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We discuss two generalizations of the inverse problem of the calculus of variations,
one in which a given mechanical system can be brought into the form of Lagrangian
equations with non-conservative forces of a generalized Rayleigh dissipation type, the
other leading to Lagrangian equations with so-called gyroscopic forces. Our approach
focusses primarily on obtaining coordinate-free conditions for the existence of a suitable
non-singular multiplier matrix, which will lead to an equivalent representation of a
given system of second-order equations as one of these Lagrangian systems with non-
conservative forces.
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1. Introduction

The inverse problem of Lagrangian mechanics is the question: given a system of second-order ordinary differential equa-
tions, under what circumstances does there exist a regular Lagrangian function, such that the corresponding Lagrange
equations are equivalent (i.e. have the same solutions) as the original equations. Locally, the question can be translated
immediately into more precise terms as follows: considering a given second-order system in normal form

q̈i = f i(q, q̇), (1)

which (for the time being) we take to be autonomous for simplicity, what are the conditions for the existence of a symmet-
ric, non-singular multiplier matrix gij(q, q̇) such that

gij
(
q̈ j − f j(q, q̇)

) ≡ d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

for some L. Clearly (gij), if it exists, will become the Hessian of the Lagrangian L. The literature on this problem is extensive;
the conditions for the existence of L are usually referred to as the Helmholtz conditions, but these can take many different
forms depending on the mathematical tools one uses and on the feature one focusses on. For a non-exhaustive list of
different approaches see [24,5,26,22,2,9,15,1,19,3]. In this paper, the tools stem from differential geometry and therefore

* Corresponding author.
E-mail addresses: tom.mestdag@ugent.be (T. Mestdag), willy.sarlet@ugent.be (W. Sarlet), crampin@btinternet.com (M. Crampin).
0926-2245/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.difgeo.2010.11.002

https://core.ac.uk/display/82180296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.difgeo.2010.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:tom.mestdag@ugent.be
mailto:willy.sarlet@ugent.be
mailto:crampin@btinternet.com
http://dx.doi.org/10.1016/j.difgeo.2010.11.002


56 T. Mestdag et al. / Differential Geometry and its Applications 29 (2011) 55–72
provide coordinate-free results. In addition, while we will actually study generalizations of the above problem which allow
for certain classes of non-conservative forces, the attention will be mainly on conditions on the multiplier g .

We will consider two types of non-conservative forces, leading to Lagrangian equations of one of the following forms:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= ∂ D

∂q̇i
, (2)

or

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= ωki(q)q̇k, ωki = −ωik. (3)

In the first case, when the function D is quadratic in the velocities (and −D is positive definite) the classical terminology
is that we have dissipation of Rayleigh type (see e.g. [13]); we will not put restrictions on the form of D , however. In the
second case, in which the existence of a D as in (2) is excluded, the right-hand side is often referred to as a gyroscopic
force (see e.g. [23]).

Perhaps we should specify first what we will not do in this paper. In older contributions to the inverse problem for
dissipative systems, such as [10], the emphasis was on trying to recast a dissipative system into the form of genuine Euler–
Lagrange equations, that is to say that in the case of given equations of type (2) one would try to find a different function
L′ such that the Euler–Lagrange equations of L′ are equivalent to the given system. In contrast, our goal here is to study
under what circumstances a given second-order system in normal form (1) can be recast into the form (2) (or (3)) for some
functions L and D (or L and ωki ).

In order to explain our objectives in more precise terms, let us recall first some of the different ways of characterizing
the inverse problem conditions in the classical situation. The natural environment for a second-order system is a tangent
bundle T Q , with coordinates (q, v) say, where it is represented by a vector field Γ of the form

Γ = vi ∂

∂qi
+ f i(q, v)

∂

∂vi
. (4)

If S = (∂/∂vi) ⊗ dqi denotes the type (1,1) tensor field which characterizes the canonical almost tangent structure on T Q
[6,14], Γ represents a Lagrangian system provided there exists a regular Lagrangian function L such that (see e.g. [27])

5LΓ

(
S(dL)

) = dL; (5)

θL := S(dL) is the Poincaré–Cartan 1-form. The above condition is perhaps the most compact formulation of the problem,
but has little or no practical value when it comes to testing whether such an L exists for a given Γ . A shift of attention
towards the existence of a multiplier leads to the following necessary and sufficient conditions [5]: the existence of a
non-degenerate 2-form ω ∈ ∧2

(T Q ), such that

LΓ ω = 0, ω
(

X V , Y V ) = 0, i Z H dω
(

X V , Y V ) = 0, ∀X, Y , Z ∈ X (M). (6)

Here X V and X H refer to the vertical and horizontal lift of vector fields, respectively. The latter makes use of the canonical
Ehresmann connection on τ : T Q → Q associated with a given second-order vector field Γ : in coordinates, the vertical and
horizontal lift are determined by

V i := ∂

∂qi

V

= ∂

∂vi
, Hi := ∂

∂qi

H

= ∂

∂qi
− Γ

j
i

∂

∂v j
, where Γ

j
i = −1

2

∂ f j

∂vi
. (7)

Such a 2-form ω will be closed, hence locally exact, and as such will be the exterior derivative dθL for some Lagrangian L.
At this point it is interesting to observe that the 2n × 2n skew-symmetric component matrix of ω is completely determined
by the n × n symmetric matrix

gij = ∂2L

∂vi∂v j
.

The matrix (gij) geometrically represents the components of a (0,2) symmetric tensor field g along the tangent bundle
projection τ , and the relationship between ω on T Q and g along τ has an intrinsic meaning as well: ω is the Kähler
lift of g (see [21]). A more concise formulation of the Helmholtz conditions therefore, when viewed as conditions on the
multiplier g , makes use of the calculus of derivations of forms along τ , as developed in [20,21]. We will show in the next
section how both the conditions (5) and (6) have an equivalent formulation in those terms, and this will be the basis for
the generalization to Lagrangian systems with non-conservative forces, which will be the subject of the subsequent sections.

The first authors to discuss the inverse problem, in the sense of analyzing the conditions which a given representation
of a second-order system must satisfy to be of the form (2), were Kielau and Maisser [18]. We showed in [8] how the
results they obtained via an entirely analytical approach can in fact be reduced to a smaller set. But we also argued in
the concluding remarks of that paper that the more important issue is the one we formulated above, which starts from a
normal form representation of the dynamical system. For that purpose it is better to approach the problem in a coordinate-
independent way, i.e. to make use of the tools of differential geometry already referred to. We will see that the methods
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we will develop for the dissipative case (2) apply equally to the gyroscopic case (3). To the best of our knowledge the
latter problem has not been dealt with before in its entirety (though a relevant partial result has been published in [19]).
An additional advantage of the coordinate-independence of our conditions is that they cover without extra effort results
such as those derived in [17] for the description of Lagrangian systems in ‘nonholonomic velocities’. In Section 3 we follow
the lines of the construction of Helmholtz conditions on the multiplier g for the standard inverse problem, and arrive
in this way at necessary and sufficient conditions which involve g and D in the dissipative case, and g and ω in the
gyroscopic situation. At the end of this section we briefly discuss how the partial result mentioned above is related to
our work. In Section 4 we succeed in eliminating the unknown D and ω altogether to arrive at necessary and sufficient
conditions involving the multiplier g only. This is particularly interesting, because a given Γ may actually admit multiple
representations of the form (2) for example. In other words, different choices of a multiplier g may exist, which each require
an adapted (generalized) dissipation function D to match the required format. In fact it cannot be excluded that a given
Γ may actually have representations in the form (2) and (3) at the same time, of course with different multipliers g (and
thus different Lagrangians L). We will encounter such situations among the illustrative examples discussed in Section 5,
where we also briefly indicate in the concluding remarks how the whole analysis can be carried over to the case of time-
dependent systems. In Appendix A we make an excursion to a different geometrical approach which in fact is essentially
time-dependent: we use techniques from the theory of variational sequences to relate our results more closely, at least in
the dissipative case, to those obtained in [18], which after all was the work which first brought this subject to our attention.

