

Available online at www.sciencedirect.com

Journal of Algebra 258 (2002) 543-562

www.elsevier.com/locate/jalgebra

Hook interpolations

Ron M. Adin,^{a,*,1} Avital Frumkin,^b and Yuval Roichman^{a,1}

^a Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel ^b Sackler School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Received 10 September 2001

Communicated by G.D. James

Abstract

The hook components of $V^{\otimes n}$ interpolate between the symmetric power $\operatorname{Sym}^n(V)$ and the exterior power $\wedge^n(V)$. When V is the vector space of $k \times m$ matrices over C, we decompose the hook components into irreducible $GL_k(C) \times GL_m(C)$ -modules. In particular, classical theorems are proved as boundary cases. For the algebra of square matrices over C, a bivariate interpolation is presented and studied. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The vector space $M_{k,m}$ of $k \times m$ matrices over C carries a (left) $GL_k(C)$ -action and a (right) $GL_m(C)$ -action. A classical theorem of Ehresmann [2] describes the decomposition of an exterior power of $M_{k,m}$ into irreducible bimodules. The symmetric analogue was given later (cf. [6]). See Section 2.3 below.

In this paper we present a natural interpolation between these theorems, in terms of hook components of the *n*-th tensor power of $M_{k,m}$. Duality and asymptotics of the decomposition of hook components follow.

^{*} Corresponding author.

E-mail addresses: radin@math.biu.ac.il (R.M. Adin), frumkin@math.tau.ac.il (A. Frumkin), yuvalr@math.biu.ac.il (Y. Roichman).

¹ Research was supported in part by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by internal research grants from Bar-Ilan University.

Similar methods are then applied to the diagonal two-sided $GL_k(C)$ -action on the vector space of $k \times k$ matrices. Classical theorems of Thrall [18] and James [7] (for the symmetric powers of symmetric matrices), and of Helgason [4], Shimura [14] and Howe [5] (for the symmetric powers of anti-symmetric matrices) are extended, and a bivariate interpolation is presented.

Proofs are obtained using the representation theory of the symmetric and hyperoctahedral groups, together with Schur–Weyl duality; no use is made of highest-weight theory.

1.1. Main results

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over C. The tensor power $M_{k,m}^{\otimes n}$ carries a natural S_n -action by permuting the factors. This action decomposes the tensor power into irreducible S_n -modules. Let $M_{k,m}^{\otimes n}(i)$ be the isotypic component of $M_{k,m}^{\otimes n}$ corresponding to the irreducible S_n -representation indexed by the hook $(n - i, 1^i)$, where $0 \le i \le n - 1$. This component still carries a $GL_k(C) \times GL_m(C)$ -action.

Theorem 1.1. Let λ and μ be partitions of n, of lengths at most k and m, respectively. For every $0 \leq i \leq n$ the multiplicity of the irreducible $GL_k(\mathbf{C}) \times GL_m(\mathbf{C})$ -module $V_k^{\lambda} \otimes V_m^{\mu}$ in $M_{k,m}^{\otimes n}(i-1) \oplus M_{k,m}^{\otimes n}(i)$ is

$$\sum_{\alpha \vdash n-i, \ \beta \vdash i} c^{\lambda}_{\alpha\beta} c^{\mu}_{\alpha\beta}$$

where $c_{\alpha\beta}^{\lambda}$ are Littlewood–Richardson coefficients, β' is the partition conjugate to β , and $M_{k,m}^{\otimes n}(-1) = M_{k,m}^{\otimes n}(n) = 0$.

See Theorem 3.3 below; for definitions and notation see Section 2 below. Theorem 1.1 interpolates between two well-known classical theorems (Theorems 2.4 and 2.5 below; see the remark following Theorem 3.3).

The following corollary generalizes the duality between Theorem 2.4 and Theorem 2.5.

Corollary 1.2. Let $\mu \subseteq (m^m)$ and λ be partitions of n. For every $0 \le i \le n-1$ the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu}$ in $M_{k,m}^{\otimes n}(i)$ is equal to the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu'}$ in $M_{k,m}^{\otimes n}(n-1-i)$.

See Corollary 3.4 below.

Let λ and μ be partitions of *n*. Define the *distance*

$$d(\lambda,\mu) := \frac{1}{2} \sum_{i} |\lambda_i - \mu_i|.$$

Theorem 1.3. If $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M_{k,m}^{\otimes n}(t)$ (for some $0 \le t \le n-1$) then

 $d(\lambda, \mu) < km.$

See Theorem 4.3 below. This shows that, for $V_k^{\lambda} \otimes V_m^{\mu}$ to appear in a hook component, λ and μ must be very "close" to each other (for k and m fixed, n tending to infinity).

Consider now the vector space $M_{k,k}$ of $k \times k$ square matrices over C. Let $M_{k,k}^{\otimes n}(i, j)$ be the component of $M_{k,k}^{\otimes n}(i)$ consisting of tensors with j skew symmetric and n - j symmetric factors. $M_{k,k}^{\otimes n}(i, j)$ carries a $GL_k(C)$ two-sided diagonal action. The following theorem describes its decomposition as a $GL_k(C)$ -module.

Theorem 1.4. Let λ be a partition of 2n of length at most k. For every $0 \le i \le n$ and $0 \le j \le n$, the multiplicity of V_k^{λ} in $M_{k,k}^{\otimes n}(i, j) \oplus M_{k,k}^{\otimes n}(i-1, j)$ is

$$\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n,\\|\beta|+|\delta|=j,\\|\gamma|+|\delta|=i}} c_{2\cdot\alpha,(2\cdot\beta)',2*\gamma,(2*\delta)'}^{\lambda},$$

where the sum runs over all partitions α , β , γ , δ with total size n such that β and δ have distinct parts and total size j, and γ and δ have total size i. The operations * and \cdot are defined in Section 2.1. Definition of the (extended) Littlewood–Richardson coefficients is given in Section 2.2.

See Theorem 5.7 below. Theorem 1.4, for i = 0, interpolates between classical results, regarding symmetric powers of the spaces of symmetric and skew symmetric matrices (Theorems 2.6 and 2.7 below). Another boundary case, i = n, gives an interpolation between exterior powers of the same matrix spaces.

Corollary 1.5. Let $\lambda \subseteq (k^k)$ be a partition of 2n. For every $0 \le i \le n-1$ and $0 \le j \le n$, the multiplicity of V_k^{λ} in $M_{k,k}^{\otimes n}(i, j)$ is equal to the multiplicity of $V_k^{\lambda'}$ in $M_{k,k}^{\otimes n}(i, n-j)$.

See Corollary 5.8 below.

2. Background and notation

2.1. Partitions

Let *n* be a positive integer. A *partition* of *n* is a vector of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$, where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ and $\lambda_1 + ... + \lambda_k = n$. We denote

this by $\lambda \vdash n$. The *size* of a partition $\lambda \vdash n$, denoted $|\lambda|$, is *n*, and its *length*, $\ell(\lambda)$, is the number of parts. The empty partition \emptyset has size and length zero: $|\emptyset| = \ell(\emptyset) = 0$. The set of all partitions of *n* with at most *k* parts is denoted by $\operatorname{Par}_k(n)$.

For a partition $\lambda = (\lambda_1, ..., \lambda_k)$ define the *conjugate partition* $\lambda' = (\lambda'_1, ..., \lambda'_i)$ by letting λ'_i be the number of parts of λ that have size at least *i*.

