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Abstract

The hook components of ®" interpolate between the symmetric power 3yf)
and the exterior powen™ (V). WhenV is the vector space df x m matrices overC,
we decompose the hook components into irreducblg (C) x GL,, (C)-modules. In
particular, classical theorems are proved as boundary cases. For the algebra of square
matrices ovelC, a bivariate interpolation is presented and studied.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The vector spac#fy ,, of k x m matrices oveC carries a (leftGLg (C)-action
and a (right)GL,, (C)-action. A classical theorem of Ehresmann [2] describes
the decomposition of an exterior power & ,, into irreducible bimodules. The
symmetric analogue was given later (cf. [6]). See Section 2.3 below.

In this paper we present a natural interpolation between these theorems,
in terms of hook components of theth tensor power ofM; ,,. Duality and
asymptotics of the decomposition of hook components follow.
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Similar methods are then applied to the diagonal two-si@égd(C)-action
on the vector space df x k matrices. Classical theorems of Thrall [18] and
James [7] (for the symmetric powers of symmetric matrices), and of Helgason
[4], Shimura [14] and Howe [5] (for the symmetric powers of anti-symmetric
matrices) are extended, and a bivariate interpolation is presented.

Proofs are obtained using the representation theory of the symmetric and
hyperoctahedral groups, together with Schur—Weyl duality; no use is made of
highest-weight theory.

1.1. Main results

Let My, be the vector space &f x m matrices ovelC. The tensor power
M,f%’,’,’l carries a naturd,, -action by permuting the factors. This action decomposes
the tensor power into irreduciblé,-modules. LetM,f?,’;(i) be the isotypic
component ofM,?,’j, corresponding to the irreducibls, -representation indexed
by the hook(n — i, 1)), where 0< i < n — 1. This component still carries a
GLy(C) x GL,,(C)-action.

Theorem 1.1. Let A and n be partitions ofn, of lengths at mosk and m,
respectively. For ever® < i < n the multiplicity of the irreducible GI(C) x
GL, (C)-moduleV} ® V' in M,?r’,‘l(i — Do M2 @) is

k,m
A
D Cuplup
abn—i, BHi
wherecgﬂ are Littlewood—Richardson coefficienf$, is the partition conjugate
to 8, and M2 (—1) = M), (n) =0.

k,m

See Theorem 3.3 below; for definitions and notation see Section 2 below. The-
orem 1.1 interpolates between two well-known classical theorems (Theorems 2.4
and 2.5 below; see the remark following Theorem 3.3).

The following corollary generalizes the duality between Theorem 2.4 and
Theorem 2.5.

Corollary 1.2. Let u € (m™) and A be partitions ofn. For every0<i <n —1
the multiplicity ofV;* ® V,i/ in M), (i) is equal to the multiplicity o¥} ® V, in
MEr (n—1—1i).

See Corollary 3.4 below.
Let A andu be partitions of:. Define thedistance

1
dOu ) =5 Y ki = il
i
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Theorem 1.3.If VkA ® V1 appears as a factor ierZl () (forsomed<r<n—1)
then

d(h, 1) < km.

See Theorem 4.3 below. This shows that, ¥r® V,, to appear in a hook
component) and u must be very “close” to each other (férandm fixed, n
tending to infinity).

Consider now the vector spadéy , of k x k square matrices ovef. Let
M,?,’{’(i, j) be the component oM,f,’{’(i) consisting of tensors witly skew
symmetric and: — j symmetric factorsM,f?,’j(i, j) carries aGL; (C) two-sided
diagonal action. The following theorem describes its decompositioisas @)-
module.

Theorem 1.4. Let A be a partition of2n of length at mosk. For every0 <i <n
and0 < j <n, the multiplicity of v in MZ! (i, j) @ MZ (i — 1, j) is

s
Z C2.0,(2-B), 2%y, (2x8)*
la|+Bl+]y |+I8]=n,

IBI+I81=],

ly1+18|=i
where the sum runs over all partitiong 8, y, s with total sizen such that
B and § have distinct parts and total siz¢, and y and § have total size.
The operations: and - are defined in Sectio.1 Definition of the(extendell
Littlewood—Richardson coefficients is given in Sec#dh

See Theorem 5.7 below. Theorem 1.4,ifef 0, interpolates between classical
results, regarding symmetric powers of the spaces of symmetric and skew
symmetric matrices (Theorems 2.6 and 2.7 below). Another boundaryicase,
gives an interpolation between exterior powers of the same matrix spaces.
Corollary 1.5. Let A C (k*) be a partition of2n. For every0 <i <n — 1 and
0< j < n, the multiplicity of v in M/ (i, j) is equal to the multiplicity o¥}
in M (i.n — j).

