JOURNAL OF
Algebra

Hook interpolations

Ron M. Adin, ${ }^{\mathrm{a}, *, 1}$ Avital Frumkin, ${ }^{\mathrm{b}}$ and Yuval Roichman ${ }^{\mathrm{a}, 1}$

${ }^{a}$ Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
${ }^{\mathrm{b}}$ Sackler School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
Received 10 September 2001
Communicated by G.D. James

Abstract

The hook components of $V^{\otimes n}$ interpolate between the symmetric power $\operatorname{Sym}^{n}(V)$ and the exterior power $\wedge^{n}(V)$. When V is the vector space of $k \times m$ matrices over \boldsymbol{C}, we decompose the hook components into irreducible $G L_{k}(\boldsymbol{C}) \times G L_{m}(\boldsymbol{C})$-modules. In particular, classical theorems are proved as boundary cases. For the algebra of square matrices over \boldsymbol{C}, a bivariate interpolation is presented and studied.

© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The vector space $M_{k, m}$ of $k \times m$ matrices over \boldsymbol{C} carries a (left) $G L_{k}(\boldsymbol{C})$-action and a (right) $G L_{m}(\boldsymbol{C})$-action. A classical theorem of Ehresmann [2] describes the decomposition of an exterior power of $M_{k, m}$ into irreducible bimodules. The symmetric analogue was given later (cf. [6]). See Section 2.3 below.

In this paper we present a natural interpolation between these theorems, in terms of hook components of the n-th tensor power of $M_{k, m}$. Duality and asymptotics of the decomposition of hook components follow.

[^0]Similar methods are then applied to the diagonal two-sided $G L_{k}(\boldsymbol{C})$-action on the vector space of $k \times k$ matrices. Classical theorems of Thrall [18] and James [7] (for the symmetric powers of symmetric matrices), and of Helgason [4], Shimura [14] and Howe [5] (for the symmetric powers of anti-symmetric matrices) are extended, and a bivariate interpolation is presented.

Proofs are obtained using the representation theory of the symmetric and hyperoctahedral groups, together with Schur-Weyl duality; no use is made of highest-weight theory.

1.1. Main results

Let $M_{k, m}$ be the vector space of $k \times m$ matrices over \boldsymbol{C}. The tensor power $M_{k, m}^{\otimes n}$ carries a natural S_{n}-action by permuting the factors. This action decomposes the tensor power into irreducible S_{n}-modules. Let $M_{k, m}^{\otimes n}(i)$ be the isotypic component of $M_{k, m}^{\otimes n}$ corresponding to the irreducible S_{n}-representation indexed by the hook $\left(n-i, 1^{i}\right)$, where $0 \leqslant i \leqslant n-1$. This component still carries a $G L_{k}(\boldsymbol{C}) \times G L_{m}(\boldsymbol{C})$-action.

Theorem 1.1. Let λ and μ be partitions of n, of lengths at most k and m, respectively. For every $0 \leqslant i \leqslant n$ the multiplicity of the irreducible $G L_{k}(\boldsymbol{C}) \times$ $G L_{m}(\boldsymbol{C})$-module $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M_{k, m}^{\otimes n}(i-1) \oplus M_{k, m}^{\otimes n}(i)$ is

$$
\sum_{\alpha \vdash n-i, \beta \vdash i} c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu}
$$

where $c_{\alpha \beta}^{\lambda}$ are Littlewood-Richardson coefficients, β^{\prime} is the partition conjugate to β, and $M_{k, m}^{\otimes n}(-1)=M_{k, m}^{\otimes n}(n)=0$.

See Theorem 3.3 below; for definitions and notation see Section 2 below. Theorem 1.1 interpolates between two well-known classical theorems (Theorems 2.4 and 2.5 below; see the remark following Theorem 3.3).

The following corollary generalizes the duality between Theorem 2.4 and Theorem 2.5.

Corollary 1.2. Let $\mu \subseteq\left(m^{m}\right)$ and λ be partitions of n. For every $0 \leqslant i \leqslant n-1$ the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M_{k, m}^{\otimes n}(i)$ is equal to the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu^{\prime}}$ in $M_{k, m}^{\otimes n}(n-1-i)$.