A partition $\lambda = (\lambda_1, \dots, \lambda_k)$ may be viewed as the subset

 $\{(i, j) \mid 1 \leq i \leq k, \ 1 \leq j \leq \lambda_i\} \subset \mathbf{Z}^2,$

the corresponding *Young diagram*. Using this interpretation, we may speak of the intersection $\lambda \cap \mu$ and the set difference $\lambda \setminus \mu$ of any two partitions. The set difference is called a *skew shape*; when $\mu \subseteq \lambda$ it is usually denoted λ/μ .

Let $(k^m) := (k, ..., k)$ (*m* equal parts). Thus, for example, $\lambda \subseteq (k^m)$ means $\lambda_1 \leq k$ and $\lambda'_1 \leq m$.

We shall also use the Frobenius notation for partitions, defined as follows: Let λ be a partition of *n* and set $d := \max\{i \mid \lambda_i - i \ge 0\}$ (i.e., the length of the main diagonal in the Young diagram of λ). Then the Frobenius notation for λ is $(\lambda_1 - 1, \dots, \lambda_d - d \mid \lambda'_1 - 1, \dots, \lambda'_d - d)$.

For any partition $\lambda = (\lambda_1, ..., \lambda_k)$ of *n* define the following doubling operation:

$$2 \cdot \lambda := (2\lambda_1, \ldots, 2\lambda_k) \vdash 2n.$$

If all the parts of λ are distinct, define also

$$2 * \lambda := (\lambda_1, \ldots, \lambda_k \mid \lambda_1 - 1, \ldots, \lambda_k - 1) \vdash 2n,$$

in the Frobenius notation.

2.2. Representations

For any group *G* denote the trivial representation by 1_G . In this paper we shall denote the irreducible S_n -modules (Specht modules) by S^{λ} , and the irreducible $GL_k(C)$ -modules (Weyl modules) by V_k^{λ} .

The Littlewood–Richardson coefficients describe the decomposition of tensor products of Weyl modules. Let $\mu \vdash t$ and $\nu \vdash n - t$. Then

$$V_k^{\mu} \otimes V_k^{\nu} \cong \bigoplus_{\lambda \vdash n} c_{\mu,\nu}^{\lambda} V_k^{\lambda},$$

for $k \ge \max\{\ell(\lambda), \ell(\mu), \ell(\nu)\}$ (and the coefficients $c_{\mu,\nu}^{\lambda}$ are then independent of *k*). By Schur–Weyl duality they are also the coefficients of the outer product of Specht modules. Namely,

$$(S^{\mu} \otimes S^{\nu}) \uparrow_{S_t \times S_{n-t}}^{S_n} \cong \bigoplus_{\lambda \vdash n} c^{\lambda}_{\mu,\nu} S^{\lambda}.$$

The following identity is well known: for all triples of partitions λ , μ , ν ,

$$c_{\mu,\nu}^{\lambda} = c_{\mu',\nu'}^{\lambda'}.$$
 (2.1)

We shall also use the following notation for *Littelwood–Richardson coefficients*:

$$c_{\alpha,\beta,\gamma,\delta}^{\lambda} := \sum_{\mu,\nu} c_{\alpha,\mu}^{\lambda} c_{\beta,\nu}^{\mu} c_{\gamma,\delta}^{\nu};$$

so that

$$V_k^{\alpha} \otimes V_k^{\beta} \otimes V_k^{\gamma} \otimes V_k^{\delta} = \bigoplus_{\lambda} c_{\alpha,\beta,\gamma,\delta}^{\lambda} V_k^{\lambda}.$$

Let B_n be the Weyl group of type B and rank n, also known as the hyperoctahedral group or the group of signed permutations. A *bipartition* of n is an ordered pair (μ, ν) of partitions of total size $|\mu| + |\nu| = n$. The irreducible characters of B_n are indexed by bipartitions of n; denote by $\chi^{\mu,\nu}$ the character indexed by (μ, ν) .

Consider the following natural embeddings of S_n into B_n and of B_n into S_{2n} : S_{2n} is the group of permutations on $\{-n, \ldots, -1, 1, \ldots, n\}$. B_n is embedded as the subgroup of all $\pi \in S_{2n}$ satisfying $\pi(-i) = -\pi(i)$ $(1 \le i \le n)$. S_n is embedded as the subgroup of all $\pi \in B_n$ satisfying also $\pi(i) > 0$ $(1 \le i \le n)$.

The following lemmas, used in Section 5, describe certain induced characters via the above embeddings. Lemma 2.1 is an immediate consequence of [11, Chapter I, Section 7, Example 4; Chapter I, Section 8, Examples 5–6; and Chapter VII, (2.4)]. See also [17].

Lemma 2.1.

(a)
$$1_{B_n} \uparrow_{B_n}^{S_{2n}} = \chi^{(n),\emptyset} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{2 \cdot \lambda};$$

(b) $\chi^{\emptyset,(n)} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{(2 \cdot \lambda)'};$
(c) $\chi^{(1^n),\emptyset} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{2*\lambda};$
(d) $\chi^{\emptyset,(1^n)} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{(2*\lambda)'};$

where the last two sums are over partitions with distinct parts.

Lemma 2.2.

(a)
$$\chi^{(n)} \uparrow_{S_n}^{B_n} = \sum_{i=0}^n \chi^{(i),(n-i)}.$$

(b) $\chi^{(1^n)} \uparrow_{S_n}^{B_n} = \sum_{i=0}^n \chi^{(1^i),(1^{n-i})}.$

ы

For a proof, see Appendix A.1.

The following lemma is a special case of the Littlewood–Richardson rule for B_n ; cf. [16, Lemma 7.1].

Lemma 2.3. $\chi^{(i),(n-i)} = (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-i)}) \uparrow_{B_i \times B_{n-i}}^{B_n}$.

2.3. Symmetric and exterior powers of matrix spaces

In this subsection we cite well-known classical theorems, concerning the decomposition into irreducibles of symmetric and exterior powers of matrix spaces, which are to be generalized in this paper.

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over C. Then $M_{k,m}$ carries a (left) $GL_k(C)$ -action and a (right) $GL_m(C)$ -action. A classical theorem of Ehresmann [2] (see also [10]) describes the decomposition of an exterior power of $M_{k,m}$ into irreducible $GL_k(C) \times GL_m(C)$ -modules.

Theorem 2.4. The *n*-th exterior power of $M_{k,m}$ is isomorphic, as a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ -module, to

$$\wedge^{n}(M_{k,m}) \cong \bigoplus_{\substack{\lambda \vdash n \\ \lambda \subseteq (m^{k})}} V_{k}^{\lambda} \otimes V_{m}^{\lambda'},$$

where λ' is the partition conjugate to λ .

The following three results on symmetric powers were proved several times independently; these results may be found in [3,6].

The symmetric analogue of Theorem 2.4 was studied, for example, in [6, (11.1.1)] and [3, Theorem 5.2.7].

Theorem 2.5. The *n*-th symmetric power of $M_{k,m}$ is isomorphic, as a $GL_k(C) \times GL_m(C)$ -module, to

$$\operatorname{Sym}^{n}(M_{k,m}) \cong \bigoplus_{\substack{\lambda \vdash n \\ \ell(\lambda) \leqslant \min(k,m)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda}.$$

Let $M_{k,k}^+$ be the vector space of symmetric $k \times k$ matrices over C. This space carries a natural two sided $GL_k(C)$ -action. The following theorem describes the decomposition of its symmetric powers into irreducible $GL_k(C)$ -modules.