2. Basic set-up

In order to keep our analysis reasonably self-contained, we need to recall the basics of the calculus of derivations of forms
along the tangent bundle projection τ : T Q → Q . Vector fields along τ are sections of the pull-back bundle τ ∗T Q → T Q
and constitute a module over C∞(T Q ), denoted by X (τ ). Likewise, a k-form along τ assigns to every point vq ∈ T Q an
exterior k-form at q = τ (vq) ∈ Q ; we use the symbol

∧
(τ ) for the C∞(T Q )-module of scalar forms along τ and V (τ )

for the module of vector-valued forms. The theory of derivations of such forms, as established in [20,21], follows closely
the pioneering work of Frölicher and Nijenhuis [11]. The difference is that there is a natural vertical exterior derivative dV

available, but a full classification requires an additional horizontal exterior derivative dH , which must come from a given
connection: in our situation, this is the connection associated with Γ mentioned earlier. We limit ourselves here to a brief
survey of the concepts and properties we will need. An elaborate version of the theory (with rather different notations) can
also be found in [30].

Elements of
∧

(τ ) in coordinates look like forms on the base manifold Q with coefficients which are functions on T Q .
Thus they can be seen also as so-called semi-basic forms on T Q , and we will generally make no notational distinction
between the two possible interpretations. It is clear that derivations of such forms are completely determined by their
action on C∞(T Q ) and on

∧1
(Q ). As such, the vertical and horizontal exterior derivatives are determined by

dV F = V i(F )dqi, dH F = Hi(F )dqi, F ∈ C∞(T Q ),

dV dqi = 0, dH dqi = 0.

Obviously, for L ∈ C∞(T Q ), dV L ∈ ∧1
(τ ) has the same coordinate representation as S(dL) ∈ ∧1

(T Q ); in line with the
above remark therefore, we will also write θL = dV L for the Poincaré–Cartan 1-form. Derivations of type i∗ are defined as
in the standard theory. For A ∈ V (τ ), we put

dV
A = [

i A,dV ]
, dH

A = [
i A,dH ]

,

and call these derivations of type dV∗ and dH∗ respectively. The action of all such derivations can be extended to vector-
valued forms and then another algebraic type derivation is needed for a classification, but we will introduce such extensions,
which can all be found in [20,21], only when needed. The horizontal and vertical lift operations, already referred to in the
introduction, trivially extend to vector fields along τ and then every vector field on T Q has a unique decomposition into
a sum of the form X H + Y V , with X, Y ∈ X (τ ). Looking in particular at the decomposition of the commutator [X H , Y V ]
suffices to discover two important derivations of degree zero:[

X H , Y V ] = (
DH

X Y
)V − (

DV
Y X

)H
.

They extend to forms by duality and are called the horizontal and vertical covariant derivatives. In coordinates

DV
X F = Xi V i(F ), DV

X
∂

∂qi
= 0, DV

X dqi = 0,

DH
X F = Xi Hi(F ), DH

X
∂

∂qi
= X j V j

(
Γ k

i

) ∂

∂qk
, DH

X dqi = −X j V j
(
Γ i

k

)
dqk.

For later use, we mention the following formulas for computing exterior derivatives of, for example, a 1-form α or a 2-form
ρ along τ :
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dV α(X, Y ) = DV
X α(Y ) − DV

Y α(X), α ∈ ∧1
(τ ), (8)

dV ρ(X, Y , Z) =
∑

X,Y ,Z

DV
X ρ(Y , Z), ρ ∈ ∧2

(τ ), (9)

and similarly for dH . Here
∑

X,Y ,Z represents the cyclic sum over the indicated arguments. It is also of interest to list the
decomposition of the other brackets of lifted vector fields:[

X V , Y V ] = (
DV

X Y − DV
Y X

)V
,[

X H , Y H ] = (
DH

X Y − DH
Y X

)H + (
R(X, Y )

)V
.

The latter relation is just one of many equivalent ways in which the curvature tensor R ∈ V 2(τ ) of the non-linear connection
can be defined. The connection coming from Γ has no torsion (since (7) obviously implies that V i(Γ

j
k ) = Vk(Γ

j
i )): it follows

that dV and dH commute. In fact the commutation table of the exterior derivatives, for their action on scalar forms, is given
by

1

2

[
dV ,dV ] = dV dV = 0, dV dH = −dH dV ,

1

2

[
dH ,dH ] = dH dH = dV

R . (10)

Finally, the given dynamical system Γ comes canonically equipped with two other operators which are crucial for our analy-
sis, namely the dynamical covariant derivative ∇ , a degree zero derivation, and the Jacobi endomorphism Φ ∈ V 1(τ ). Again,
the simplest way of introducing them comes from the decomposition of a Lie bracket: they are the uniquely determined
operations for which, for each X ∈ X (τ ),[

Γ, X H ] = (∇ X)H + (Φ X)V .

The usual duality rule ∇〈X,α〉 = 〈∇ X,α〉 + 〈X,∇α〉 is used to extend the action of ∇ to 1-forms, and subsequently to
arbitrary tensor fields along τ . In coordinates,

∇ F = Γ (F ), ∇
(

∂

∂q j

)
= Γ i

j
∂

∂qi
, ∇(

dqi) = −Γ i
j dq j, (11)

and

Φ i
j = −∂ f i

∂q j
− Γ k

j Γ i
k − Γ

(
Γ i

j

)
. (12)

One clear indication of the importance of these operators is the following link with the curvature of the connection:

dV Φ = 3R, dHΦ = ∇R. (13)

We are now ready to go back to the generalities about the inverse problem discussed in the previous section. To begin with,
using the tools which have just been established, the compact formulation (5) of the inverse problem is equivalent (see
[21]) to the existence of a regular function L ∈ C∞(T Q ) such that

∇θL = dH L. (14)

Secondly, the necessary and sufficient conditions (6) now really become conditions on the multiplier matrix; they are
translated via the Kähler lift [21] into the existence of a non-degenerate, symmetric (0,2)-tensor g along τ satisfying the
requirements

∇g = 0, g(Φ X, Y ) = g(X,ΦY ), DV
X g(Y , Z) = DV

Y g(X, Z). (15)

It is possible to prove directly that (14) implies (15) and vice versa (a sketch of such a proof was presented in [4]). We will
not show how to do this here, however, as it can easily be seen later on as a particular case of the more general inverse
problem studies we will start analyzing now.

3. Lagrangian systems with dissipative or gyroscopic forces

Consider first equations of type (2). It is obvious that, at the level of a characterization like (5), a given second-order
field Γ will correspond to equations of type (2) if and only if there exist a regular function L and a function D such that

LΓ

(
S(dL)

) = dL + S(dD). (16)

We take the opportunity to illustrate first how such a relation, when stripped to its bare essentials, i.e. when one observes
that it is in fact a condition on only n of the 2n components, is transformed into a corresponding generalization of (14). To
this end, note first that there exists a dual notion of horizontal and vertical lifts of 1-forms, from

∧1
(τ ) to

∧1
(T Q ), defined
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by αH (X H ) = α(X), αH (X V ) = 0, and likewise for αV . We then have the following decompositions, for any α ∈ ∧1
(τ ) and

L ∈ C∞(T Q ):

LΓ αH = αV + (∇α)H , (17)

dL = (
dH L

)H + (
dV L

)V
. (18)

Coming back to the notational remarks of the previous section: the horizontal lift is technically speaking the rigorous way
of identifying a 1-form along τ with a semi-basic 1-form on T Q . So, when convenient, as will be the case in establishing
the next result, we can also write θL = (dV L)

H
, for example.

Proposition 1. The second-order field Γ represents a dissipative system of type (2) if and only if there is a regular function L ∈
C∞(T Q ) and a function D ∈ C∞(T Q ) such that

∇θL = dH L + dV D. (19)

Proof. We have that S(dD) = (dV D)
H

for any function D , and in particular S(dL) = (dV L)
H = θL . Using the decompositions

(17) and (18), the condition (16) then immediately translates into (19). �
Corollary 1. The condition (19) on the existence of functions L and D is equivalent to

dHθL = 0, (20)

which is a necessary and sufficient condition on L only.