See Corollary 3.4 below.
Let λ and μ be partitions of n. Define the distance

$$
d(\lambda, \mu):=\frac{1}{2} \sum_{i}\left|\lambda_{i}-\mu_{i}\right| .
$$

Theorem 1.3. If $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M_{k, m}^{\otimes n}(t)($ for some $0 \leqslant t \leqslant n-1)$ then

$$
d(\lambda, \mu)<k m
$$

See Theorem 4.3 below. This shows that, for $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ to appear in a hook component, λ and μ must be very "close" to each other (for k and m fixed, n tending to infinity).

Consider now the vector space $M_{k, k}$ of $k \times k$ square matrices over \boldsymbol{C}. Let $M_{k, k}^{\otimes n}(i, j)$ be the component of $M_{k, k}^{\otimes n}(i)$ consisting of tensors with j skew symmetric and $n-j$ symmetric factors. $M_{k, k}^{\otimes n}(i, j)$ carries a $G L_{k}(\boldsymbol{C})$ two-sided diagonal action. The following theorem describes its decomposition as a $G L_{k}(\boldsymbol{C})-$ module.

Theorem 1.4. Let λ be a partition of $2 n$ of length at most k. For every $0 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$, the multiplicity of V_{k}^{λ} in $M_{k, k}^{\otimes n}(i, j) \oplus M_{k, k}^{\otimes n}(i-1, j)$ is

$$
\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n,|\beta|+|\delta|=j,|\gamma|+|\delta|=i}} c_{2 \cdot \alpha,(2 \cdot \beta)^{\prime}, 2 * \gamma,(2 * \delta)^{\prime},}^{\lambda}
$$

where the sum runs over all partitions $\alpha, \beta, \gamma, \delta$ with total size n such that β and δ have distinct parts and total size j, and γ and δ have total size i. The operations $*$ and \cdot are defined in Section 2.1. Definition of the (extended) Littlewood-Richardson coefficients is given in Section 2.2.

See Theorem 5.7 below. Theorem 1.4, for $i=0$, interpolates between classical results, regarding symmetric powers of the spaces of symmetric and skew symmetric matrices (Theorems 2.6 and 2.7 below). Another boundary case, $i=n$, gives an interpolation between exterior powers of the same matrix spaces.

Corollary 1.5. Let $\lambda \subseteq\left(k^{k}\right)$ be a partition of $2 n$. For every $0 \leqslant i \leqslant n-1$ and $0 \leqslant j \leqslant n$, the multiplicity of V_{k}^{λ} in $M_{k, k}^{\otimes n}(i, j)$ is equal to the multiplicity of $V_{k}^{\lambda^{\prime}}$ in $M_{k, k}^{\otimes n}(i, n-j)$.

See Corollary 5.8 below.

2. Background and notation

2.1. Partitions

Let n be a positive integer. A partition of n is a vector of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$, where $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{k}$ and $\lambda_{1}+\cdots+\lambda_{k}=n$. We denote
this by $\lambda \vdash n$. The size of a partition $\lambda \vdash n$, denoted $|\lambda|$, is n, and its length, $\ell(\lambda)$, is the number of parts. The empty partition \emptyset has size and length zero: $|\emptyset|=\ell(\emptyset)=0$. The set of all partitions of n with at most k parts is denoted by $\operatorname{Par}_{k}(n)$.

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ define the conjugate partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{t}^{\prime}\right)$ by letting λ_{i}^{\prime} be the number of parts of λ that have size at least i.

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ may be viewed as the subset

$$
\left\{(i, j) \mid 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant \lambda_{i}\right\} \subset \boldsymbol{Z}^{2},
$$

the corresponding Young diagram. Using this interpretation, we may speak of the intersection $\lambda \cap \mu$ and the set difference $\lambda \backslash \mu$ of any two partitions. The set difference is called a skew shape; when $\mu \subseteq \lambda$ it is usually denoted λ / μ.

Let $\left(k^{m}\right):=(k, \ldots, k)$ (m equal parts). Thus, for example, $\lambda \subseteq\left(k^{m}\right)$ means $\lambda_{1} \leqslant k$ and $\lambda_{1}^{\prime} \leqslant m$.