Theorem 2.6. The *n*-th symmetric power of $M_{k,k}^+$ is isomorphic, as a $GL_k(C)$ -module, to

$$\operatorname{Sym}^n(M_{k,k}^+) \cong \bigoplus_{\lambda \in \operatorname{Par}_k(n)} V_k^{2 \cdot \lambda}.$$

This theorem was proved by A.T. James [7], but had already appeared in an early work of Thrall [18]. See also [5,14], [6, (11.2.2)] and [3, Theorem 5.2.9] for further proofs and references.

Let M_{kk}^{-} be the vector space of skew symmetric $k \times k$ matrices over C.

Theorem 2.7. The *n*-th symmetric power of $M_{k,k}^-$ is isomorphic, as a $GL_k(C)$ -module, to

$$\operatorname{Sym}^{n}(M_{k,k}^{-}) \cong \bigoplus_{(2\cdot\lambda)'\in\operatorname{Par}_{k}(2n)} V_{k}^{(2\cdot\lambda)'}$$

This theorem is proved in [4,5,14]. See also [6, (11.3.2)] and [3, Theorem 5.2.11].

3. Hook components of $M_{k}^{\otimes n}$

Consider $M = M_{k,m} = \mathbb{C}^{k \times m}$, the vector space of $k \times m$ matrices over \mathbb{C} . Then $M \cong V \otimes W$, where $V \cong \mathbb{C}^k$ and $W \cong \mathbb{C}^m$. Thus M carries a (left) GL(V)-action and a (right) GL(W)-action, which commute. Its tensor power $M^{\otimes n} \cong V^{\otimes n} \otimes W^{\otimes n}$ thus carries a $GL(V) \times S_n \times S_n \times GL(W)$ linear representation; one copy of the symmetric group S_n permutes the factors in $V^{\otimes n}$, and the other copy of S_n permutes the factors in $W^{\otimes n}$. The actions of all four groups clearly commute. We are interested in the $GL(V) \times S_n \times GL(W)$ -action on $M^{\otimes n}$ obtained through the diagonal embedding $S_n \hookrightarrow S_n \times S_n$, $\pi \mapsto (\pi, \pi)$.

Lemma 3.1.

$$M^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_k(n) \\ \nu \in \operatorname{Par}(n) \\ \mu \in \operatorname{Par}_m(n)}} \alpha_{\lambda \mu \nu} V_k^{\lambda} \otimes S^{\nu} \otimes V_m^{\mu},$$

where $\alpha_{\lambda\mu\nu} := \langle \chi^{\lambda} \chi^{\mu} \chi^{\nu}, 1_{S_n} \rangle.$

Proof. By Schur–Weyl duality (the double commutant theorem) [3, Theorem 9.1.2],

$$V^{\otimes n} \cong \bigoplus_{\lambda \in \operatorname{Par}_k(n)} V_k^\lambda \otimes S^\lambda$$

as $GL(V) \times S_n$ -modules. Similarly,

$$W^{\otimes n} \cong \bigoplus_{\lambda \in \operatorname{Par}_m(n)} V_m^\lambda \otimes S^\lambda$$

as $GL(W) \times S_n$ -modules. Therefore

$$M^{\otimes n} \cong V^{\otimes n} \otimes W^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_k(n) \\ \mu \in \operatorname{Par}_m(n)}} V_k^{\lambda} \otimes S^{\lambda} \otimes S^{\mu} \otimes V_m^{\mu}$$

as $GL(V) \times S_n \times S_n \times GL(W)$ -modules.

Using the diagonal embedding $S_n \hookrightarrow S_n \times S_n$,

$$M^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_k(n) \\ \mu \in \operatorname{Par}_m(n)}} V_k^{\lambda} \otimes \left(S^{\lambda} \otimes S^{\mu}\right) \downarrow_{S_n}^{S_n \times S_n} \otimes V_m^{\mu}$$

as $GL(V) \times S_n \times GL(W)$ -modules.

Note that the S_n -character of $(S^{\lambda} \otimes S^{\mu}) \downarrow_{S_n}^{S_n \times S_n}$ is the standard inner tensor product (sometimes called Kronecker product) of the S_n -characters χ^{λ} and χ^{μ} . Hence, by elementary representation theory,

$$(S^{\lambda} \otimes S^{\mu}) \downarrow_{S_{n}}^{S_{n} \times S_{n}} \cong \bigoplus_{\nu \vdash n} \alpha_{\lambda \mu \nu} S^{\nu}, \quad \text{where}$$

$$\alpha_{\lambda \mu \nu} = \langle \chi^{\lambda} \chi^{\mu}, \chi^{\nu} \rangle = \frac{1}{n!} \sum_{\pi \in S_{n}} \chi^{\lambda}(\pi) \chi^{\mu}(\pi) \chi^{\nu}(\pi) = \langle \chi^{\lambda} \chi^{\mu} \chi^{\nu}, 1_{S_{n}} \rangle. \qquad \Box$$

In particular, Lemma 3.1 gives Theorems 2.4 and 2.5.

Corollary 3.2.

(1)
$$\operatorname{Sym}^{n}(M) \cong \bigoplus_{\substack{\lambda \vdash n \\ \ell(\lambda) \leqslant \min(k,m)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda}$$

(2) $\wedge^{n}(M) \cong \bigoplus_{\substack{\lambda \vdash n \\ \lambda \subseteq (m^{k})}} V_{k}^{\lambda} \otimes V_{m}^{\lambda'}.$

Proof. Sym^{*n*}(*M*) is the isotypic component of $M^{\otimes n}$ corresponding to the trivial character $\chi^{(n)}$ of the symmetric group. Thus, by Lemma 3.1,

$$\operatorname{Sym}^{n}(M) \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ \mu \in \operatorname{Par}_{m}(n)}} \alpha_{\lambda,\mu,(n)} V_{k}^{\lambda} \otimes S^{(n)} \otimes V_{m}^{\mu}.$$

But by the orthonormality of irreducible characters,

$$\alpha_{\lambda,\mu,(n)} = \langle \chi^{\lambda} \chi^{\mu}, \chi^{(n)} \rangle = \langle \chi^{\lambda}, \chi^{\mu} \chi^{(n)} \rangle = \langle \chi^{\lambda}, \chi^{\mu} \rangle = \delta_{\lambda\mu}.$$

This proves (1), namely Theorem 2.5.

The *n*-th exterior power is the isotypic component of $M^{\otimes n}$ corresponding to the sign character $\chi^{(1^n)}$ of the symmetric group. Recall that for any partition $\mu \vdash n, \chi^{\mu} \chi^{(1^n)} = \chi^{\mu'}$. Thus

$$\alpha_{\lambda,\mu,(1^n)} = \langle \chi^{\lambda} \chi^{\mu}, \chi^{(1^n)} \rangle = \langle \chi^{\lambda}, \chi^{\mu} \chi^{(1^n)} \rangle = \langle \chi^{\lambda}, \chi^{\mu'} \rangle = \delta_{\lambda\mu'}.$$

This proves (2), namely, Theorem 2.4. \Box

Let *M* be the vector space of $k \times m$ matrices as before. The tensor power $M^{\otimes n}$ carries a natural S_n -action by permuting the factors. This action decomposes into irreducible S_n -representations. Let $M^{\otimes n}(t)$ be the component of $M^{\otimes n}$, corresponding to the irreducible hook representation $(n - t, 1^t)$, $0 \le t \le n - 1$. This component carries a $GL_k(\mathbf{C}) \times GL_m(\mathbf{C})$ -action.