See Corollary 5.8 below.

2. Background and notation
2.1. Partitions

Let n be a positive integer. Aartition of n is a vector of positive integers
A= (A1, A2, ..., ), wherex1 > Ao > - > A andA1 + - - -+ A = n. We denote
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this by A - n. The sizeof a partition  n, denoted|)|, is n, and itslength
£(A), is the number of parts. The empty partitidnhas size and length zero:
|4] = £(®) = 0. The set of all partitions of with at mostk parts is denoted by
Pay, (n).

For a partitiom. = (A1, ..., Ax) define theconjugate partitio” = (A7, ..., 1))
by letting; be the number of parts afthat have size at least

A partition . = (A1, ..., Ax) may be viewed as the subset

[Gh]1<i<k 1<j<r)cZ?

the correspondinyyoung diagramUsing this interpretation, we may speak of
the intersectiorh. N 1 and the set difference\n of any two partitions. The set
difference is called skew shapevhenu C A it is usually denoted./ .

Let (k™) := (k,..., k) (m equal parts). Thus, for example,C (k) means
A1 <kandx) <m.

We shall also use the Frobenius notation for partitions, defined as follows:
Let A be a partition ofi and setd := max{i | »; —i > 0} (i.e., the length of the
main diagonal in the Young diagram &j. Then the Frobenius notation faris
(Xl—l,...,)»d—d“L;_—l,...,Xél—d).

For any partitioni = (A1,...,Ar) of n define the following doubling
operation:

2-A:=02A1,...,20) F 2n.
If all the parts ofa are distinct, define also
2% A=A, .., A A —1, .., —DF2n,

in the Frobenius notation.
2.2. Representations

For any groupG denote the trivial representation by 1In this paper we shall
denote the irreducibls,-modules (Specht modules) I§}, and the irreducible
GLy(C)-modules (Weyl modules) by

The Littlewood—Richardson coefficients describe the decomposition of tensor
products of Weyl modules. Let+ 7 andvn —t. Then

eV =@e Vi,
Abn
for k > maxe(r), £(u), £(v)} (and the coefficientsﬁ,U are then independent
of k). By Schur—Weyl duality they are also the coefficients of the outer product of
Specht modules. Namely,

Sn ~ A A
(8" @ S)1sls,, =D ejns"
A-n
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The following identity is well known: for all triples of partitiorns, u, v,

cﬁ’v :cﬁ/,,v/. (2.2)

We shall also use the following notation foittelwood—Richardson coefficients

A I A noov o,
Ca,By.8 = an,ucﬂ,vcwﬁ’
n,v
so that

vieviev evl= Pk s, sVi
A

Let B, be the Weyl group of typeB and rankn, also known as the
hyperoctahedral group or the group of signed permutationsipArtition of n
is an ordered paifu, v) of partitions of total sizéu| + |v| = n. The irreducible
characters o3, are indexed by bipartitions of; denote byy*¥ the character
indexed by(u, v).

Consider the following natural embeddings$finto B, and of B, into Sy,;:

S, is the group of permutations ofy-n,...,—1,1,...,n}. B, is embedded
as the subgroup of alt € Sy, satisfyingm(—i) = —7() (1<i <n). S, is
embedded as the subgroup ofale B, satisfying alsor(i) > 0 (1< i < n).

The following lemmas, used in Section 5, describe certain induced characters
via the above embeddings. Lemma 2.1 is an immediate consequence of [11,
Chapter |, Section 7, Example 4; Chapter |, Section 8, Examples 5-6; and
Chapter VII, (2.4)]. See also [17].

Lemma2.1.
Son Son A
@ 15,1y =x""g =) x*
Abn
S2, 2.
() X"y =) XM
An
n Son .
(© x®0gr =2 x*H
Abn
n S n /.
@ X" =3
AFn

where the last two sums are over partitions with distinct parts.

Lemma 2.2.

n
B?l 1 —i
(@) x™pE =3 D0,
i=0
n . .
n B}‘l 1 n—i
(b) X(l )TS,, =ZX(1)’(1 ).
i=0
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For a proof, see Appendix A.1.
The following lemma is a special case of the Littlewood—Richardson rule
for B,; cf. [16, Lemma 7.1].