We shall also use the Frobenius notation for partitions, defined as follows: Let λ be a partition of n and set $d:=\max \left\{i \mid \lambda_{i}-i \geqslant 0\right\}$ (i.e., the length of the main diagonal in the Young diagram of λ). Then the Frobenius notation for λ is $\left(\lambda_{1}-1, \ldots, \lambda_{d}-d \mid \lambda_{1}^{\prime}-1, \ldots, \lambda_{d}^{\prime}-d\right)$.

For any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of n define the following doubling operation:

$$
2 \cdot \lambda:=\left(2 \lambda_{1}, \ldots, 2 \lambda_{k}\right) \vdash 2 n .
$$

If all the parts of λ are distinct, define also

$$
2 * \lambda:=\left(\lambda_{1}, \ldots, \lambda_{k} \mid \lambda_{1}-1, \ldots, \lambda_{k}-1\right) \vdash 2 n,
$$

in the Frobenius notation.

2.2. Representations

For any group G denote the trivial representation by 1_{G}. In this paper we shall denote the irreducible S_{n}-modules (Specht modules) by S^{λ}, and the irreducible $G L_{k}(\boldsymbol{C})$-modules (Weyl modules) by V_{k}^{λ}.

The Littlewood-Richardson coefficients describe the decomposition of tensor products of Weyl modules. Let $\mu \vdash t$ and $\nu \vdash n-t$. Then

$$
V_{k}^{\mu} \otimes V_{k}^{v} \cong \bigoplus_{\lambda \vdash n} c_{\mu, \nu}^{\lambda} V_{k}^{\lambda}
$$

for $k \geqslant \max \{\ell(\lambda), \ell(\mu), \ell(\nu)\}$ (and the coefficients $c_{\mu, \nu}^{\lambda}$ are then independent of k). By Schur-Weyl duality they are also the coefficients of the outer product of Specht modules. Namely,

$$
\left(S^{\mu} \otimes S^{\nu}\right) \uparrow{ }_{S_{t} \times S_{n-t}}^{S_{n}} \cong \bigoplus_{\lambda \vdash n} c_{\mu, \nu}^{\lambda} S^{\lambda}
$$

The following identity is well known: for all triples of partitions λ, μ, ν,

$$
\begin{equation*}
c_{\mu, \nu}^{\lambda}=c_{\mu^{\prime}, \nu^{\prime}}^{\lambda^{\prime}} \tag{2.1}
\end{equation*}
$$

We shall also use the following notation for Littelwood-Richardson coefficients:

$$
c_{\alpha, \beta, \gamma, \delta}^{\lambda}:=\sum_{\mu, \nu} c_{\alpha, \mu}^{\lambda} c_{\beta, \nu}^{\mu} c_{\gamma, \delta}^{\nu}
$$

so that

$$
V_{k}^{\alpha} \otimes V_{k}^{\beta} \otimes V_{k}^{\gamma} \otimes V_{k}^{\delta}=\bigoplus_{\lambda} c_{\alpha, \beta, \gamma, \delta}^{\lambda} V_{k}^{\lambda}
$$

Let B_{n} be the Weyl group of type B and rank n, also known as the hyperoctahedral group or the group of signed permutations. A bipartition of n is an ordered pair (μ, ν) of partitions of total size $|\mu|+|\nu|=n$. The irreducible characters of B_{n} are indexed by bipartitions of n; denote by $\chi^{\mu, \nu}$ the character indexed by (μ, ν).

Consider the following natural embeddings of S_{n} into B_{n} and of B_{n} into $S_{2 n}$: $S_{2 n}$ is the group of permutations on $\{-n, \ldots,-1,1, \ldots, n\} . B_{n}$ is embedded as the subgroup of all $\pi \in S_{2 n}$ satisfying $\pi(-i)=-\pi(i)(1 \leqslant i \leqslant n)$. S_{n} is embedded as the subgroup of all $\pi \in B_{n}$ satisfying also $\pi(i)>0(1 \leqslant i \leqslant n)$.