Theorem 3.3. Let $\lambda \in \operatorname{Par}_k(n)$ and $\mu \in \operatorname{Par}_m(n)$. For every $0 \leq t \leq n$, the multiplicity of the irreducible $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$ -module $V_k^{\lambda} \otimes V_m^{\mu}$ in $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ is

$$\sum_{\substack{\alpha \vdash n-t \\ \beta \vdash t}} c_{\alpha\beta}^{\lambda} c_{\alpha\beta'}^{\mu}$$

where $c_{\alpha\beta}^{\lambda}$ are Littlewood–Richardson coefficients, β' is the partition conjugate to β , and $M^{\otimes n}(-1) = M^{\otimes n}(n) = 0$.

Remark. Theorem 3.3 may be considered as an interpolation between Theorems 2.4 and 2.5. $M^{\otimes n}(0) \cong \text{Sym}^n(M)$ and $M^{\otimes n}(-1) = 0$. Substituting t = 0 forces $\beta = \emptyset$. Hence $\lambda = \alpha = \mu$. So, the multiplicity is $\delta_{\lambda\mu}$. This gives Theorem 2.5.

Similarly, $M^{\otimes n}(n-1) \cong \wedge^n(M)$ and $M^{\otimes n}(n) = 0$. Substituting t = n forces $\alpha = \emptyset$. Hence $\lambda = \beta = \mu'$. So, the multiplicity is $\delta_{\lambda\mu'}$. This gives Theorem 2.4.

Proof. By Lemma 3.1,

$$M^{\otimes n}(t) \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_k(n) \\ \mu \in \operatorname{Par}_m(n)}} \alpha_{\lambda,\mu,(n-t,1^t)} V_k^{\lambda} \otimes S^{(n-t,1^t)} \otimes V_m^{\mu}$$

is the decomposition of this component into irreducibles.

Denote by 1_t and ε_t the trivial and sign characters, respectively, of S_t . By the combinatorial interpretation of the Littlewood–Richardson rule (cf. [8, Theorem 2.8.13]), for every $0 \le t \le n$

$$(1_{n-t} \otimes \varepsilon_t) \uparrow_{S_{n-t} \times S_t}^{S_n} = \chi^{(n-t,1^t)} + \chi^{(n-t+1,1^{t-1})}.$$
(3.1)

Hence, by Frobenius reciprocity,

$$\begin{aligned} \alpha_{\lambda,\mu,(n-t,1^{t})} + \alpha_{\lambda,\mu,(n-t+1,1^{t-1})} &= \left\langle \chi^{\lambda}\chi^{\mu}, \chi^{(n-t,1^{t})} + \chi^{(n-t+1,1^{t-1})} \right\rangle \\ &= \left\langle \chi^{\lambda}\chi^{\mu}, (1_{n-t}\otimes\varepsilon_{t})\uparrow^{S_{n}}_{S_{n-t}\times S_{t}} \right\rangle \\ &= \left\langle \left(\chi^{\lambda}\chi^{\mu}\right)\downarrow^{S_{n}}_{S_{n-t}\times S_{t}}, 1_{n-t}\otimes\varepsilon_{t} \right\rangle \\ &= \left\langle \chi^{\lambda}\downarrow^{S_{n}}_{S_{n-t}\times S_{t}}, \chi^{\mu}\downarrow^{S_{n}}_{S_{n-t}\times S_{t}} \cdot (1_{n-t}\otimes\varepsilon_{t}) \right\rangle. \end{aligned}$$

By the Littlewood-Richardson rule the last expression is equal to

$$\begin{split} &\left\langle \sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\lambda}_{\alpha\beta} \chi^{\alpha} \otimes \chi^{\beta}, \sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\mu}_{\alpha\beta} \chi^{\alpha} \otimes \chi^{\beta} \cdot (1_{n-t} \otimes \varepsilon_{t}) \right\rangle \\ &= \left\langle \sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\lambda}_{\alpha\beta} \chi^{\alpha} \otimes \chi^{\beta}, \sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\mu}_{\alpha\beta} \chi^{\alpha} \otimes \chi^{\beta'} \right\rangle \\ &= \sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\lambda}_{\alpha\beta} c^{\mu}_{\alpha\beta'}. \qquad \Box \end{split}$$

The following corollary generalizes the "duality" of Theorems 2.4 and 2.5.

Corollary 3.4. Let $\lambda \in \operatorname{Par}_k(n)$, and let $\mu, \mu' \in \operatorname{Par}_m(n)$ be conjugate partitions. Then, for every $0 \leq t \leq n-1$, the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu}$ in $M^{\otimes n}(t)$ is equal to the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu'}$ in $M^{\otimes n}(n-1-t)$.

Proof. It suffices to show that the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu}$ in $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ is equal to the multiplicity of $V_k^{\lambda} \otimes V_m^{\mu'}$ in $M^{\otimes n}(n-t) \oplus M^{\otimes n}(n-t-1)$. By Theorem 3.3, this is equivalent to the identity

$$\sum_{\alpha \vdash n-t, \ \beta \vdash t} c^{\lambda}_{\alpha\beta} c^{\mu}_{\alpha\beta'} = \sum_{\alpha \vdash t, \ \beta \vdash n-t} c^{\lambda}_{\alpha\beta} c^{\mu'}_{\alpha\beta'}.$$

But this follows from (2.1). \Box

Examples. Let $\lambda \in \text{Par}_k(n)$, $\mu, \mu' \in \text{Par}_m(n)$. The multiplicities of $V_k^{\lambda} \otimes V_m^{\mu}$ in $M^{\otimes n}(t)$ for t = 0 and t = n - 1 are given by Theorems 2.5 and 2.4. Consider two other pairs of *t*-values.

- t = 1. For λ = μ the multiplicity is the number of (inner) corners in λ, minus
 1. For λ ≠ μ this is 1 if |λ \ μ| = 1, and zero otherwise.
- t = n 2. For λ = μ' the multiplicity is the number of (inner) corners in λ, minus 1. For λ ≠ μ' this is 1 if |λ \ μ'| = 1, and zero otherwise.
- t = 2 (n > 2). The multiplicity is nonzero iff there is a partition α of n 2 such that λ/α is a horizontal strip and μ/α is a vertical strip, or vice versa.
- t = n 3 (n > 2). The multiplicity is nonzero iff there is a partition α of n 2 such that λ/α is a horizontal strip and μ'/α is a vertical strip, or vice versa.

4. Asymptotics

Let λ and μ be partitions of the same number *n*. Recalling the definition of the set difference $\lambda \setminus \mu$ from Section 2.1, define the *distance*

$$d(\lambda,\mu) := |\lambda \setminus \mu| \quad \left(=\frac{1}{2}\sum_{i}|\lambda_{i}-\mu_{i}|\right).$$

Lemma 4.1. If $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M^{\otimes n}(t)$ (for some $0 \leq t \leq n-1$) then $d(\lambda, \mu) \leq t$ and $d(\lambda, \mu') \leq n-1-t$.

Proof. By assumption, $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in both $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ and $M^{\otimes n}(t) \oplus M^{\otimes n}(t+1)$.