Proof. Using the commutator property [∇,dV ] = −dH to re-express ∇θL = ∇dV L in (19), we immediately get the expression

dH L = 1

2
dV (

Γ (L) − D
)
,

which is equivalent to saying that dH L = dV G for some function G . This in turn, in view of (10) and the triviality of dV -
cohomology, is equivalent to dHθL = −dV dH L = 0. �

We now want to translate these results into conditions on the multiplier g which generalize (15). As we observed earlier,
this g will be the Hessian of L, so we look first at the relation between a function and its Hessian in intrinsic terms. To that
end, we introduce covariant differentials DV and DH defined as follows: for any tensor field T along τ and X ∈ X (τ ),

DV T (X, . . .) = DV
X T (. . .),

and similarly for DH . Then for any F ∈ C∞(T Q ) we can write for the corresponding Poincaré–Cartan 1-form θF = dV F =
DV F , and define the Hessian tensor gF of F as gF = DV DV F , which means that

gF (X, Y ) = DV
X DV

Y F − DV
DV

X Y
F = DV

X θF (Y ). (21)

Lemma 1. For any F ∈ C∞(T Q ), its corresponding Hessian tensor gF is symmetric and satisfies DV
X gF (Y , Z) = DV

Y gF (X, Z), i.e.
DV gF is symmetric in all its arguments. Conversely, any symmetric g along τ for which DV g is symmetric is the Hessian of some
function F . Secondly, if Φ represents any type (1,1) tensor field along τ , we have

Φ � gF − (Φ � gF )T = idV ΦθF − dV iΦθF , (22)

where (Φ � gF − (Φ � gF )T )(X, Y ) := gF (Φ X, Y ) − gF (X,ΦY ).

Proof. The symmetry of gF follows directly from dV θF = dV dV F = 0. The symmetry of DV gF can easily be shown by taking
a further vertical covariant derivative of the defining relation of gF and using the commutator property[

DV
X ,DV

Y

] = DV
DV

X Y
− DV

DV
Y X

. (23)

The converse statement is obvious from the coordinate representation of the assumptions. Finally, making use of (8) we
have

dV iΦθF (X, Y ) = DV
X

(
Φ(θF )

)
(Y ) − DV

Y

(
Φ(θF )

)
(X)

= 〈
DV

X Φ(Y ) − DV
Y Φ(X), θF

〉 + DV
X θF (ΦY ) − DV

Y θF (Φ X)

= idV ΦθF (X, Y ) + gF (X,ΦY ) − gF (Y ,Φ X),

from which the last statement follows. �
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We are now ready to state and prove the first main theorem, which provides the transition of the single condition (19)
to equivalent conditions involving a multiplier g , in precisely the same way as (14) relates to (15).

Theorem 1. The second-order field Γ represents a dissipative system of type (2) if and only if there exists a function D and a symmetric
type (0,2) tensor g along τ such that DV g is symmetric and g and D further satisfy

∇g = DV DV D, (24)

Φ � g − (Φ � g)T = dV dH D, (25)

where Φ is the Jacobi endomorphism of Γ .

Proof. Suppose Γ represents a system of type (2). Then we know there exist functions L and D such that (19) and (20) hold
true. Define g = DV DV L or equivalently g(X, Y ) = DV

X θL(Y ). Obviously, g and DV g are symmetric by construction. Acting
with ∇ on g and using the commutator property [∇,DV ] = −DH , we get for a start

∇g = DV ∇DV L − DH DV L

= DV DV D + DV DH L − DH DV L,

where the last line follows from (19). Now the commutator of vertical and horizontal covariant differentials (see [21] or [9])
is such that, at least on functions, DV DH L(X, Y ) = DH DV L(Y , X). But

DH DV L(Y , X) − DH DV L(X, Y ) = dHθL(Y , X) = 0,

in view of (20), so that (24) follows. When acting finally with dH on (19), we have to appeal to the formula for dH dH in
(10) and further need the commutator of ∇ and dH , which for the action on the module

∧
(τ ) of scalar forms is given by[∇,dH ] = 2iR + dV

Φ. (26)

It is then straightforward to check, using (20) and the first of (13), that we get

dV iΦθL − idV ΦθL = dH dV D, (27)

from which (25) follows in view of the last statement in Lemma 1.
Conversely, assume that g and D satisfy the four conditions stated in the theorem. It follows from the symmetry of g

and DV g that g is a Hessian: g = DV DV F say. The function F of course is not unique and the idea is to take advantage of
the freedom in F to construct an L which will have the desired properties. This is not so difficult to do by a coordinate
analysis. Keeping the computations intrinsic is a bit more technical, but will give us an opportunity to recall a few more
features of interest of the calculus of forms along τ . Observe first that ∇DV g is obviously symmetric, and that the same is
true for DV ∇g = DV DV DV D . It follows from [∇,DV ] = −DH that DH g is also symmetric. Hence

DH g(X, Y , Z) = DH DV θF (X, Y , Z) = DH DV θF (X, Z , Y ).

If we interchange DH and DV in the last term, there is an extra term to take into account (since the action is on a 1-form
this time, not a function). Indeed, we have

DH DV θF (X, Z , Y ) = DV DHθF (Z , X, Y ) + θF
(
θ(X, Z)Y

)
. (28)

Here θ is a type (1,3) tensor along τ which is completely symmetric (and could in fact be defined by the above relation):
its components in a coordinate basis are θk

jml = Vm Vl(Γ
k
j ). Using the above two relations, expressing the symmetry of DH g

in its first two arguments now leads to

0 = DV DHθF (Z , X, Y ) − DV DHθF (Z , Y , X) = DV
Z

(
dHθF

)
(X, Y ).

This says that dHθF is a basic 2-form, i.e. a 2-form on the base manifold Q . On the other hand, we have

DV DV D = ∇g = ∇DV DV F = DV ∇θF − DH DV F = DV (∇θF − dH F
) − dHθF ,

where we have used the property DH DV F (X, Y ) = DV DH F (Y , X) again in the transition to the last expression. But since
dHθF is basic, we can write it as DV iTdHθF , where T is the canonical vector field along τ (the identity map on T Q ), which
in coordinates reads

T = vi ∂

∂qi
. (29)

It follows that we can write the last relation in the form

DV β := DV (∇θF − dH F − iTdHθF − DV D
) = 0,
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which defines another basic form β . We next want to prove that the basic forms β and dHθF are actually closed in view of
the final assumption (25) or equivalently (27), which has not been used so far. Keeping in mind that dH is the same as the
ordinary exterior derivative for the action on basic forms, we easily find with the help of (10) that

dHdHθF = 1

3
dV idV ΦθF = 1

3
dV (

dV iΦθF − dV dH D
) = 0.

Secondly, using also (26),

dHβ = dH∇θF − dH dH F − dH iTdHθF − dHdV D

= ∇dHθF − 2iRθF − dV
ΦθF − iRdV F − dH

T dHθF − dH dV D

= ∇dHθF − idV ΦθF + dV iΦθF − dH
T dHθF − dHdV D

= ∇dHθF − dH
T dHθF .

But this is zero also because the operators ∇ and dH
T coincide when they are acting on basic (scalar) forms. It follows that,

locally, dHθF = dHα and β = dH f , for some basic 1-form α and basic function f . The defining relation for β then further
implies that

dV D = ∇(θF − α) − dH (F − iTα + f ).

Putting L = F − iTα + f , the difference between L and F is an affine function of the velocities, so both functions have the
same Hessian g , and also θL = DV L = θF − α. It now readily follows that the relation (19) holds true, which concludes our
proof in view of Proposition 1. �

It is worthwhile listing the coordinate expressions for the necessary and sufficient conditions of Theorem 1. They call for
a (non-singular) symmetric matrix gij(q, v) and a function D(q, v) such that

Vk(gij) = V j(gik), (30)

Γ (gij) − gikΓ
k
j − g jkΓ

k
i = V i V j(D), (31)

gikΦ
k
j − g jkΦ

k
i = Hi V j(D) − H j V i(D). (32)

The classical Helmholtz conditions for the multiplier are recovered when we put D = 0, of course.
Let us now turn to the case of forces of gyroscopic type as in (3).