The following lemmas, used in Section 5, describe certain induced characters via the above embeddings. Lemma 2.1 is an immediate consequence of [11, Chapter I, Section 7, Example 4; Chapter I, Section 8, Examples 5-6; and Chapter VII, (2.4)]. See also [17].

Lemma 2.1.

(a) $1_{B_{n}} \uparrow_{B_{n}}^{S_{2 n}}=\chi^{(n), \emptyset} \uparrow_{B_{n}}^{S_{2 n}}=\sum_{\lambda \vdash n} \chi^{2 \cdot \lambda} ;$
(b) $\quad \chi^{\emptyset,(n)} \uparrow_{B_{n}}^{S_{2 n}}=\sum_{\lambda \vdash n} \chi^{(2 \cdot \lambda)^{\prime}}$;
(c) $\quad \chi^{\left(1^{n}\right), \emptyset} \uparrow_{B_{n}}^{S_{2 n}}=\sum_{\lambda \vdash n} \chi^{2 * \lambda}$;
(d) $\quad \chi^{\emptyset,\left(1^{n}\right)} \uparrow_{B_{n}}^{S_{2 n}}=\sum_{\lambda \vdash n} \chi^{(2 * \lambda)^{\prime}} ;$
where the last two sums are over partitions with distinct parts.

Lemma 2.2.

(a) $\quad \chi^{(n)} \uparrow_{S_{n}}^{B_{n}}=\sum_{i=0}^{n} \chi^{(i),(n-i)}$.
(b) $\quad \chi^{\left(1^{n}\right)} \uparrow_{S_{n}}^{B_{n}}=\sum_{i=0}^{n} \chi^{\left(1^{i}\right),\left(1^{n-i}\right)}$.

For a proof, see Appendix A.1.
The following lemma is a special case of the Littlewood-Richardson rule for B_{n}; cf. [16, Lemma 7.1].

Lemma 2.3. $\chi^{(i),(n-i)}=\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-i)}\right) \uparrow_{B_{i} \times B_{n-i}}^{B_{n}}$.

2.3. Symmetric and exterior powers of matrix spaces

In this subsection we cite well-known classical theorems, concerning the decomposition into irreducibles of symmetric and exterior powers of matrix spaces, which are to be generalized in this paper.

Let $M_{k, m}$ be the vector space of $k \times m$ matrices over \boldsymbol{C}. Then $M_{k, m}$ carries a (left) $G L_{k}(\boldsymbol{C})$-action and a (right) $G L_{m}(\boldsymbol{C})$-action. A classical theorem of Ehresmann [2] (see also [10]) describes the decomposition of an exterior power of $M_{k, m}$ into irreducible $G L_{k}(\boldsymbol{C}) \times G L_{m}(\boldsymbol{C})$-modules.

Theorem 2.4. The n-th exterior power of $M_{k, m}$ is isomorphic, as a $G L_{k}(\boldsymbol{C}) \times$ $G L_{m}(\boldsymbol{C})$-module, to

$$
\wedge^{n}\left(M_{k, m}\right) \cong \bigoplus_{\substack{\lambda \vdash n \\ \lambda \subseteq\left(m^{k}\right)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda^{\prime}}
$$

where λ^{\prime} is the partition conjugate to λ.
The following three results on symmetric powers were proved several times independently; these results may be found in $[3,6]$.

The symmetric analogue of Theorem 2.4 was studied, for example, in [6, (11.1.1)] and [3, Theorem 5.2.7].

Theorem 2.5. The n-th symmetric power of $M_{k, m}$ is isomorphic, as a $G L_{k}(\boldsymbol{C}) \times$ $G L_{m}(\boldsymbol{C})$-module, to

$$
\operatorname{Sym}^{n}\left(M_{k, m}\right) \cong \bigoplus_{\substack{\lambda \vdash n \\ \ell(\lambda) \leqslant \min (k, m)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda}
$$

Let $M_{k, k}^{+}$be the vector space of symmetric $k \times k$ matrices over \boldsymbol{C}. This space carries a natural two sided $G L_{k}(\boldsymbol{C})$-action. The following theorem describes the decomposition of its symmetric powers into irreducible $G L_{k}(\boldsymbol{C})$-modules.