By Theorem 3.3, if $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ then there exists a pair of partitions, $\alpha \vdash n - t$ and $\beta \vdash t$ such that, $c_{\alpha\beta}^{\lambda} c_{\alpha\beta'}^{\mu} \neq 0$. $c_{\alpha\beta}^{\lambda} \neq 0 \Rightarrow \alpha \subseteq \lambda$ and $c_{\alpha\beta'}^{\mu} \neq 0 \Rightarrow \alpha \subseteq \mu$. Hence $|\lambda \setminus \mu| \leq |\lambda \setminus \alpha| = t$. Also, $c_{\alpha\beta}^{\lambda} \neq 0 \Rightarrow \beta \subseteq \lambda$ and $c_{\alpha\beta'}^{\mu} \neq 0 \Rightarrow \beta \subseteq \mu'$. Hence $|\lambda \setminus \mu'| \leq |\lambda \setminus \beta| = n - t$.

Similarly, if $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M^{\otimes n}(t) \oplus M^{\otimes n}(t+1)$ then $|\lambda \setminus \mu| \leq t+1$ and $|\lambda \setminus \mu'| \leq n-t-1$.

Altogether, we get the desired claim. \Box

Let ψ be an S_n -character (not necessarily irreducible). Define the *height* of ψ by

height(
$$\psi$$
) := max{ $\ell(\nu) \mid \nu \vdash n, \langle \psi, \chi^{\nu} \rangle \neq 0$ }.

The following result was proved by Regev.

Lemma 4.2 [8, Theorem 12]. For any λ , $\mu \vdash n$,

height
$$(\chi^{\lambda}\chi^{\mu}) \leq \ell(\lambda) \cdot \ell(\mu).$$

Theorem 4.3. If $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M^{\otimes n}(t)$ (for some $0 \leq t \leq n-1$) then

 $d(\lambda, \mu) \leq km.$

Proof.

$$d(\lambda,\mu) \stackrel{(1)}{\leqslant} t \stackrel{(2)}{\leqslant} \text{height}(\chi^{\lambda}\chi^{\mu}) - 1 \stackrel{(3)}{\leqslant} \ell(\lambda) \cdot \ell(\mu) - 1 \leqslant km - 1.$$

Inequalities (1), (2), and (3) follow from Lemmas 4.1, 3.1 (for $\nu = (n - t, 1^t)$), and 4.2, respectively. \Box

Let ψ be an S_n -character (not necessarily irreducible). Define the *height* of ψ by

width(ψ) := max{ $\mu_1 \mid \nu \vdash n, \langle \psi, \chi^{\nu} \rangle \neq 0$ }.

The following result of Dvir strengthens Lemma 4.2.

Lemma 4.4 [2, Theorem 1.6]. For any λ , $\mu \vdash n$,

- (1) width $(\chi^{\lambda}\chi^{\mu}) = |\lambda \cap \mu|$ and
- (2) height $(\chi^{\lambda}\chi^{\mu}) = |\lambda \cap \mu'|$.

This result gives another way of proving Theorem 4.3.

Second proof of Theorem 4.3.

$$d(\lambda,\mu) = |\lambda \setminus \mu| = n - |\lambda \cap \mu| \stackrel{(1)}{\leqslant} t \stackrel{(2)}{\leqslant} \text{height}(\chi^{\lambda} \chi^{\mu}) - 1 \stackrel{(3)}{=} |\lambda \cap \mu'| - 1$$
$$\leqslant km - 1.$$

Inequality (1) follows from Lemma 4.4(1), since $n - t \leq \text{width}(\chi^{\lambda}\chi^{\mu})$. Inequality (2) follows from Lemma 3.1. Equality (3) is Lemma 4.4(2). \Box

Note. For any two partitions λ , μ of n with $\ell(\lambda) \leq k$ and $\ell(\mu) \leq m$, $V_k^{\lambda} \otimes V_m^{\mu}$ appears as a factor in $M_{k,m}^{\otimes n}$. Theorem 4.3 shows that, in order to appear in a hook component, λ and μ must be very "close" to each other (for fixed k and m and n tending to infinity).

5. Square matrices

Consider now the vector space $M_k = M_{k,k}$ of $k \times k$ matrices over C. This space carries a diagonal (left and right) $GL_k(C)$ -action, defined by

 $g(m) := g \cdot m \cdot g^t \quad (\forall g \in GL_k(\mathbf{C}), \ \forall m \in M_k).$

5.1. Symmetric powers

Recall from Section 2.1 the definition of $2 \cdot \lambda$, for a partition λ .

Theorem 5.1. For $\lambda \in \operatorname{Par}_k(2n)$, the multiplicity of V_k^{λ} in $\operatorname{Sym}^n(M_k)$ is

$$\sum_{|\mu|+|\nu|=n} c_{2\cdot\mu,(2\cdot\nu)'}^{\lambda}$$

Corollary 5.2. Let $\lambda \in Par(2n)$, $\lambda \subseteq (k^k)$ (i.e., $\lambda, \lambda' \in Par_k(2n)$). Then the multiplicities of V_k^{λ} and of $V_k^{\lambda'}$ in $Sym^n(M_k)$ are equal.

Proof. This is an immediate consequence of Theorem 5.1, applying identity (2.1). \Box

Proof of Theorem 5.1. Let $V \cong C^k$. Then $V \otimes V$ carries a diagonal (left) GL_k -action, and

$$M_k \cong V \otimes V$$

as GL_k -modules. Thus

$$M_{\nu}^{\otimes n} \cong V^{\otimes 2n}$$

as GL_k -modules. Moreover, $V^{\otimes 2n}$ carries an $S_{2n} \times GL_k$ -action: S_{2n} permutes the 2n factors in the tensor product, and GL_k acts on all of them simultaneously (on the left). The S_{2n} - and GL_k -actions satisfy Schur–Weyl duality (the double commutant theorem), so that

$$V^{\otimes 2n} \cong \bigoplus_{\lambda \in \operatorname{Par}_k(2n)} V_k^{\lambda} \otimes S^{\lambda},$$

as $GL_k \times S_{2n}$ -modules.

Now, $\operatorname{Sym}^n(M_k)$ is the part of $M_k^{\otimes n}$ which is invariant under the action of $S_n \hookrightarrow S_{2n}$, where the embedding $S_n \hookrightarrow S_n \times S_n \subseteq S_{2n}$ is diagonal: $\pi \longmapsto (\pi, \pi)$. It follows that the multiplicity of V_k^{λ} in $\operatorname{Sym}^n(M_k)$ is equal to the multiplicity of the trivial character 1_{S_n} in the restriction $\chi^{\lambda} \downarrow_{S_n}^{S_{2n}}$, where S_n is diagonally embedded.