Proposition 2. The second-order field Γ represents a gyroscopic system of type (3) if and only if there is a regular function L ∈
C∞(T Q ) and a basic 2-form ω ∈ ∧2

(Q ) such that

∇θL = dH L + iTω. (33)

Proof. The proof is straightforward, by a simple coordinate calculation or an argument like that in Proposition 1. �
As a preliminary remark: it is easy to verify in coordinates that for a basic 2-form ω, we have

DV iTω = ω, dV iTω = 2ω, dV iTdHω = 3dHω. (34)

It follows by taking a vertical exterior derivative of (33) that this time dHθL will not vanish but must be basic, specifically
we must have

dHθL = ω. (35)

Theorem 2. The second-order field Γ represents a gyroscopic system of type (3) if and only if there exists a basic 2-form ω ∈ ∧2
(Q )

and a symmetric type (0,2) tensor g along τ such that DV g is symmetric and g and ω further satisfy

∇g = 0, (36)

Φ � g − (Φ � g)T = iTdHω, (37)

where Φ is the Jacobi endomorphism of Γ .

Proof. Assuming we are in the situation described by Proposition 2, we define g as before by g = DV DV L, or g(X, Y ) =
DV

X θL(Y ) = DV
Y θL(X), from which the usual symmetry of DV g follows. Acting with ∇ on g and following the pattern of the

proof of Theorem 1, we get ∇g(X, Y ) = dHθL(Y , X) + DV iTω(X, Y ), which is zero in view of (34) and (35). Finally, for the
horizontal exterior derivative of (33), the modifications are that the left-hand side produces a term ∇ω in view of (35),
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while the second term on the right gives dH iTω = dH
T ω − iTdHω, and since ∇ = dH

T on basic forms we end up with the
relation

idV ΦθL − dV iΦθL = iTdHω,

which is the desired result (37) in view of Lemma 1.
For the sufficiency, we observe as before that g is a Hessian, say g = DV DV F , and that also DH g will be symmetric,

which in exactly the same way implies that dHθF is basic. Still following the pattern of Theorem 1, ∇g = 0 will now imply
that β := ∇θF − dH F − iTdHθF is a basic 1-form. In computing dH dHθF , the modification is that

dHdHθF = 1

3
dV idV ΦθF = 1

3
dV (

dV iΦθF + iTdHω
) = dHω,

in view of the last of (34). Since dHθF and ω are basic, this expresses that their difference is closed and thus locally exact:
dHθF = ω + dHα for some basic 1-form α. The computation of dHβ leads as before to the conclusion that β is closed, thus
locally β = dH f for some function f on Q . Using this double information, we find that

iTdHθF = iTω + ∇α − dH iTα,

and subsequently

0 = ∇θF − dH F − iTdHθF − dH f

= ∇(θF − α) − dH (F − iTα + f ) − iTω.

This is a relation of type (33), with L = F − iTα + f , which concludes the proof. �
In coordinates, in comparison with the dissipative case of Theorem 1, the conditions (31) and (32) are replaced in the

gyroscopic case by

Γ (gij) = gikΓ
k
j + g jkΓ

k
i , (38)

gikΦ
k
j − g jkΦ

k
i = 1

2

(
∂ωi j

∂qk
+ ∂ω jk

∂qi
+ ∂ωki

∂q j

)
vk (39)

with ωi j(q) = −ω ji(q).

Remark. When dω = 0, the conditions of Theorem 2 reduce to the standard Helmholtz conditions for a multiplier g . This
should not come as a surprise, since the local exactness of ω then implies that the gyroscopic forces are actually of the type
of the Lorentz force of a magnetic field, for which it is known that a generalized potential can be introduced to arrive at a
standard Lagrangian representation.

It is worth noting that in the sufficiency part of the proof the condition ∇g = 0, given that g and DV g are symmetric,
is used to show the existence of a basic 1-form β such that ∇θF = dH F + iTdHθF + β , where dHθF is a basic 2-form. The
condition involving Φ then has the role of ensuring that F can be modified by the addition of a function affine in the fibre
coordinates so as to eliminate the β term. This suggests that it might be interesting to examine the effect of ignoring the
Φ condition. When we do so we obtain the following result.

Proposition 3. For a given second-order field Γ , the existence of a non-singular symmetric type (0,2) tensor g along τ such that DV g
is symmetric and ∇g = 0 is necessary and sufficient for there to be a regular function L, a basic 1-form β and a basic 2-form ω such
that ∇θL = dH L + iTω + β , that is to say, such that the equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= ωki(q)q̇k + βi(q), ωki = −ωik

are equivalent to those determined by Γ .

Proof. It remains to show that ∇g = 0 still holds when ∇θL = dH L + iTω + β . Since β is basic, DV β = 0, from which it
follows easily that both of the formulas dHθL = ω and ∇g(X, Y ) = dHθL(Y , X) + DV iTω(X, Y ) continue to hold, so that
∇g = 0 as before. �

One point of interest about this result is that it concerns a subset of the full Helmholtz conditions. Unlike Theorems 1
and 2 above, but like the full Helmholtz conditions, it involves conditions on the multiplier only, and in this respect it
anticipates the results to be found in the following section.

An analogous result has been obtained by different methods in [19] (see Proposition 3.13 and the immediately following
remarks). This is the partial result that we mentioned in the introduction.
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4. Reduction to conditions on the multiplier only

We have seen in the previous section that Theorems 1 and 2 produce the direct analogues of the Helmholtz conditions
(15) of the standard inverse problem of Lagrangian mechanics. It is quite natural that the extra elements in our analysis,
namely the function D , respectively the 2-form ω, make their appearance in these covering generalizations. Quite surpris-
ingly, however, one can go a step further in the generalizations and eliminate the dependence on D or ω all together, to
arrive at necessary and sufficient conditions involving the multiplier g only. This is what we will derive now, but it is a
rather technical issue, for which we will therefore prepare the stage by proving a number of auxiliary results first. We
recall that, as in the relation (9), a notation like

∑
X,Y ,Z in what follows always refers to a cyclic sum over the indicated

arguments.

Lemma 2. If F ∈ C∞(T Q ), θF = dV F and g = DV DV F then

dV
R θF (X, Y , Z) =

∑
X,Y ,Z

g
(

R(X, Y ), Z
)
, (40)

dH
R θF (X, Y , Z) =

∑
X,Y ,Z

DH
R(X,Y )θF (Z). (41)

Proof. In view of the fact that dV dV = 0, dV
R θF reduces to dV iRdV F , and using (9) we then get

dV
R θF (X, Y , Z) =

∑
X,Y ,Z

DV
X

(
iRdV F

)
(Y , Z) =

∑
X,Y ,Z

(
iDV

X RdV F + iR DV
X dV F

)
(Y , Z)

=
∑

X,Y ,Z

[
dV F

(
DV

X R(Y , Z)
) + g

(
X, R(Y , Z)

)]
=

∑
X,Y ,Z

g
(

R(X, Y ), Z
) + dV F

(
dV R(X, Y , Z)

)
.

Taking into account the fact that 3dV R = dV dV Φ = 0, the first result follows. For the second there are two terms to compute.
For the first we have

dH iRθF (X, Y , Z) =
∑

X,Y ,Z

DH
X (iRθF )(Y , Z)

=
∑

X,Y ,Z

(
iDH

X RθF + iR DH
X θF

)
(Y , Z) =

∑
X,Y ,Z

DH
X θF

(
R(Y , Z)

)
,

since the first term of the second line vanishes in view of the Bianchi identity dH R = 0 [20]. Secondly,

iRdHθF (X, Y , Z) =
∑

X,Y ,Z

dHθF
(

R(X, Y ), Z
) =

∑
X,Y ,Z

[
DH

R(X,Y )θF (Z) − DH
Z θF

(
R(X, Y )

)]
.