Theorem 2.6. The n-th symmetric power of $M_{k, k}^{+}$is isomorphic, as a $G L_{k}(\boldsymbol{C})$ module, to

$$
\operatorname{Sym}^{n}\left(M_{k, k}^{+}\right) \cong \bigoplus_{\lambda \in \operatorname{Par}_{k}(n)} V_{k}^{2 \cdot \lambda}
$$

This theorem was proved by A.T. James [7], but had already appeared in an early work of Thrall [18]. See also [5,14], [6, (11.2.2)] and [3, Theorem 5.2.9] for further proofs and references.

Let $M_{k, k}^{-}$be the vector space of skew symmetric $k \times k$ matrices over \boldsymbol{C}.
Theorem 2.7. The n-th symmetric power of $M_{k, k}^{-}$is isomorphic, as a $G L_{k}(\boldsymbol{C})$ module, to

$$
\operatorname{Sym}^{n}\left(M_{k, k}^{-}\right) \cong \bigoplus_{(2 \cdot \lambda)^{\prime} \in \operatorname{Par}_{k}(2 n)} V_{k}^{(2 \cdot \lambda)^{\prime}}
$$

This theorem is proved in [4,5,14]. See also [6, (11.3.2)] and [3, Theorem 5.2.11].

3. Hook components of $M_{k, m}^{\otimes n}$

Consider $M=M_{k, m}=\boldsymbol{C}^{k \times m}$, the vector space of $k \times m$ matrices over \boldsymbol{C}. Then $M \cong V \otimes W$, where $V \cong \boldsymbol{C}^{k}$ and $W \cong \boldsymbol{C}^{m}$. Thus M carries a (left) $G L(V)$ action and a (right) $G L(W)$-action, which commute. Its tensor power $M^{\otimes n} \cong$ $V^{\otimes n} \otimes W^{\otimes n}$ thus carries a $G L(V) \times S_{n} \times S_{n} \times G L(W)$ linear representation; one copy of the symmetric group S_{n} permutes the factors in $V^{\otimes n}$, and the other copy of S_{n} permutes the factors in $W^{\otimes n}$. The actions of all four groups clearly commute. We are interested in the $G L(V) \times S_{n} \times G L(W)$-action on $M^{\otimes n}$ obtained through the diagonal embedding $S_{n} \hookrightarrow S_{n} \times S_{n}, \pi \mapsto(\pi, \pi)$.

Lemma 3.1.

$$
M^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ v \in \operatorname{Par}^{n}() \\ \mu \in \operatorname{Par}_{m}(n)}} \alpha_{\lambda \mu \nu} V_{k}^{\lambda} \otimes S^{\nu} \otimes V_{m}^{\mu}
$$

where $\alpha_{\lambda \mu \nu}:=\left\langle\chi^{\lambda} \chi^{\mu} \chi^{\nu}, 1_{S_{n}}\right\rangle$.
Proof. By Schur-Weyl duality (the double commutant theorem) [3, Theorem 9.1.2],

$$
V^{\otimes n} \cong \bigoplus_{\lambda \in \operatorname{Par}_{k}(n)} V_{k}^{\lambda} \otimes S^{\lambda}
$$

as $G L(V) \times S_{n}$-modules. Similarly,

$$
W^{\otimes n} \cong \bigoplus_{\lambda \in \operatorname{Par}_{m}(n)} V_{m}^{\lambda} \otimes S^{\lambda}
$$

as $G L(W) \times S_{n}$-modules. Therefore

$$
M^{\otimes n} \cong V^{\otimes n} \otimes W^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ \mu \in \operatorname{Par}_{m}(n)}} V_{k}^{\lambda} \otimes S^{\lambda} \otimes S^{\mu} \otimes V_{m}^{\mu}
$$

as $G L(V) \times S_{n} \times S_{n} \times G L(W)$-modules.
Using the diagonal embedding $S_{n} \hookrightarrow S_{n} \times S_{n}$,