Lemma 2.3. X(z) ,(n— 1)_(X(1)(A®X(Z) ,(n— l))T

BixBy—;*

2.3. Symmetric and exterior powers of matrix spaces

In this subsection we cite well-known classical theorems, concerning the
decomposition into irreducibles of symmetric and exterior powers of matrix
spaces, which are to be generalized in this paper.

Let M ,, be the vector space @f x m matrices ovelC. Then My , carries
a (left) GLt(C)-action and a (right)GL,, (C)-action. A classical theorem of
Ehresmann [2] (see also [10]) describes the decomposition of an exterior power
of My ,, into irreducibleGL; (C) x GL,,(C)-modules.

Theorem 2.4. Then-th exterior power ofM ,, is isomorphic, as a GI(C) x
GL,, (C)-module, to

/\n(Mk,m) = @ Vk ® V,ﬁ s
A-n
AS(m*)

where)’ is the partition conjugate ta.

The following three results on symmetric powers were proved several times
independently; these results may be found in [3,6].

The symmetric analogue of Theorem 2.4 was studied, for example, in [6,
(11.1.1)]and [3, Theorem 5.2.7].

Theorem 2.5. Then-th symmetric power a#f; ,, is isomorphic, as a GI(C) x
GL,, (C)-module, to

sydM) = P Viev,.
Abn
() <mingk,m)

Let M,j . be the vector space of symmetkic« k£ matrices ovelC. This space
carries a natural two side@L; (C)-action. The following theorem describes the
decomposition of its symmetric powers into irreduci@le, (C)-modules.

Theorem 2.6. Then-th symmetric power oM,jfk is isomorphic, as a GI(C)-
module, to

syt (M )= P v
rePai (n)
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This theorem was proved by A.T. James [7], but had already appeared in an
early work of Thrall [18]. See also [5,14], [6, (11.2.2)] and [3, Theorem 5.2.9] for
further proofs and references.

Let M, , be the vector space of skew symmetrig k matrices oveC.

Theorem 2.7. Then-th symmetric power o#/;_, is isomorphic, as a GL(C)-
module, to

sym'(M) = @ vV,
(2-1) ePar (2n)

This theorem is proved in [4,5,14]. See also [6, (11.3.2)] and [3, Theorem
5.2.11].

3. Hook components of M,

ConsiderM = My, = C*¥™, the vector space of x m matrices overC.
ThenM =V @ W, whereV = C* andW = C™. ThusM carries a (left)GL(V)-
action and a (rightGL(W)-action, which commute. Its tensor powaf®" =
Ve @ WO thus carries &GL(V) x S, x S, x GL(W) linear representation;
one copy of the symmetric grouy, permutes the factors ii®”, and the other
copy of S, permutes the factors ii®". The actions of all four groups clearly
commute. We are interested in t6&(V) x S, x GL(W)-action onM®" obtained
through the diagonal embeddisg < S,, x S, 7 +> (7, 7).

Lemma 3.1.

M= B wV®S' eVL,
rePay. (n)
veParn)
nePar, (n)

wherea = (x*x*x", 1s,)-

Proof. By Schur—Weyl duality (the double commutant theorem) [3, Theorem
9.1.2],

ver= @ vies
rePay. (n)
asGL(V) x S,-modules. Similarly,

we= @ viest
rePag, (n)



550 R.M. Adin et al. / Journal of Algebra 258 (2002) 543-562

asGL(W) x S,-modules. Therefore

M®n;v®n®w®n; @ V]{)L®S)L®Sll®‘/’£:
rePay (n)
wuePag, (n)
asGL(V) x S, x S, x GL(W)-modules.
Using the diagonal embedditsy < S,, x S,

M@ﬂ >~ @ ® (S)L ® SM)\LS”XSH ® VM
rePay. (n)
wePag, (n)

asGL(V) x S, x GL(W)-modules.
Note that theS,-character of(S* ® S g is the standard inner tensor

product (sometimes called Kronecker product) of shecharactergc® and y .
Hence, by elementary representation theory,

Sn X Sn

(5" @ 5") g " = P aruwS’.  where

vkn

g = (x"x", x") Z XEx @ = x"x"1s,). O

neS,,

In particular, Lemma 3.1 gives Theorems 2.4 and 2.5.