Adding these two expressions gives the desired result (41). �
Lemma 3. If DH g is symmetric then

dH(
Φ � g − (Φ � g)T )

(X, Y , Z) =
∑

X,Y ,Z

g
(∇R(X, Y ), Z

)
. (42)

Proof. We have

dH(
Φ � g − (Φ � g)T )

(X, Y , Z) =
∑

X,Y ,Z

DH
X

(
Φ � g − (Φ � g)T )

(Y , Z)

=
∑

X,Y ,Z

(
DH

X Φ � g + Φ � DH
X g − (

DH
X Φ � g

)T − (
Φ � DH

X g
)T )

(Y , Z)

=
∑

X,Y ,Z

[
g
(
DH

X Φ(Y ), Z
) − g

(
DH

X Φ(Z), Y
)] +

∑
X,Y ,Z

[
DH

X g(ΦY , Z) − DH
X g(Φ Z , Y )

]
.

Making use of the cyclic sum freedom in the second and fourth term, and of the symmetry of DH g in the third, the
right-hand side reduces to∑

g
(
DH

X Φ(Y ) − DH
Y Φ(X), Z

) =
∑

g
(
dHΦ(X, Y ), Z

)
,

X,Y ,Z X,Y ,Z
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which proves our statement in view of dHΦ = ∇R . �
Lemma 4. If g and DV g are both symmetric then[∇,DH ]

g(X, Y , Z) − [∇,DH ]
g(Y , X, Z)

= DV
Z

(
Φ � g − (Φ � g)T )

(X, Y ) −
∑

X,Y ,Z

g
(

R(X, Y ), Z
)
.

Proof. The commutator [∇,DH ] is rather complicated when it comes to its action on a symmetric type (0,2) tensor g . It
reads (see for example [9] where it was already used):[∇,DH ]

g(X, Y , Z) = DV
Φ X g(Y , Z) − 2g

(
R(X, Y ), Z

) − 2g
(

R(X, Z), Y
)

+ g
(
DV

X Φ(Y ), Z
) + g

(
DV

X Φ(Z), Y
)
.

Subtracting the same expression with X and Y interchanged, it is however a fairly simple computation, using the symmetry
of DV g and the property dV Φ = 3R , to arrive at the desired result. �
Lemma 5. For all F ∈ C∞(T Q ) we have

DH DV DV F (X, Y , Z) − DH DV DV F (Y , X, Z) = DV
Z dH dV F (X, Y ). (43)

Proof. This is in fact a variation of a formula which was already used in proving that dHθF is basic in the second part of
the proof of Theorem 1. We have to appeal again to the general formula (28), applied to DV F = dV F = θF . After swapping
the last two arguments in each term on the left in (43), a direct application of this formula easily leads to the result. �
Theorem 3. The second-order field Γ represents a dissipative system of type (2) if and only if there exists a symmetric type (0,2)

tensor g along τ such that both DV g and DH g are symmetric and∑
X,Y ,Z

g
(

R(X, Y ), Z
) = 0. (44)

Proof. Assume first that the conditions of Theorem 1 hold true. So g and DV g are symmetric and as before, since ∇
preserves the symmetry of DV g and also DV ∇g = DV DV DV D is manifestly symmetric, we conclude that DH g is symmetric.
Moreover, if F is any function such that g = DV DV F , we know from Lemma 1 that

Φ � g − (Φ � g)T = idV ΦθF − dV iΦθF .

It then follows from the last condition in Theorem 1 that

0 = dV dV dH D = dV idV ΦθF = 3dV
R θF ,

so that the first statement in Lemma 2 implies (44).
For the converse, symmetry of g and DV g imply that ∇g and ∇DV g are symmetric, and since in addition DH g is

symmetric, we conclude that DV ∇g is symmetric, which means that ∇g is also a Hessian (see Lemma 1), say ∇g = DV DV D
for some function D . Next, we look at the statement of Lemma 4 in which the last term vanishes here by assumption. We
have that ∇DH g is symmetric, so that the left-hand side reduces to

−DH DV DV D(X, Y , Z) + DH DV DV D(Y , X, Z).

Combining the results of Lemmas 4 and 5 we conclude that the 2-form

β := Φ � g − (Φ � g)T + dHdV D

is basic. Now from the last of the properties (10) and Lemma 2 applied to ∇g , which is determined by θD , we know that

dHdH dV D(X, Y , Z) = dV
R θD(X, Y , Z) =

∑
X,Y ,Z

∇g
(

R(X, Y ), Z
)
.

This in turn, making use also of the result of Lemma 3, gives rise to the following calculation:

dHβ(X, Y , Z) =
∑

X,Y ,Z

g
(∇R(X, Y ), Z

) +
∑

X,Y ,Z

∇g
(

R(X, Y ), Z
)

= ∇
( ∑

g
(

R(X, Y ), Z
))
X,Y ,Z
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−
∑

X,Y ,Z

g
(

R(∇ X, Y ), Z
) −

∑
X,Y ,Z

g
(

R(X,∇Y ), Z
) −

∑
X,Y ,Z

g
(

R(X, Y ),∇ Z
)

= −
∑

X,Y ,Z

[
g
(

R(∇ Z , X), Y
) + g

(
R(Y ,∇ Z), X

) + g
(

R(X, Y ),∇ Z
)]

.

The expression between square brackets in the last line is zero because of (44), with vector arguments X, Y and ∇ Z ; it
follows that β is closed, thus locally β = dHα for some basic 1-form α. Putting D̃ = D − iTα, we have ∇g = DV DV D =
DV DV D̃ , and β − dH dV D = −dH dV D̃ , so that Φ � g − (Φ � g)T = dV dH D̃ and all conditions of Theorem 1 are satisfied. �

The results of Theorem 3 deserve some further comments. Establishing necessary and sufficient conditions for the exis-
tence of a Lagrangian is in a way the easy part of the inverse problem; the hard part is the study of formal integrability
of these conditions, for which a number of different techniques exist (see for example [2,15,16,28]). If we go back to the
standard Helmholtz conditions (15), for example, two of the first integrability conditions one encounters are the symmetry
of DH g and the algebraic condition (44). So in the standard situation, if a g exists satisfying (15), these properties will
automatically hold true: it seems to us noteworthy that these two integrability conditions make their appearance in the
dissipative case as part of the starting set of necessary and sufficient conditions. It is further worth observing that the case
of Rayleigh dissipation can be characterized by the further restriction that DV ∇g = 0. Indeed, since ∇g = DV DV D , this extra
condition will imply that D must be quadratic in the velocities.

The coordinate expressions of the conditions in Theorem 3 are, apart from (30),

Hi(g jk) − H j(gik) + gilΓ
l
jk − g jlΓ

l
ik = 0, (45)

gij R j
kl + glj R j

ik + gkj R j
li = 0, (46)

where Γ l
jk = Vk(Γ

l
j ) and Rk

ij = H j(Γ
k

i ) − Hi(Γ
k
j ) = 1

3 (V i(Φ
k
j ) − V j(Φ

k
i )).

We now proceed in the same way for the gyroscopic case.

Theorem 4. If the second-order field Γ represents a gyroscopic system of type (3) then there exists a symmetric type (0,2) tensor g
along τ such that DV g is symmetric, ∇g = 0 and(

Φ � g − (Φ � g)T )
(X, Y ) =

∑
X,Y ,T

g
(

R(X, Y ),T
)
. (47)

The converse is true as well, provided we assume that Φ � g is smooth on the zero section of T Q → Q .

Proof. Assume we have a g and ω satisfying the conditions of Theorem 2. Acting on the condition (37) with dV , the left-
hand side reduces, as in the proof of the preceding theorem, to 3dV

R θF for any F such that g = DV DV F . For the right-hand
side, we get dV iTdHω = 3dHω. Hence dHω = dV

R θF , and (37) can be written as

Φ � g − (Φ � g)T = iTdV
R θF . (48)

Making use of Lemma 2 the result now immediately follows.
Conversely, (47) obviously implies (48) for any F such that g = DV DV F . DV g symmetric and ∇g = 0 imply that DH g is

symmetric and then also [∇,DH ]g is symmetric. It follows from Lemma 4 that

DV
Z

(
Φ � g − (Φ � g)T )

(X, Y ) =
∑

X,Y ,Z

g
(

R(X, Y ), Z
)
, ∀X, Y , Z .