By Frobenius reciprocity,

$$\langle 1_{S_n}, \chi^{\lambda} \downarrow_{S_n}^{S_{2n}} \rangle = \langle 1_{S_n} \uparrow_{S_n}^{S_{2n}}, \chi^{\lambda} \rangle.$$

We conclude that, for $\lambda \in Par_k(2n)$, the multiplicity of V_k^{λ} , in Symⁿ(M_k) is

$$\langle 1_{S_n} \uparrow_{S_n}^{S_{2n}}, \chi^{\lambda} \rangle.$$

We shall compute these multiplicities in several steps. First, we induce in two steps:

$$1_{S_n}\uparrow_{S_n}^{S_{2n}}=(1_{S_n}\uparrow_{S_n}^{B_n})\uparrow_{B_n}^{S_{2n}}.$$

By Lemmas 2.2(a) and 2.3,

$$(\chi^{(n)} \uparrow_{S_n}^{B_n}) \uparrow_{B_n}^{S_{2n}} = \sum_{i=0}^n \chi^{(i),(n-i)} \uparrow_{B_n}^{S_{2n}}$$

= $\sum_{i=0}^n (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-i)}) \uparrow_{B_i \times B_{n-i}}^{B_n} \uparrow_{B_n}^{S_{2n}}$

$$=\sum_{i=0}^{n} (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2n}}.$$

Again, let us induce in two steps:

$$\begin{aligned} (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2n}} &= ((\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2i} \times S_{2n-2i}}) \uparrow_{S_{2i} \times S_{2n-2i}}^{S_{2n}} \\ &= (\chi^{(i),\emptyset} \uparrow_{B_i}^{S_{2i}} \otimes \chi^{\emptyset,(n-i)} \uparrow_{B_{n-i}}^{S_{2n-2i}}) \uparrow_{S_{2i} \times S_{2n-2i}}^{S_{2n}}. \end{aligned}$$

By Lemma 2.1, (a) and (b), the right-hand side is equal to

$$\left(\sum_{\mu\vdash i}\chi^{2\cdot\mu}\otimes\sum_{\nu\vdash n-i}\chi^{(2\cdot\nu)'}\right)\uparrow^{S_{2n}}_{S_{2i}\times S_{2n-2i}}$$

We conclude that

$$1_{S_n}\uparrow_{S_n}^{S_{2n}}=\sum_{i=0}^n\sum_{\mu\vdash i,\ \nu\vdash n-i}(\chi^{2\cdot\mu}\otimes\chi^{(2\cdot\nu)'})\uparrow_{S_{2i}\times S_{2n-2i}}^{S_{2n}}.$$

Applying the Littlewood–Richardson rule completes the proof. \Box

5.2. A graded refinement of symmetric powers

The space $M_k^{\otimes n}$ carries not only an S_n -action but also a B_n -action, where the signed permutation (i, -i) $(1 \le i \le n)$ acts by transposing the *i*-th factor in the tensor product of *n* square matrices. $M_k = M_k^+ \oplus M_k^-$, where $M_k^+ (M_k^-)$ is the vector space of symmetric (skew symmetric) matrices of order $k \times k$. Consequently, $M_k^{\otimes n}$ is graded by the number of skew symmetric factors. The component of $M_k^{\otimes n}$ with *i* skew symmetric factors, denoted $M_k^{\otimes n}(i)$, is invariant under the B_n -action, as well as under the diagonal two-sided GL_k -action.

Lemma 5.3. If the irreducible B_n -character $\chi^{\mu,\nu}$ appears in the decomposition of the B_n -action on $M_k^{\otimes n}(i)$, then $|\nu| = i$.

For a proof see Appendix A.2.

Since the components $M_k^{\otimes n}(i)$ are invariant under the S_n -action, the S_n -invariant subspace $\operatorname{Sym}^n(M_k)$ inherits the grading by the number of skew symmetric factors. Let $\operatorname{Sym}_i^n(M_k)$ denote the component with *i* skew symmetric factors. The following theorem refines Theorem 5.1.

Theorem 5.4. For $\lambda \in \operatorname{Par}_k(2n)$, the multiplicity of V_k^{λ} in $\operatorname{Sym}_i^n(M_k)$ is

$$\sum_{\mu\vdash n-i,\ \nu\vdash i} c^{\lambda}_{2\cdot\mu,(2\cdot\nu)'}.$$

556

Note. Theorem 5.4 interpolates between two classical results, Theorems 2.6 and 2.7. Indeed, $\text{Sym}_0^n(M_k) = \text{Sym}^n(M_k^+)$ is the *n*-th symmetric power of the vector space of symmetric matrices. In this case i = 0, so $v = \emptyset$. Hence

$$\sum_{\mu \vdash n} c_{2 \cdot \mu, \emptyset}^{\lambda} = \begin{cases} 1, & \text{if } \lambda = 2 \cdot \mu \text{ for some } \mu \vdash n; \\ 0, & \text{otherwise.} \end{cases}$$

This gives Theorem 2.6. Similarly, $\operatorname{Sym}_n^n(M_k) = \operatorname{Sym}^n(M_k^-)$. In this case i = n, $\mu = \emptyset$, and a similar computation gives Theorem 2.7.

An analogue of Corollary 3.4 follows.

Corollary 5.5. Let $\lambda, \lambda' \in \operatorname{Par}_k(2n)$ be conjugate partitions. Then, for every $0 \leq i \leq n$, the multiplicity of V_k^{λ} in $\operatorname{Sym}_i^n(M_k)$ is equal to the multiplicity of $V_k^{\lambda'}$ in $\operatorname{Sym}_{n-i}^n(M_k)$.

Proof. Combine Theorem 5.4 with identity (2.1). \Box

Proof of Theorem 5.4. This is a refinement of the proof of Theorem 5.1. In this refinement the group B_n appears in an essential way, whereas in the proof of Theorem 5.1 it was used only as a technical tool.

 $M_k^{\otimes n}$ is a B_n -module, and $\operatorname{Sym}^n(M_k)$ is its submodule, for which the B_n -action, when restricted to S_n , is trivial. Hence, if the irreducible B_n -character $\chi^{\mu,\nu}$ appears in $\operatorname{Sym}^n(M_k)$, then

$$\langle \chi^{\mu,\nu} \downarrow^{B_n}_{S_n}, 1_{S_n} \rangle \neq 0.$$

By Lemma 2.2(a),

$$\langle \chi^{\mu,\nu} \downarrow_{S_n}^{B_n}, 1_{S_n} \rangle = \langle \chi^{\mu,\nu}, 1_{S_n} \uparrow_{S_n}^{B_n} \rangle = \left\langle \chi^{\mu,\nu}, \sum_{j=0}^n \chi^{(n-j),(j)} \right\rangle,$$

and this is nonzero (and equal to 1) if and only if $\mu = (n - j)$ and $\nu = (j)$ for some $1 \le j \le n$.

Combining this with Lemma 5.3 we conclude that $\chi^{(n-i),(i)}$ is the unique irreducible B_n -character in Sym^{*n*}_{*i*}(M_k).

Now, as in the proof of Theorem 5.1, the multiplicity of V_k^{λ} in $\operatorname{Sym}_i^n(M_k)$ is

$$\langle \chi^{\lambda} \downarrow_{B_n}^{S_{2n}}, \chi^{(n-i),(i)} \rangle = \langle \chi^{\lambda}, \chi^{(n-i),(i)} \uparrow_{B_n}^{S_{2n}} \rangle$$

By Lemmas 2.3 and 2.1,

$$\chi^{(n-i),(i)}\uparrow_{B_n}^{S_{2n}} = (\chi^{(n-i),\emptyset} \otimes \chi^{\emptyset,(i)})\uparrow_{B_{n-i}\times B_i}^{S_{2n}}$$
$$= \left(\sum_{\mu\vdash n-i} \chi^{2\cdot\mu} \otimes \sum_{\nu\vdash i} \chi^{(2\cdot\nu)'}\right)\uparrow_{S_{2n-2i}\times S_{2i}}^{S_{2n}}$$

The Littlewood–Richardson rule completes the proof of Theorem 5.4. \Box

5.3. Hook components of tensor powers

In this subsection we generalize the results of the previous sections to obtain a bivariate interpolation between symmetric and exterior powers of symmetric and skew symmetric matrices.