Coroallary 3.2.

(1) Synf (M) = @ ViV
Abn
£(x)<min(k,m)

@ ~unz @ viev.
An
AC(m*)

Proof. Sym'(M) is the isotypic component dff®” corresponding to the trivial
charactery ™ of the symmetric group. Thus, by Lemma 3.1,

Syt (M) = @ Oy, (n) Vk)\ X s ® V,;‘f
rePay; (n)
wuePag, (n)

But by the orthonormality of irreducible characters,
o = (X x ™) = ) = (3t ) =S

This proves (1), namely Theorem 2.5.
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The n-th exterior power is the isotypic componentdf” corresponding to
the sign characteg ") of the symmetric group. Recall that for any partition
whn, xtx® = x* Thus
®)=|

o am = (x"x" x ) = (o 1) =

This proves (2), namely, Theorem 2.40

Let M be the vector space &f x m matrices as before. The tensor power
M®" carries a natura,,-action by permuting the factors. This action decomposes
into irreducible S, -representations. LeM®"(tr) be the component off®",
corresponding to the irreducible hook representation- ¢, 1’), 0<r <n — 1.
This component carries@Ly (C) x GL,, (C)-action.

Theorem 3.3. Let A € Par,(n) and u € Par,(n). For every0 < ¢ < n, the multi-
plicity of the irreducible Gk(C) x GL,,,(C)—moduIerA QVEINnM®(¢ -1
M® (1) is

Z Cﬁﬂcgﬁ’

abn—t
Bt

wherecgl3 are Littlewood—Richardson coefficiens, is the partition conjugate
to 8, and M®" (—1) = M®"(n) = 0.

Remark. Theorem 3.3 may be considered as an interpolation between Theo-
rems 2.4 and 2.54%®"(0) = Synt"(M) and M®"(—1) = 0. Substitutingr = 0
forcesp = @. Hencex = o = u. So, the multiplicity isé,.. This gives Theo-
rem 2.5.

Similarly, M®"(n — 1) = A*(M) and M®"(n) = 0. Substituting = » forces
a =¢. Hencer = g = . So, the multiplicity iss; /. This gives Theorem 2.4,

Proof. By Lemma 3.1,

M®"(Z) X~ @ O 0, (n—t,10) VkA ® S(ﬂ—t,l’) ® V,ﬁf
rePay, (n)
nePar, (n)
is the decomposition of this component into irreducibles.
Denote by 1 ande, the trivial and sign characters, respectivelySafBy the
combinatorial interpretation of the Littlewood—-Richardson rule (cf. [8, Theorem
2.8.13]), forevery X r<n

Sy 1t _ =1
Qs ® N5, = x 708 4 x 07D, (3.1)

Hence, by Frobenius reciprocity,



552 R.M. Adin et al. / Journal of Algebra 258 (2002) 543-562

(n t1)+X(n 1+1,1~ 1))

) (n—1,1) Ty (1,171 = (X

M Qs ® DS s,)
S}‘l
( XN Sp_i xS nr ® 1)
S?l
Srz (XS X is xS (1n—t®8t)>-
By the Littlewood—Richardson rule the last expression is equal to

< Yoo et Y cﬁﬁx“®xﬂ-(1,z_t®st>>

(x*
= (x
=
=

abn—t, Bt abn—t, Bt
:< Z CéﬁXa@)Xﬂ» Z Cif,sx“®x’3>
atn—t, Bt abn—t, Bt
_ A
= Z Caﬂcaﬁ/' O
an—t, Bt

The following corollary generalizes the “duality” of Theorems 2.4 and 2.5.

Corollary 3.4. Let A € Par,(n), and letu, ' € Pag, (n) be conjugate partitions.
Then, for ever < ¢ < n — 1, the multiplicity ofV}* ® V,, in M®"(¢) is equal to

the multiplicity ofV} ® VY in M®"(n —1—1).