In particular, taking Z to be T and using Lemma 2 again plus (48), we obtain

DV
T

(
Φ � g − (Φ � g)T ) = Φ � g − (Φ � g)T .

This asserts that Φ � g −(Φ � g)T is homogeneous of degree 1 in the fibre coordinates. The additional smoothness assumption
then further implies linearity in the fibre coordinates, so that there exists a basic 3-form ρ such that Φ � g − (Φ � g)T = iTρ .
There are two conclusions we can draw from this by taking appropriate derivatives. On the one hand, taking the horizontal
exterior derivative and using Lemma 3 we obtain∑

X,Y ,Z

g
(∇R(X, Y ), Z

) = (
dH iTρ

)
(X, Y , Z) = (∇ρ − iTdHρ

)
(X, Y , Z).

On the other, knowing that DV
Z iTρ = i Z ρ for any Z and appealing once more to the general conclusion of Lemma 4,

we see that actually ρ(X, Y , Z) = ∑
X,Y ,Z g(R(X, Y ), Z), from which it follows in view of ∇g = 0 that ∇ρ(X, Y , Z) =
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∑
X,Y ,Z g(∇R(X, Y ), Z). The conclusion from the last displayed equation is that iTdHρ = 0. But then 0 = DV

X iTdHρ = i X dHρ

for all X , so that dHρ = 0 and locally ρ = dHω for some basic ω. It follows that

Φ � g − (Φ � g)T = iTdHω,

which completes the proof. �
In contrast with the preceding theorem, the condition (47) which makes its appearance here is not one which is directly

familiar from the integrability analysis of the standard Helmholtz conditions. But indirectly, when ω = 0, the left-hand side
vanishes and the fact that this is also the case for the right-hand side follows from the integrability condition (44).

The coordinate expressions of the conditions in Theorem 4, in addition to (30) and (38), are

gljΦ
j

k − gkjΦ
j

l = (
gij R j

kl + glj R j
ik + gkj R j

li

)
vi . (49)

Before embarking on examples, it is worth emphasizing a fundamental advantage of our intrinsic approach: we are not
restricted to the coordinate expressions in natural bundle coordinates listed so far, if there are good reasons to work in
a non-standard frame. This is the case, for example, in applications where it is appropriate to work with so-called quasi-
velocities. Quasi-velocities are just fibre coordinates in T Q with respect to a non-standard frame {Xi} of vector fields on Q
(which also constitute a basis for the module of vector fields along τ ). All conditions we have encountered so far may be
projected onto such a frame and rewritten in terms of the quasi-velocities. For example, take the condition (19) we started
from in the preceding section. It can be expressed as follows:

0 = (∇θL − dH L − dV D
)
(Xi)

= Γ
(
θL(Xi)

) − θL(∇ Xi) − XH
i (L) − XV

i (D)

= Γ
(

XV
i (L)

) − (∇ Xi)
V(L) − XH

i (L) − XV
i (D)

= Γ
(

XV
i (L)

) − XC
i (L) − XV

i (D),

where XC
i stands for the complete lift of the vector field Xi . Quasi-velocities wi can be thought of as the components of

T with respect to some anholonomic frame {Xi} of vector fields on Q . One can show (see e.g. [7]) that the complete and
vertical lifts of such a frame, expressed in the coordinates (q, w), take the form

XC
i = X j

i

∂

∂q j
− A j

ik vk ∂

∂ w j
, XV

i = ∂

∂ wi
,

where Xi = X j
i ∂/∂q j and [Xi, X j] = Ak

ij Xk . The condition (19) now becomes

Γ

(
∂L

∂ wi

)
− X j

i

∂L

∂q j
+ A j

ik wk ∂L

∂ w j
= ∂ D

∂ wi
.

These are the Boltzmann–Hamel equations referred to in [17], where, since the results the same authors obtained in [18]
were expressed only in standard coordinates, all conditions had to be rederived from scratch. Needless to say, one can also
recast any of the other coordinate-free conditions we have obtained in terms of quasi-velocities.

5. Illustrative examples and concluding remarks

We start with a simple linear system with two degrees of freedom, which will serve us well to illustrate a number of
features of the results we have obtained. Consider the system

q̈1 = −aq1 − bq2 − ωq̇1, (50)

q̈2 = bq1 − aq2 + ωq̇2, (51)

where a,b and ω are constant, non-zero parameters. The only non-zero connection coefficients are

Γ 1
1 = 1

2
ω = −Γ 2

2 ,

and we obtain

Φ1
1 = Φ2

2 = a − 1

4
ω2, Φ1

2 = b = −Φ2
1 .

Since Φ is constant, the curvature tensor R is zero so that condition (44) is satisfied (in fact it is void anyway in view of
the dimension). It follows from Theorem 3 that any constant symmetric g should be a multiplier for a representation of the
given system in the form (2). We consider three such non-singular matrices:

g(1) =
(

1 0
0 −1

)
, g(2) =

(
0 1
1 0

)
, g(3) =

(
1 0
0 1

)
.
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For g(1) , it is easy to verify that with

L1 = 1

2

(
q̇2

1 − q̇2
2

) − 1

2
a
(
q2

1 − q2
2

) − bq1q2,

D1 = −1

2
ω

(
q̇2

1 + q̇2
2

)
,

we have a representation of the given system in the form (2). In the case that ω = 0, g(1) is still a multiplier for the
standard inverse problem and L1 then becomes a genuine Lagrangian. Also g(2) , which changes the order of the equations,
is a multiplier in that case, leading to an alternative Lagrangian for the same reduced system. But that Lagrangian cannot
serve for a dissipative representation of the full system. Instead, we have to take

L2 = q̇1q̇2 − aq1q2 − 1

2
b
(
q2

2 − q2
1

) + 1

2
ω(q1q̇2 − q2q̇1),

and then D2 = 0. We discover here that the given system is variational, with L2 as Lagrangian. For g(3) the situation is
different again. This time, this is not a multiplier for the reduced system (ω = 0), it violates the condition that Φ � g must
be symmetric. But for the full system, we can simply take a kinetic energy Lagrangian and then make a suitable adaptation
for D . Explicitly,

L3 = 1

2

(
q̇2

1 + q̇2
2

)
,

D3 = −a(q1q̇1 + q2q̇2) + b(q1q̇2 − q2q̇1) + 1

2
ω

(
q̇2

2 − q̇2
1

)
.

Let us now look at the same system from the gyroscopic point of view. Since R = 0, the rather peculiar condition (47)
of Theorem 4 reduces to the usual Φ-condition and Theorem 4 simply states the standard Helmholtz conditions for the
existence of a multiplier. In other words, any multiplier for a representation in the form (3) will be a multiplier for a
variational description as well. Of the non-singular, constant g(i) we considered before, only g(2) satisfies the conditions
now, and we can take

L4 = q̇1q̇2 − aq1q2 − 1

2
b
(
q2

2 − q2
1

)
,

with the 2-form ωdq1 ∧ dq2 to satisfy the requirements of Theorem 2. It should of course not come as a surprise that we
must have a variational formulation here as well, since we are in the situation described in the remark towards the end of
Section 3. In fact we have already found the Lagrangian for this variational formulation: it is the function L2.