As before, the *n*-th tensor power $M_k^{\otimes n}$ carries an S_n -action. The symmetric power Symⁿ(M_k) is the S_n -invariant part, i.e., corresponds to the trivial character $\chi^{(n)}$. The exterior power corresponds to the sign character $\chi^{(1^n)}$. We shall denote the factor corresponding to the hook character $\chi^{(n-t,1^t)}$ ($0 \le t \le n-1$) by $M_k^{\otimes n}(t)$ with the convention $M_k^{\otimes n}(-1) = M_k^{\otimes n}(n) = 0$.

Theorem 5.6. For every $0 \le t \le n-1$ and $\lambda \in \operatorname{Par}_k(2n)$, the multiplicity of V_k^{λ} in $M_k^{\otimes n}(t) \oplus M_k^{\otimes n}(t-1)$ is

$$\sum_{\substack{|\alpha|+|\beta|=n-t,\\|\gamma|+|\delta|=t}} c_{2\cdot\alpha,(2\cdot\beta)',2*\gamma,(2*\delta)'}^{\lambda},$$

where the sum runs over all partitions α and β with total size n - t, and partitions γ and δ with distinct parts and total size t. The operations \cdot and * are as defined in Section 2.1, and the extended Littlewood–Richardson coefficients are as defined in Section 2.2.

Proof. Similar arguments to those in the proof of Theorem 5.1 show that the multiplicity of V_k^{λ} in the hook component $M_k^{\otimes n}(t) \oplus M_k^{\otimes n}(t-1)$ is

$$\langle (\chi^{(n-t,1^t)} + \chi^{(n-t+1,1^{t-1})}) \uparrow_{S_n}^{S_{2n}}, \chi^{\lambda} \rangle$$

By (3.1), this is equal to

$$\begin{split} & \langle (\chi^{(n-t)} \otimes \chi^{(1^t)}) \uparrow_{S_{n-t} \times S_t}^{S_n} \uparrow_{S_n}^{S_{2n}}, \chi^{\lambda} \rangle \\ &= \langle (\chi^{(n-t)} \otimes \chi^{(1^t)}) \uparrow_{S_{n-t} \times S_t}^{B_{n-t} \times B_t} \uparrow_{B_{n-t} \times B_t}^{S_{2n}}, \chi^{\lambda} \rangle. \end{split}$$

By Lemmas 2.2 and 2.3, for every t,

$$\begin{aligned} & (\chi^{(n-t)} \otimes \chi^{(1^{t})}) \uparrow_{S_{n-t} \times S_{t}}^{B_{n-t} \times B_{t}} \\ &= \chi^{(n-t)} \uparrow_{S_{n-t}}^{B_{n-t}} \otimes \chi^{(1^{t})} \uparrow_{S_{t}}^{B_{t}} = \sum_{i=0}^{n-t} \chi^{(i),(n-t-i)} \otimes \sum_{j=0}^{t} \chi^{(1^{j}),(1^{t-j})} \\ &= \sum_{i=0}^{n-t} (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-t-i)}) \uparrow_{B_{i} \times B_{n-t-i}}^{B_{n-t}} \\ & \otimes \sum_{j=0}^{t} (\chi^{(1^{j}),\emptyset} \otimes \chi^{\emptyset,(1^{t-j})}) \uparrow_{B_{j} \times B_{t-j}}^{B_{t}}. \end{aligned}$$

Hence

$$\begin{aligned} (\chi^{(n-t)} \otimes \chi^{(1^{t})}) \uparrow_{S_{n-t} \times S_{t}}^{S_{2n}} \\ &= \sum_{i=0}^{n-t} \sum_{j=0}^{t} (\chi^{(i),\emptyset} \otimes \chi^{\emptyset,(n-t-i)} \otimes \chi^{(1^{j}),\emptyset} \\ & \otimes \chi^{\emptyset,(1^{t-j})}) \uparrow_{B_{t} \times B_{n-t-i} \times B_{j} \times B_{t-j}}^{S_{2j} \times S_{2(n-t-i)} \times S_{2j} \times S_{2(t-j)}} \\ &= \sum_{i=0}^{n-t} \sum_{j=0}^{t} (\chi^{(i),\emptyset} \uparrow_{B_{i}}^{S_{2i}} \otimes \chi^{\emptyset,(n-t-i)} \uparrow_{B_{n-t-i}}^{S_{2(n-t-i)}} \otimes \chi^{(1^{j}),\emptyset} \uparrow_{B_{j}}^{S_{2j}} \\ & \otimes \chi^{\emptyset,(1^{t-j})} \uparrow_{B_{t-j}}^{S_{2(t-j)}}) \uparrow_{S_{2i} \times S_{2(n-t-i)} \times S_{2j} \times S_{2(t-j)}}^{S_{2n}}. \end{aligned}$$

Lemma 2.1 and the Littlewood–Richardson rule complete the proof. \Box

Let $M_k^{\otimes n}(i, j)$ be the component of $M_k^{\otimes n}(i)$ with *j* skew symmetric factors. The following result is a common refinement of Theorems 5.4 and 5.6.

Theorem 5.7. For every $0 \le i \le n$, $0 \le j \le n$ and $\lambda \in Par_k(2n)$, the multiplicity of V_k^{λ} in $M_k^{\otimes n}(i, j) \oplus M_k^{\otimes n}(i-1, j)$ is

$$\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n\\|\beta|+|\delta|=j\\|\gamma|+|\delta|=i}} c_{2\cdot\alpha,(2\cdot\beta)',2*\gamma,(2*\delta)'}^{\lambda},$$

where the sum is over all partitions α , β , γ , δ with total size *n* such that β and δ have distinct parts and total size *j*, and γ and δ have total size *i*.

Proof. Lemma 5.3, used as in the proof of Theorem 5.4, shows that the factors of $M_k^{\otimes n}(i, j) \oplus M_k^{\otimes n}(i-1, j)$ in the decomposition given in Theorem 5.6 are those for which $|\beta| + |\delta| = j$. \Box

Corollary 5.8. Let $\lambda \subseteq (k^k)$ be a partition of 2n. For every $0 \le i \le n-1$ and $0 \le j \le n$, the multiplicity of V_k^{λ} in $M_k^{\otimes n}(i, j)$ is equal to the multiplicity of $V_k^{\lambda'}$ in $M_k^{\otimes n}(i, n-j)$.

Proof. It suffices to show that for every $0 \le i \le n$ and $0 \le j \le n$, the multiplicity of V_k^{λ} in $M_k^{\otimes n}(i, j) \oplus M_k^{\otimes n}(i - 1, j)$ is equal to the multiplicity of $V_k^{\lambda'}$ in

 $M_k^{\otimes n}(i, n-j) \oplus M_k^{\otimes n}(i-1, n-j)$. By Theorem 5.7, the multiplicity of V_k^{λ} in $M_k^{\otimes n}(i, j) \oplus M_k^{\otimes n}(i-1, j)$ is

$$\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n\\|\beta|+|\delta|=j\\|\gamma|+|\delta|=i}} c_{2\cdot\alpha,(2\cdot\beta)',2*\gamma,(2*\delta)'}^{\lambda} \cdot$$

By (2.1) and the definition of $c^{\lambda}_{\alpha,\beta,\gamma,\delta}$, this is equal to

$$\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n\\|\beta|+|\delta|=j\\|\gamma|+|\delta|=i}} c_{(2\cdot\alpha)',2\cdot\beta,(2*\gamma)',2*\delta}^{\lambda'},$$

which is the multiplicity of $V_k^{\lambda'}$ in $M_k^{\otimes n}(i, n-j) \oplus M_k^{\otimes n}(i-1, n-j)$. \Box

Acknowledgments

The authors thank R. Howe, N. Wallach and an anonymous referee for their useful comments.