Proof. It suffices to show that the multiplicity o\‘/kA Q@ VEin MGt —1) &

M®" (1) is equal to the multiplicity oV, ® VY in M® (n—1) @ M (n —1 — 1).
By Theorem 3.3, this is equivalent to the identity

Ao a o
Z CapCop = Z CapCap'

abn—t, Bt akt, BEn—t
But this follows from (2.1). O

Examples. Let & € Pag (n), i, ' € Pay,(n). The multiplicities ofV} ® Vi, in
M®" () fort =0 andr =n — 1 are given by Theorems 2.5 and 2.4. Consider two
other pairs of-values.

e t = 1. Forax = u the multiplicity is the number of (inner) cornersinminus
1. Fori # u thisis 1if|A \ u| =1, and zero otherwise.

e t =n — 2. Fori =y the multiplicity is the number of (inner) corners in
minus 1. For # u’ thisis 1 if|A \ /| = 1, and zero otherwise.

e t =2 (n > 2). The multiplicity is nonzero iff there is a partitianof n — 2
such that./« is a horizontal strip angt/« is a vertical strip, or vice versa.

e t =n—3(n > 2). The multiplicity is nonzero iff there is a partitienof n — 2
such that,/« is a horizontal strip angt’ /« is a vertical strip, or vice versa.
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4, Asymptotics

Let A andu be partitions of the same numberRecalling the definition of the
set difference.\ u from Section 2.1, define thaistance

1
d(h, ) =2\ | <=52|xi—m|>.

Lemmad4.1.If V} ® V,, appears as a factor it/ ®" (1) (for somed <1 <n—1)
thend(n, w) <tandd(h, u)<n—1-—t.

Proof. By assumptionv,j ® V1 appears as a factor in baWi®” (r — 1) @ M®" (¢)
andM®"(t) @ M®" (¢ + 1).

By Theorem 3.3, ika" ® V' appears as a factor iW®"(r — 1) @ M®" (1)
then there exists a pair of partitions}-n — ¢t andg ¢ such thatpgﬁcgﬂ, #0.
by #0=a C 2 and c(l;ﬁ, #0= a C u. Hence|i\u| < |A\a| = 1. Also,
by #0=>pC A andcl, # 0= g < w'. Hencel\\w/| < [M\Bl=n —1.

Similarly, if V} ® V,, appears as a factor i®"(r) @ M®"(t + 1) then
Mup| <+ Landa\p/ | <n—1—1.

Altogether, we get the desired claimm

Let ¢ be anS,-character (not necessarily irreducible). Definelleeghtof v
by
heighty) :== max{¢(v) v Fn, (¥, x") #0}.

The following result was proved by Regev.

Lemma 4.2 [8, Theorem 12]For anyA, u b n,

heigh(x”x") <€) - €(w).

Theorem 4.3.1f V' ® V,,, appears as a factor it ®" (1) (for somed < r <n—1)
then

d(h, p) < km.

Pr oof.

@ @ 3)
d(h, ) <t < heigh(x*x*) —1< () - €(p) —1<km — 1.

Inequalities (1), (2), and (3) follow from Lemmas 4.1, 3.1 (foe (n — ¢, 1")),
and 4.2, respectively. O
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Let v be ansS,-character (not necessarily irreducible). Define tiegghtof v
by
width(y) :=max{u1|vn, (¥, x") #0}.

The following result of Dvir strengthens Lemma 4.2.
Lemma4.4[2, Theorem 1.6]For any i, u - n,

(1) width(x*x*) =IxNnul and

(2) heighf{x*x*)=Irnpl.

This result gives another way of proving Theorem 4.3.

Second proof of Theorem 4.3.

D D A ® ,
dv,p) = M\ul=n—rnpl <t <heigh(x*x*)—1=anu|—1
< km—1.

Inequality (1) follows from Lemma 4.4(1), sinee— t < width(x* x*). Inequal-
ity (2) follows from Lemma 3.1. Equality (3) is Lemma 4.4(2)a

Note. For any two partitions., i of n with £(A) < k and€(n) < m, Vk ®Vh
appears as a factor M®" Theorem 4.3 shows that, in order to appear in a hook
component and u must be very “close” to each other (for fixécandm andn
tending to infinity).

5. Square matrices

Consider now the vector spasf, = M; ; of k x k matrices oveC'. This space
carries a diagonal (left and righBL (C)-action, defined by

gm):=g-m-g" (Vg e GL(C), Vm € My).
5.1. Symmetric powers
Recall from Section 2.1 the definition of 2, for a partitioni.

Theorem 5.1. For A € Pay(2n), the multiplicity okaA in SynT' (My) is

Z Cﬁ-u,(zw'

[ul+lvl=n
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Corollary 5.2. Let A € Par2n), » C (kKX) (i.e., A, 2 € Pag(2n)). Then the
multiplicities of V;* and of V* in Synt' (M) are equal.

