prophylaxis cost far exceeding the direct financial benefit of preventing hospitaliza-
tions. Factors associated with lower ICERs included young age and the presence of
multiple indications.

COST-EFFECTIVENESS ANALYSIS OF FORMOTEROL ASSOCIATED TO
BUDENOCIDE FOR MAINTENANCE AND RELIEVER THERAPY
(SYMBICORT SMART) VERSUS SALMETEROL ASSOCIATED TO
FLUTICASONE IN THE TREATMENT OF MODERATE TO
SEVERE PERSISTENT ASTHMA UNDER THE BRAZILIAN
SOCIAL PERSPECTIVE
Thavorn K1, Nokseri P2, Pimental A3, Alamedine M4
1MedInsight, Rio de Janeiro, Brazil, 2AstraZeneca, Cotia, SP, Brazil
OBJECTIVES: To develop a cost-effectiveness analysis of formoterol associated to
budesonide for maintenance and reliever therapy (FB SMART) versus salmeterol
associated do fluticasone (SF) in the treatment of patients with moderate to severe
persistent asthma, under the Brazilian societal perspective. METHOD: A Markov
model was developed to project costs and outcomes associated with disease progres-
sion of patients with moderate to severe persistent asthma receiving SMART therapy
or SF in a one year time horizon. Weekly cycles were considered and the model
structure consisted of four possible health states: disease control, use of oral corticoids
(OC), hospitalization/emergency visit (H/EV) and death. The probabilities of having
severe exacerbations (OC or H/EV) were extracted from the study by Kana et al. All
cause mortality rates were obtained from national epidemiological databases. Adverse
events were not significantly different between comparators so were excluded from
the model. Outcomes were expressed as QALYs. Transition probabilities were
estimated based on an expert panel. Maximum prices to consumer were obtained
for drugs, and procedure costs were extracted from the Brazilian Classification of
Medica Procedures (classificação CPT). RESULTS: In one year, the average number of severe
exacerbations was 0.2436 in the SMART group and 0.3928 in the SF group, resulting
in 0.1492 severe exacerbations avoided. Total cost for the SMART and SF groups
was R$1823.56 and R$3417.49, respectively (incremental cost = R$1593.97). The
incremental cost-effectiveness ratio in 1 year was R$7272/SEA (US$1944 2008-
PPP index USD1.0 = R$4.07). The variables that most influenced the results were the costs
of SMART and SF therapy and the cost of hospitalization. CONCLUSIONS: SMART
therapy reduces the risk of severe exacerbations when compared to SF in patients with
moderate to severe persistent asthma, at a reasonable incremental cost, being a valu-
able alternative for these patients.

IS IT TIME FOR SMOKING CESSATION PRODUCTS TO BE
REIMBURSABLE IN THAILAND?
Thavorn K1, Chatyakungrub N2
1University of Toronto, Toronto, Ontario, Canada, 2Center of Pharmaceutical Outcomes
Research, Muen, Phitsanulek, Thailand
OBJECTIVES: Currently, no smoking cessation product is listed on National Essential
List of Essential Medicine in Thailand. This study aimed to evaluate the cost-effective-
ness of non-nicotine smoking cessation products in Thailand from health care system
perspective. METHOD: A Markov model was used to simulate the effects of smoking
cessation on cohorts of 10,000 male smokers age 40 who regularly smoked 10–20 cigarettes
a day. An incremental cost-effectiveness ratio of varenicline, bupropion, and
nortriptyline compared to self-quitting was estimated. Transition probabil-
ities were obtained from literature reviews, while medical care costs and utilization
patterns were derived from a database of a Thai tertiary-care hospital and from the
literature. The efficacy of all three products was obtained from a Bayesian meta-
analysis. Costs of the medications were obtained from the Thai Drug and Medical
Supply Information Center. Both costs and outcome were discounted at three percent.
All costs were presented in 2008 Thai Baht. A series of sensitivity analysis including
probabilistic sensitivity analysis, and cost-effectiveness acceptability curve were
performed. RESULTS: In comparison to self-quitting, using a non-nicotine smoking ces-
sation product results in cost-savings. Varenicline use results in the highest cost savings
of 21,187 Baht or approximately US$6605 and life-years gained of 0.25 years. The
use of nortriptyline and bupropion was shown to lead to similar magnitude of both life
es years and cost-savings. Nortriptyline and bupropion use had cost-savings of
11,506 Baht and 10,734 Baht, respectively. Probabilistic sensitivity analysis demon-
strate that the probability of cost-saving from using nortriptyline, varenicline, and
bupropion for smoking cessation was 99%, 85%, and 80%, respectively. CONCLU-
SIONS: From the perspective of the health care system, using any of the three products
yielded cost-savings and life-year gains. These findings may persuade Thai
policy-makers to consider including these smoking cessation products on the National
List of Essential Medicine.

COST-EFFECTIVENESS ANALYSIS OF XOLAIR UNDER REAL
LIFE CONDITIONS IN BELGIAN PATIENTS WITH SEVERE
ALLERGIC ASTHMA
Lecomte P1, Lee CS2, Van Nooten FE3, Thompson CL4
1Nestle Pharmaceuticals, Vivioce, Belgium, 2MedSource, LLC, Earlysville, VA, USA, 3United
BioSource Corporation, Brussels, Belgium, 4United BioSource Corporation, Bethesda, MD,
USA
OBJECTIVES: To assess, in real life conditions, the costs, effects, and cost-effect-
iveness of Xolair® (omalizumab) as add-on therapy versus conventional care in the treat-
ment of Belgian patients with severe persistent allergic asthma inadequately controlled.
METHODS: The same Markov model used for omalizumab initial reimbursement
dossier was populated with data from a Belgian observational study, i.e. PERSIST
study (n = 160), especially set up to address questions raised by the Belgian authorities
for omalizumab re-evaluation. The model takes into account four health states and
links effectiveness data, real life resource use, and utility data. Medical resources use
drug treatment, laboratory tests and procedures, physician consultations, emergency
room visits, and hospitalisations) were collected in PERSIST and costed from the
perspective of the health care payer (i.e. INAMI/RIZIV + patient). EQ-SD data were
also collected during the study and used in the Markov model. RESULTS: Over a
lifelong time horizon, the expected average numbers of life years (LYs) and QALYs
were obtained, for conventional therapy are 18.31 and 9.80, respectively. For omali-
zumab, the respective figures are 22.19 and 12.54. Over a lifelong time horizon,
the expected average costs per patient are €44,548 and €124,726 for conventional therapy
and omalizumab as add-on, respectively. Hence, omalizumab ICERs are €20,777/LY
and costed from the perspective of the health care payer (i.e. INAMI/RIZIV + patient). EQ-SD data were
also collected during the study and used in the Markov model. RESULTS: Over a
lifelong time horizon, the expected average numbers of life years (LYs) and QALYs
were obtained, for conventional therapy are 18.31 and 9.80, respectively. For omali-
zumab, the respective figures are 22.19 and 12.54. Over a lifelong time horizon,
the expected average costs per patient are €44,548 and €124,726 for conventional therapy
and omalizumab as add-on, respectively. Hence, omalizumab ICERs are €20,777/LY
and costed from the perspective of the health care payer (i.e. INAMI/RIZIV + patient). EQ-SD data were