For a second example, with n = 3, consider the non-linear system

q̈1 = q2q̇1q̇3, (52)

q̈2 = q̇2
3, (53)

q̈3 = q̇2
1 − q−1

2 q̇2q̇3. (54)

From (12) one easily verifies that

(
Φ i

j

) =
⎛⎝ − 1

4 q2
2q̇2

3 − 3
4 q̇1q̇3

1
4 q2

2q̇1q̇3 + 3
4 q̇1q̇2

−q̇1q̇3
1
2 q−1

2 q̇2
3 − 1

2 q−1
2 q̇2q̇3 + q̇2

1
1
2 q2q̇1q̇3 + 1

2 q−1
2 q̇1q̇2 − 1

4 q−2
2 q̇2q̇3 − 1

2 q−1
2 q̇2

1 − 1
2 q2q̇2

1 + 1
4 q−2

2 q̇2
2

⎞⎠
and the curvature tensor R = 1

3 dV Φ is given by

R = −
(

1

8
q̇3 dq1 ∧ dq2 −

(
1

8
q̇2 + 1

8
q2

2q̇3

)
dq1 ∧ dq3 − 1

4
q̇1 dq2 ∧ dq3

)
⊗ ∂

∂q1

+
(

1

2
q̇1 dq1 ∧ dq3 − 1

4
q−1

2 q̇1 dq2 ∧ dq3

)
⊗ ∂

∂q2

−
(

1

4
q−1

2 q̇1 dq1 ∧ dq2 + 1

4
q2q̇1 dq1 ∧ dq3 − 1

8
q−2

2 q̇2 dq2 ∧ dq3

)
⊗ ∂

∂q3
.

The multiplier problem is already quite complicated for a system of this kind and it is not our intention here to explore
all possible solutions. For simplicity, therefore, we limit ourselves in the dissipative case (2) to analyzing the existence of
a diagonal multiplier g which depends on the coordinates qi only. With such an ansatz, the curvature condition (44) in
Theorem 3 reduces to

g33 = (g11 − 2g22)q2,
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and the requirement that DH g should be symmetric subsequently imposes that g11 = 4g22 = constant. Hence, up to a
constant factor, we are reduced to the possibility that

g11 = 4, g22 = 1, g33 = 2q2.

As was mentioned in the previous section, the conditions imposed so far are also integrability conditions in the standard
inverse problem so that, starting from the same ansatz, this g would also be the only candidate for a standard Lagrangian
representation of the system. When we compute ∇g now, we get

(
(∇g)i j

) =
(4q2q̇3 0 4q2q̇1

0 0 0
4q2q̇1 0 0

)
.

Since ∇g �= 0, our candidate cannot lead to a variational formulation. On the other hand, Theorem 3 is satisfied, so there
must exist a D for a dissipative representation. From the requirement (24) in Theorem 1, one easily verifies that such a D
must satisfy

V 1(D) = 4q2q̇1q̇3 + h1, V 2(D) = h2, V 3(D) = 2q2q̇2
1 + h3,

where the hi are as yet arbitrary functions of the coordinates. The final requirement (25) of Theorem 1 then shows that the
hi can be taken to be zero. Thus,

L = 1

2

(
4q̇2

1 + q̇2
2 + 2q2q̇2

3

)
and D = 2q2q̇2

1q̇3,

provide a solution for the inverse problem of type (2) for the given system.
Concerning the inverse problem of type (3), it is less appropriate to look for a diagonal g (as the example with n = 2

has shown), but even if we extend our search to a general g depending on the qi only, the conditions of Theorem 4 have
no non-singular solution.

Consider, finally, the system

q̈1 = bq̇1q̇4, (55)

q̈2 = q̇2q̇4, (56)

q̈3 = (1 − b)q̇1q̇2 + bq2q̇1q̇4 − bq1q̇2q̇4 + (b + 1)q̇3q̇4, (57)

q̈4 = 0, (58)

with −1 < b < 1 and b �= 0. These equations can be interpreted as the geodesic equations of the canonical connection
associated with a certain Lie group G , which is uniquely defined by ∇X Y = 1

2 [X, Y ], where X and Y are left-invariant vector
fields. In the case of the above system, the Lie group is listed as A4,9b in [12], and it was shown (see also [1]) that the
system does not have a variational formulation. This is a consequence of the integrability condition (44) which can only be
satisfied by multipliers for which g13 = g23 = g33 = 0. But then, the Φ-condition in (15) leads automatically to g34 = 0 so
that there is no non-singular solution.

Notice that the system is invariant for translations in the q3 and q4 direction; it is therefore reasonable that we limit
ourselves in our search for non-conservative representations to multipliers with the same symmetry. In the dissipative case,
after haven taken the same curvature condition into account, the DH g-condition leads to the further restrictions

∂ g34

∂q̇3
= 0,

∂ g34

∂q̇3
− g34 = 0,

among others, from which again g34 = 0 follows, with the same negative conclusion. In the gyroscopic case, one can show
that the condition (47) cannot be satisfied for a multiplier with coefficients depending on the coordinates qi only.

Some final comments are in order. In the case of linear systems such as our first example, it frequently happens that a
multiplier for the inverse problem exists which is a function of time only (see for example [25]), so we will briefly sketch
here how our present theory can be extended to general, potentially time-dependent second-order systems. First of all,
the extension of the calculus along τ : T Q → Q to a time-dependent setting has been fully developed in [29], which also
contains the analogues of the conditions (14) and (15) for the inverse problem. In all generality, we are then talking about
a calculus of forms along the projection π : R × T Q → R × Q say. But as has been observed for example in [9], the extra
time-component in this setting does not really play a role when it comes to studying the Helmholtz conditions and their
integrability. That is to say: one has to use dt and the contact forms dqi − q̇i dt as local basis for forms along π and a
suitable dual basis for the vector fields which includes the given second-order system Γ ; important geometrical objects
such as the Jacobi endomorphism Φ will pick up an extra term for sure, but when restricted to act on vector fields without
Γ -component, all formulas of interest formally look the same. It is therefore not so hard to apply a suitably reformulated
version of the present theory to time-dependent systems, when needed. That important formulas formally look the same
will be seen also in the final observations in the appendix, where the setting is essentially time-dependent, though the
approach adopted there is quite different again from the calculus along π we are referring to here.



T. Mestdag et al. / Differential Geometry and its Applications 29 (2011) 55–72 69
Acknowledgements

The first author is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO). The second author is Adjunct
Professor at La Trobe University and acknowledges the hospitality of the Department of Mathematics and Statistics during
numerous visits. The third author is a Guest Professor at Ghent University: he is grateful to the Department of Mathematics
for its hospitality.

Appendix A

In this appendix we will relate our results to those obtained by Kielau et al. in [17,18], especially the latter; but first we
wish to derive those results anew, in a way which allows us to explain an interesting feature of them which was mentioned
in [18] but not fully dealt with there.

The problem discussed in [17,18] differs in several ways from the one which has been the subject of our paper, the
most important of which is that it is assumed there that a system of second-order ordinary differential equations is given
in implicit form f i(t,q, q̇, q̈) = 0, and the problem posed is to find necessary and sufficient conditions on the functions f i
such that the equations may be written in the form (2), where L and D are allowed to be time-dependent. That is, the
question is whether the equations are of Lagrangian type with dissipation as they stand, rather then whether they may be
made equivalent to such equations by a choice of multiplier.

It is probably most satisfactory to approach the inverse problem for a second-order system given in implicit form by
using the methods associated with variational sequences, rather than the techniques employed in the body of the paper.
Fortunately we will need only the rudiments of such methods, one version of which we now briefly describe; justification
for the unsupported claims we make can be found in [31], for example.

We deal with the (trivial) fibred manifold π : Q × R → R, and its infinite jet bundle J∞(π); this may seem a bit
extravagant when we are interested only in second-order equations, but is convenient for technical reasons. However, all
functions and forms under consideration will be of finite type (i.e. depend on finitely many variables). We take coordinates
(t,qi) on R × Q ; the jet coordinates are written q̇i , q̈i and so on. We denote the contact 1-forms by

θ i = dqi − q̇i dt, θ̇ i = dq̇i − q̈i dt, θ̈ i = dq̈i − ...
q i dt, . . . .

We need two exterior-derivative-like operators on exterior forms on J∞(π). The first is the vertical differential dV (not to
be confused with dV ), which is defined by

dV f = ∂ f

∂qi
θ i + ∂ f

∂q̇i
θ̇ i + ∂ f

∂q̈i
θ̈ i + · · · , dV dt = dV θ i = dV θ̇ i = dV θ̈ i = · · · = 0.