Proof. This is an immediate consequence of Theorem 5.1, applying iden-
tity (2.1). D

Proof of Theorem 5.1. Let V = C¥. ThenV ® V carries a diagonal (lef€pL-
action, and

M Z2VRYV
asGL,-modules. Thus

M];@n >~ y®2:

asGL-modules. Moreoveiy ®2" carries anS,, x GlLg-action:S,, permutes the
2n factors in the tensor product, arel; acts on all of them simultaneously
(on the left). TheSy,- and GL,-actions satisfy Schur—Weyl duality (the double
commutant theorem), so that

V®2n ~ @ Vk)\ ® S)\’
rePar, (2n)

asGL; x S»,-modules.
Now, Synt(My) is the part ofM,?" which is invariant under the action of
S, < S2,, where the embeddin§j, — S, x S, C Sy, is diagonalw — (i, 7).

It follows that the multiplicity ofV,j in Sym'(My) is equal to the multiplicity
of the trivial character §, in the restrictionxu‘gi”, where S, is diagonally
embedded.
By Frobenius reciprocity,
(Ls,. x*13) = (15,1582 x7).
We conclude that, fok € Pay (2n), the multiplicity of V,j, in Sym' (M) is

S:
<1Sn Tsjn ’ X)L>
We shall compute these multiplicities in several steps.
First, we induce in two steps:
S n B}‘l S n
lSnTSi’ = (lSnTSn )TBi’ .
By Lemmas 2.2(a) and 2.3,

n
Bn S n 1 —i S n
(X(n)TSn)TBz,: — Zx(l),(n I)TBi)
i=0

n
= 2 (@XM, 1
i=0
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n
= 2 (e x M N,
i=0

Again, let us induce in two steps:
1 —i S: 1 —i S2i X S27—2i\ A S
(x" @ x" l))TBfan = (X" @™ l))TfoXB:: ) Sor xS0
1 So; J(n—i) AS20—2i \ A S2n
= (Mg @ XTI NG s
By Lemma 2.1, (a) and (b), the right-hand side is equal to

2. 2.v)/ Son
(Zrre X a )18, -

uki vEn—i

n—i

We conclude that

n
1snT§5" = Z Z (X 2 @ X(ZIV)/)nglezn—zf

i=0 puki, vibn—i

Applying the Littlewood—Richardson rule completes the proafl
5.2. A graded refinement of symmetric powers

The spaceM,?" carries not only anS,-action but also aB,-action, where
the signed permutatiofy, —i) (1 < i < n) acts by transposing thieth factor
in the tensor product of square matrices\iy = M;" & M, , whereM," (M)
is the vector space of symmetric (skew symmetric) matrices of arderk.
ConsequentIyM,?" is graded by the number of skew symmetric factors. The
component oiM,?” with i skew symmetric factors, denotM,(@"(i), is invariant
under theB, -action, as well as under the diagonal two-si@d -action.

Lemma 5.3. If the irreducible B, -charactery -V appears in the decomposition
of the B,,-action onM" (i), then|v| =i.

For a proof see Appendix A.2.

Since the componentM,?”(i) are invariant under thes,-action, thes,-
invariant subspace SyYW;) inherits the grading by the number of skew
symmetric factors. Let SyfiiM,) denote the component withskew symmetric
factors. The following theorem refines Theorem 5.1.

Theorem 5.4. For A € Pay.(2n), the multiplicity okaA in Synt' (My) is

A
Z €2,y

ubEn—i, vi
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Note. Theorem 5.4 interpolates between two classical results, Theorems 2.6
and 2.7. Indeed, Sy§My) = Synﬂ(M,j) is the n-th symmetric power of the
vector space of symmetric matrices. In this case0, sov = @. Hence

» |1 ifa=2.pforsomeutn;
ZCZ-M,V)—

0, otherwise.
ukn

This gives Theorem 2.6. Similarly, SyitMy) = Syni'(M,"). In this case =n,
u =@, and a similar computation gives Theorem 2.7.

An analogue of Corollary 3.4 follows.

Corollary 5.5. Let A, A" € Par(2n) be conjugate partitions. Then, for every
0 <i < n, the multiplicity ofV}* in Synf' (My) is equal to the multiplicity o/
in Symjﬂ. (My).

