristics. From a leave-one-out (LOO) validation, it
was found that the developed prediction equation could
estimate mean annual maximum rainfall intensity with a
median relative error of 5.5%. Finally, an approximate
method was adopted to derive the design rainfalls for other
durations. The new set of IDF curves for Qatar is based on
a much larger dataset than the existing 1991 IDF curves. It
is expected that the new IDF curves will have wider appli-
cations in Qatar. The method can easily be extended to
other countries in the region and other similar arid coun-
tries in the world.
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