The key properties of dV are that d2
V = 0, and that dV is locally exact. The second operator is the variational differential δ,

about which we need to say just the following. First, for a Lagrangian L(t,q, q̇)

δ(L dt) = Ei(L)θ i ∧ dt

where the Ei(L) are the Euler–Lagrange expressions. The 2-forms which, like δ(L dt), are linear combinations of the θ i ∧ dt
are called source forms in [31] and dynamical forms in [19]. Secondly, for any source form ε = f iθ

i ∧ dt , f i = f i(t,q, q̇, q̈),

δε = −1

2

(
ri jθ

i ∧ θ j + si jθ
i ∧ θ̇ j + ti jθ

i ∧ θ̈ j) ∧ dt,

where the coefficients are given by

ri j = ∂ f i

∂q j
− ∂ f j

∂qi
− 1

2

d

dt

(
∂ f i

∂q̇ j
− ∂ f j

∂q̇i

)
+ 1

2

d2

dt2

(
∂ f i

∂q̈ j
− ∂ f j

∂q̈i

)
,

si j = ∂ f i

∂q̇ j
+ ∂ f j

∂q̇i
− 2

d

dt

(
∂ f j

∂q̈i

)
,

ti j = ∂ f i

∂q̈ j
− ∂ f j

∂q̈i
.

Again, δ2 = 0 and δ is locally exact. With a source form ε = f iθ
i ∧ dt , f i = f i(t,q, q̇, q̈), one associates the second-order

system f i = 0, and conversely; so that δε = 0 is necessary and sufficient for the second-order system f i = 0 to be locally
of Euler–Lagrange type. The vanishing of the coefficients ri j , si j and ti j are the (classical) Helmholtz conditions (see e.g.
[18,19,24]).

By considering the transformation properties of the jet coordinates and the contact forms under transformations of the
form q̄i = q̄i(t,q), t̄ = t one can show that the set of forms spanned by {dt, θ i, θ̇ i} with coefficients which are functions of t ,
q and q̇ is well defined. We call forms like this first-order forms. Note that dV maps first-order forms to first-order forms.
Moreover, one proves exactness of dV by using essentially the homotopy operator for the de Rham complex for the variables
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q, q̇, . . . , treating t as a parameter. It follows that if α is of first order and satisfies dV α = 0 then there is a first-order form
β such that α = dV β .

The first step in applying these concepts to dissipative systems is to characterize dissipative force terms using them.

Proposition 4. The first-order source form

� = ∂ D

∂q̇i
θ i ∧ dt

satisfies δ� = dV �. Conversely, if ε is a first-order source form such that δε = dV ε then ε = � for some first-order function D.

Proof. Applying the formula for δ acting on a source form one finds that

δ� = − ∂2 D

∂q j∂q̇i
θ i ∧ θ j ∧ dt − ∂2 D

∂q̇i∂q̇ j
θ i ∧ θ̇ j ∧ dt

=
(

∂

∂q j

(
∂ D

∂q̇i

)
θ j + ∂

∂q̇ j

(
∂ D

∂q̇i

)
θ̇ j

)
∧ θ i ∧ dt

= dV �.

Conversely, if ε = f iθ
i ∧ dt is of first order then ti j = 0 and

si j = ∂ f i

∂q̇ j
+ ∂ f j

∂q̇i
.

But

dV ε = ∂ f j

∂qi
θ i ∧ θ j ∧ dt − ∂ f i

∂q̇ j
θ i ∧ θ̇ j ∧ dt,

and so if δε = dV ε then

si j = ∂ f i

∂q̇ j
+ ∂ f j

∂q̇i
= 2

∂ f i

∂q̇ j
or

∂ f j

∂q̇i
= ∂ f i

∂q̇ j
,

so that there is a function D = D(t,q, q̇) such that f i = ∂ D/∂q̇i . The terms in θ i ∧ θ j ∧ dt then agree. �
Now take ε to be the source form representing the given equations. If they are of Euler–Lagrange type with a dissipative

term then ε = δ(L dt) − �, so δε = δ� = dV �. Then δε is of first order, and furthermore dV δε = 0. These are necessary
conditions for the given system to take the desired form. They are in fact sufficient also, as we now show.

Theorem 5. A system of second-order ordinary differential equations fi(t,q, q̇, q̈) = 0 may be written locally as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= ∂ D

∂q̇i

for some first-order functions L and D if and only if the corresponding source form ε is such that δε is of first order and satisfies
dV δε = 0.

Proof. It remains to prove sufficiency. By the local exactness of dV we may assume that δε = dV α for some first-order
2-form α (not necessarily a source form), which is determined only up to the addition of a dV -exact form. Contact 2-forms
β can be ignored in α since dV β then contains no dt terms and therefore cannot contribute to δε. Moreover, if we put

α = (
λiθ

i + μi θ̇
i) ∧ dt,

since δε contains no θ̇ i ∧ θ̇ j terms either, we must have

∂μ j

∂q̇i
= ∂μi

∂q̇ j
,

so that μi = ∂ψ/∂q̇i for some function ψ(t,q, q̇). Hence, up to the dV -exact term dV (ψ dt), α is of the form

α =
(

λi − ∂ψ

∂qi

)
θ i ∧ dt,

i.e. is a source form, say α = νiθ
i ∧ dt . Since δε is of first order we must have ti j = 0, whence si j is symmetric in i

and j. It follows that the coefficient of θ i ∧ θ̇ j in dV α must be symmetric in i and j, whence νi = −∂ D/∂q̇i for some
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function D = D(t,q, q̇), and α = −�. Then δε = dV α = −dV � = −δ�, and so there is some L such that ε = δ(L dt) − �, as
required. �

The point of interest that we mentioned at the beginning of this appendix is that this version of the result represents the
conditions in part as the closure (under dV ) of a certain form, namely δε. That it might be possible to state the conditions
in such a way was raised speculatively in [18], but the form and operator were not specifically identified there.

Under the assumption that δε is of first order, so that ti j = 0, it is easy to verify that the dV -closure conditions are

0 = ∂ri j

∂qk
+ ∂r jk

∂qi
+ ∂rki

∂q j
,

∂ri j

∂q̇k
= ∂sik

∂q j
− ∂s jk

∂qi
,

∂si j

∂q̇k
= ∂sik

∂q̇ j
.

It must not be forgotten that ri j and si j are supposed to be of first order; in addition, ti j = 0 means that we have

∂ f i

∂q̈ j
= ∂ f j

∂q̈i
.

These are the generalized Helmholtz conditions as given in [18]. However, it turns out that the first and last of the closure
conditions are consequences of the other conditions, as we showed in [8]. It then follows easily that the following conditions
are equivalent to those given above: f i = gijq̈ j + hi with gij symmetric, where gij , hi are of first order and further satisfy

∂ gij

∂q̇k
= ∂ gik

∂q̇k

∂ gik

∂q j
− 1

2

∂2hi

∂q̇ j∂q̇k
= ∂ g jk

∂qi
− 1

2

∂2h j

∂q̇i∂q̇k∑
i, j,k

(
∂2hi

∂q j∂q̇k
− ∂2hi

∂qk∂q̇ j

)
= 0,

where
∑

i, j,k stands for the cyclic sum over the indices.
As the problem has been presented so far in this appendix, we must take gij and hi as given; the equations above

provide a test for determining whether the given second-order system can be put into the required form. However, it is now
possible to regard these equations from the alternative point of view: we set hi = gij f j , where the second-order system is
given in normal form q̈i = f i(t,q, q̇); we regard the f i as known but the gij as to be determined; the equations above now
become partial differential equations for the unknowns gij . We leave it to the reader to verify that they correspond (take
the autonomous case for simplicity), in the order written, to the conditions of Theorem 3, namely DV g is symmetric, DH g
is symmetric, and

∑
X,Y ,Z g(R(X, Y ), Z) = 0.
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