Proof. Combine Theorem 5.4 with identity (2.1) 0

Proof of Theorem 5.4. This is a refinement of the proof of Theorem 5.1. In this
refinement the grou, appears in an essential way, whereas in the proof of
Theorem 5.1 it was used only as a technical tool.

M,?” is a B,-module, and Syf(My) is its submodule, for which the,,-
action, when restricted t6§,,, is trivial. Hence, if the irreducible,-character
xH¥ appears in SyM(My), then

(Vs 1s,) #0.
By Lemma 2.2(a),

(X" Ls Ts,) = (x"" 15,1 5)) = <x“’“, )3 x<"f>*(f'>>,
j=0

and this is nonzero (and equal to 1) if and onlyit= (n — j) andv = (j) for
some 1< j < n.

Combining this with Lemma 5.3 we conclude that' @ is the unique
irreducible B, -character in Syeh(Mj).

Now, as in the proof of Theorem 5.1, the multiplicitytzs,f in Synv' (My) is

s P () Son
(Mg x T O) = (o x O ).
By Lemmas 2.3 and 2.1,

s L N\ AS
YOOI (D g D)y S

2. 2.v) S
— (X oL a® NE sy

ubEn—i vHi
The Littlewood—Richardson rule completes the proof of Theorem 54.
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5.3. Hook components of tensor powers

In this subsection we generalize the results of the previous sections to obtain a
bivariate interpolation between symmetric and exterior powers of symmetric and
skew symmetric matrices.

As before, then-th tensor powetM,?” carries anS,-action. The symmetric
power Syni(My) is the S, -invariant part, i.e., corresponds to the trivial charac-
ter x™. The exterior power corresponds to the sign charagtér. We shall
denote the factor corresponding to the hook charaggter’?) (0<r<n—1)
by M2" (t) with the conventionM®" (—1) = M2" (n) =0

Theorem 5.6. For every0 <t <n —1andx € Pay.(2n), the multiplicity oka in
ME' ) ®ME"(t—1)is

.
C2.0,(2-B), 25y, (2%8)>
|| +|Bl=n—t,
ly[+[8]=t

where the sum runs over all partitions and 8 with total sizen — ¢, and
partitionsy andd$ with distinct parts and total size The operations and* are

as defined in Sectidh 1, and the extended Littlewood—Richardson coefficients are
as defined in Sectich2.

Proof. Similar arguments to those in the proof of Theorem 5.1 show that the
multiplicity of V* in the hook componen¥®" (t) @ ME"(t — 1) is
1t _ =1 Son
((X(n t,1)+X(n t+1,1 ))Tsi;’x)\>.

By (3.1), this is equal to
_ 1t S}‘l
((X(n Dex ))TSH_[XS,TS,, » X )
- 1)\ o Bu—t X By 5 Sy )
:<(X(n D@ x! ))Tsn_,xxs[tTBi' (XB )
By Lemmas 2.2 and 2.3, for every

_ ! B,—1 XB,
(X(n 1) ® X(l))TSn,;:S,I

n—t t
(n I)TBn '® X(l )TB‘ Zx(i),(n—t—i) ® Zx(l-/),(l“-/)

nt

n—t

O

. L B,
(X(z),@®X@,(n t l))TB[XtBn_I_[

® (X(lj),®® @, f))

TB XB—j*
0

~.
Il
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Hence

0 1
(x" " ®x ))Tsn XSi
n—t t

_ ZZ(XU‘),(A ® X(/),(n—t—i) ® X(l-/),(?)

i=0 j=0

® x" - f)) TSZ' X S2(n—1—i) X S2j XS24 j) TSZn
BixBy——ixBjxB_j 82i X S2(n—1—i) X S2j X S2(— j)

By—t—i J

ZZZ( @, @TSz, ® xPon—1= z)TSzm 1=i) ®X(1f'),@T§z_j

B,(1'7) 4 S26-j)
®X TBl—j )TSZIXSZ(H t— t)XSZjXSZ(t ])

Lemma 2.1 and the Littlewood—Richardson rule complete the praof.

Let MZ"(i, j) be the component af/®" (i) with j skew symmetric factors.
The following result is a common refinement of Theorems 5.4 and 5.6.

Theorem 5.7. For every0 <i <n, 0< j <n andi € Pay(2n), the multiplicity
of V}in MP"(i, )y ® ME"(i — 1, j) is

A
Z C2.0,(2-B), 25y, (2%8)">
loe|+[Bl+1y | +I8]=n
[BI+I8]1=j
ly|+18|=i
where the sum is over all partitions 8, v, § with total sizen such thatg and$
have distinct parts and total size andy andé have total size.