Appendix A

A.1. Proof of Lemma 2.2

Lemma 2.2 follows from a more general result.

For partitions $\lambda = (\lambda_1, ..., \lambda_k)$ and $\mu = (\mu_1, ..., \mu_m)$, let $\lambda \oplus \mu$ be the skew shape defined by

$$\lambda \oplus \mu := (\lambda_1 + \mu_1, \lambda_2 + \mu_1, \dots, \lambda_k + \mu_1, \mu_1, \mu_2, \dots, \mu_m) / (\mu_1^{\kappa}).$$

Theorem A.1. If (λ, μ) is a bipartition of *n* then the restriction

$$\chi^{\lambda,\mu}\downarrow^{B_n}_{S_n}=\chi^{\lambda\oplus\mu}$$

Proof. The characters $\chi^{\lambda \oplus \mu}$ and $\chi^{\lambda,\mu}$, evaluated at elements of S_n , have the same recursive formula (Murnaghan–Nakayama rule). For $\chi^{\lambda,\mu}$ see [16, Theorem 4.3]. For $\chi^{\lambda \oplus \mu}$ see [9, Theorem 5.6.16]. \Box

Proof of Lemma 2.2. (a) Let (λ, μ) be a bipartition of *n*. By Frobenius reciprocity and Theorem A.1,

560

$$\begin{aligned} \left\langle \chi^{(n)} \uparrow_{S_n}^{B_n}, \chi^{\lambda, \mu} \right\rangle &= \left\langle \chi^{(n)}, \chi^{\lambda, \mu} \downarrow_{S_n}^{B_n} \right\rangle = \left\langle \chi^{(n)}, \chi^{\lambda \oplus \mu} \right\rangle \\ &= \begin{cases} 1, & \max\{\ell(\lambda), \ell(\mu)\} \leqslant 1, \\ 0, & \text{otherwise.} \end{cases} \end{aligned}$$

The last equality follows from the Littlewood–Richardson rule, reformulated for skew shapes [15, (7.64)]. By this rule, $\langle \chi^{(n)}, \chi^{\lambda \oplus \mu} \rangle$ is nonzero (and equal to 1) if and only if $\lambda \oplus \mu$ is a horizontal strip (i.e., each column contains at most one box).

(b) The proof for $\chi^{(1^n)}$ is similar. \Box

A.2. Proof of Lemma 5.3

Proof. Let $\sigma_i := (i, -i) \in B_n$ $(1 \le i \le n)$, and let η be the sum $\sum_{i=1}^n \sigma_i \in C[B_n]$. Consider the tensor product $w = w_1 \otimes w_2 \otimes \cdots \otimes w_n \in M_k^{\otimes n}$, where each w_i is either a symmetric or a skew symmetric matrix. Then according to the B_n -action, defined in Section 5.2,

$$\sigma_i(w) = \begin{cases} w, & \text{if } w_i \text{ is symmetric,} \\ -w, & \text{if } w_i \text{ is skew symmetric.} \end{cases}$$

Hence, for every vector $v \in M_k^{\otimes n}(i)$,

$$\eta(v) = (n - 2i)v. \tag{A.1}$$

On the other hand, the set $\{\sigma_i \mid 1 \leq i \leq n\}$ is a conjugacy class in B_n . Thus the element $\eta = \sum_{i=1}^n \sigma_i$ is in the center of $C[B_n]$. By Schur's lemma, for every vector v in the irreducible B_n -module $S^{\mu,\nu}$,

$$\eta(v) = c^{\mu,\nu} \cdot v, \quad \text{where } c^{\mu,\nu} = \frac{\chi^{\mu,\nu}(\eta)}{\chi^{\mu,\nu}(\text{id})} = \frac{n\chi^{\mu,\nu}(\sigma_1)}{\chi^{\mu,\nu}(\text{id})}.$$

Let f^{λ} , $f^{\mu,\nu}$ be the number of standard Young tableaux (bitableaux) of shapes λ , (μ, ν) , respectively. Recall that

$$\chi^{\mu,\nu}(\mathrm{id}) = f^{\mu,\nu} = \binom{n}{|\nu|} f^{\mu} f^{\nu},$$

and that $\chi^{\mu,\nu}(\sigma_1)$ is equal to the number of standard Young bitableaux of shape (μ, ν) , in which the digit 1 is in the first diagram μ , minus the number of those in which 1 is in the second diagram ν . Thus

$$\chi^{\mu,\nu}(\sigma_1) = \binom{n-1}{|\nu|} f^{\mu} f^{\nu} - \binom{n-1}{|\nu|-1} f^{\mu} f^{\nu} = \frac{n-2|\nu|}{n} \binom{n}{|\nu|} f^{\mu} f^{\nu}.$$

It follows that

$$c^{\mu,\nu} = \frac{n\chi^{\mu,\nu}(\sigma_1)}{\chi^{\mu,\nu}(\mathrm{id})} = n - 2|\nu|;$$

and therefore

$$\eta(v) = (n - 2|v|)v \quad (\forall v \in S^{\mu, \nu}).$$
(A.2)

Combining (A.1) with (A.2) completes the proof. \Box

References

- [1] Y. Dvir, On the Kronecker product of S_n characters, J. Algebra 154 (1993) 125–140.
- [2] C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934) 396– 443.
- [3] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, in: Encyclopedia Math. Appl., Vol. 68, Cambridge University Press, 1998.
- [4] S. Helgason, A duality for symmetric spaces with applications, Adv. Math. 5 (1970) 1-54
- [5] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539–570.
- [6] R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991) 565–619.
- [7] A.T. James, Zonal polynomials of the real positive definite matrices, Ann. of Math. 74 (1961) 456–469.
- [8] G.D. James, A. Kerber, The Representation Theory of the Symmetric Group, in: Encyclopedia Math. Appl., Vol. 16, Addison–Wesley, 1981.
- [9] A. Kerber, Algebraic Combinatorics via Finite Group Actions, Bibliographisches Institut, Mannheim, 1991.
- [10] B. Kostant, Lie algebra cohomology and the generalized Borel Weil theorem, Ann. of Math. 74 (1961) 329–387.
- [11] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., in: Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1995.
- [12] A. Regev, The Kronecker product of S_n characters and an $A \otimes B$ theorem for Capelli identities, J. Algebra 66 (1980) 505–510.
- [13] J.P. Serre, Linear Representations of Finite Groups, Springer-Verlag, 1977.
- [14] G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984) 463–488.
- [15] R.P. Stanley, in: Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, Cambridge, 1999.
- [16] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989) 359–396.
- [17] J.R. Stembridge, On Schur *Q*-functions and the primitive idempotents of commutative Hecke algebra, J. Algebraic Combin. 1 (1992) 71–95.
- [18] R. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942) 371–388.

562