Proof. Lemma 5.3, used as in the proof of Theorem 5.4, shows that the factors of
M,?" i, e M,?" (i — 1, j) in the decomposition given in Theorem 5.6 are those
forwhich|g|+ 8| =j. O

Corollary 5.8. Let A C (k*) be a partition of2n. For every0 < i <n — 1 and
0 < j < n, the multiplicity ofV}* in M2"(i, j) is equal to the multlpI|C|ty oV}
in M2" (i,n — j).

Proof. It suffices to show that for everyQi < n and 0< j < n, the multiplicity
of V} in M®"(i, j) ® ME"(i — 1, j) is equal to the multiplicity ofV}" in
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ME" (i,n — j)® MZ"(i — 1,n — j). By Theorem 5.7, the multiplicity oV
in MZ" G, j) & MZ" (i — 1, j)is

A
Z C2.0,(2.B), 2%y, (245 -
lee|+IB1+1y | +8|=n
[BI+I81=J
[y [+18]=i
By (2.1) and the definition of}, , _ ;, this is equal to
)\./
Z C2a),2-B,(2xy) 2x8°
lee|+IB1+]y|+]8|=n
[BI+I8]1=j
[y [+[8]=i

which is the multiplicity of vV} in M&"(i,n — j) ® MZ"(i —1,n — j). O
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Appendix A
A.1. Proof of Lemma 2.2

Lemma 2.2 follows from a more general result.
For partitionsh = (A1, ..., Ax) andu = (1, ..., um), let A & u be the skew
shape defined by

XEBMI=(M—i—ul,?»z—i-m,...,?»k+M1,M1,M2,...,Hm)/(ﬂli)~

Theorem A.L. If (A, w) is a bipartition ofn then the restriction

Ao Bn _ 0@
x5 g =

Proof. The characterg*®* andy’*, evaluated at elements §f, have the same
recursive formula (Murnaghan—Nakayama rule). bt* see [16, Theorem 4.3].
For x*®" see [9, Theorem 5.6.16].0

Proof of Lemma 2.2. (a) Let (A, «) be a bipartition ofn. By Frobenius
reciprocity and Theorem A.1,
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(X(")ng’ XA,M> — (X(")’ X“Lif,f)z (X(”), XA@u)

_ 1 maxi), e(u)} <1,
~ 10, otherwise.

The last equality follows from the Littlewood—Richardson rule, reformulated for
skew shapes [15, (7.64)]. By this rulg;™, x*®*) is nonzero (and equal to 1)
if and only if A @ w is a horizontal strip (i.e., each column contains at most one
box).

(b) The proof fory ™) is similar. O

A.2. Proof of Lemma5.3

Proof. Leto; := (i, —i) € B, (1<i <n), andlety be the sunp_?_; o; € C[B,].
Consider the tensor produet=w1 Q w2 ® --- Q w,, € M,?", where eachw; is
either a symmetric or a skew symmetric matrix. Then according t@thaction,
defined in Section 5.2,

(W) = w, if w; is symmetric,
GitWI=1 ), if w; is skew symmetric.
Hence, for every vectar e M2" (i),
n) = — 2i)v. (A1)

On the other hand, the sgt; | 1 < i < n} is a conjugacy class iB,. Thus
the elemeny = )_7_; o; is in the center o[ B,]. By Schur’s lemma, for every
vectorv in the irreducibleB,,-moduleS*-",

X'  nx'V(o1)
=chv. herect” = = :
n)=c v, W c v (id) x4 (id)

Let f*, f*V be the number of standard Young tableaux (bitableaux) of shapes
A, (u, v), respectively. Recall that

vl

XV (id) = f1 = ( " ) e,

and thaty -V (o1) is equal to the number of standard Young bitableaux of shape
(u, v), in which the digit 1 is in the first diagram, minus the number of those in
which 1 is in the second diagram Thus

-1 — -2
XM,V(O,:L) — <n|v| )f,ufv . (|Z| _11> f/tfv — n . |l)| (lzl) f”fu~

It follows that

= =n—2|v|;
xivia) A
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and therefore
nw) =m—2vhv  (Yve s, (A.2)
Combining (A.1) with (A.2) completes the proofO
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