$$
M^{\otimes n} \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ \mu \in \operatorname{Par}_{m}(n)}} V_{k}^{\lambda} \otimes\left(S^{\lambda} \otimes S^{\mu}\right) \downarrow \downarrow_{S_{n}}^{S_{n} \times S_{n}} \otimes V_{m}^{\mu}
$$

as $G L(V) \times S_{n} \times G L(W)$-modules.
Note that the S_{n}-character of $\left(S^{\lambda} \otimes S^{\mu}\right) \downarrow \downarrow_{S_{n}}^{S_{n} \times S_{n}}$ is the standard inner tensor product (sometimes called Kronecker product) of the S_{n}-characters χ^{λ} and χ^{μ}. Hence, by elementary representation theory,

$$
\begin{aligned}
& \left(S^{\lambda} \otimes S^{\mu}\right) \downarrow \downarrow_{S_{n}}^{S_{n} \times S_{n}} \cong \bigoplus_{\nu \vdash n} \alpha_{\lambda \mu \nu} S^{\nu}, \quad \text { where } \\
& \alpha_{\lambda \mu \nu}=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle=\frac{1}{n!} \sum_{\pi \in S_{n}} \chi^{\lambda}(\pi) \chi^{\mu}(\pi) \chi^{\nu}(\pi)=\left\langle\chi^{\lambda} \chi^{\mu} \chi^{\nu}, 1_{S_{n}}\right\rangle .
\end{aligned}
$$

In particular, Lemma 3.1 gives Theorems 2.4 and 2.5.

Corollary 3.2.

(1) $\operatorname{Sym}^{n}(M) \cong \bigoplus_{\substack{\lambda \vdash n \\ \ell(\lambda) \leqslant \min (k, m)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda}$.
(2) $\wedge^{n}(M) \cong \bigoplus_{\substack{\lambda \vdash n \\ \lambda \subseteq\left(m^{k}\right)}} V_{k}^{\lambda} \otimes V_{m}^{\lambda^{\prime}}$.

Proof. $\operatorname{Sym}^{n}(M)$ is the isotypic component of $M^{\otimes n}$ corresponding to the trivial character $\chi^{(n)}$ of the symmetric group. Thus, by Lemma 3.1,

$$
\operatorname{Sym}^{n}(M) \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ \mu \in \operatorname{Par}_{m}(n)}} \alpha_{\lambda, \mu,(n)} V_{k}^{\lambda} \otimes S^{(n)} \otimes V_{m}^{\mu}
$$

But by the orthonormality of irreducible characters,

$$
\alpha_{\lambda, \mu,(n)}=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{(n)}\right\rangle=\left\langle\chi^{\lambda}, \chi^{\mu} \chi^{(n)}\right\rangle=\left\langle\chi^{\lambda}, \chi^{\mu}\right\rangle=\delta_{\lambda \mu} .
$$

This proves (1), namely Theorem 2.5.

The n-th exterior power is the isotypic component of $M^{\otimes n}$ corresponding to the sign character $\chi^{\left(1^{n}\right)}$ of the symmetric group. Recall that for any partition $\mu \vdash n, \chi^{\mu} \chi^{\left(1^{n}\right)}=\chi^{\mu^{\prime}}$. Thus

$$
\alpha_{\lambda, \mu,\left(1^{n}\right)}=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\left(1^{n}\right)}\right\rangle=\left\langle\chi^{\lambda}, \chi^{\mu} \chi^{\left(1^{n}\right)}\right\rangle=\left\langle\chi^{\lambda}, \chi^{\mu^{\prime}}\right\rangle=\delta_{\lambda \mu^{\prime}} .
$$

This proves (2), namely, Theorem 2.4.
Let M be the vector space of $k \times m$ matrices as before. The tensor power $M^{\otimes n}$ carries a natural S_{n}-action by permuting the factors. This action decomposes into irreducible S_{n}-representations. Let $M^{\otimes n}(t)$ be the component of $M^{\otimes n}$, corresponding to the irreducible hook representation $\left(n-t, 1^{t}\right), 0 \leqslant t \leqslant n-1$. This component carries a $G L_{k}(\boldsymbol{C}) \times G L_{m}(\boldsymbol{C})$-action.

Theorem 3.3. Let $\lambda \in \operatorname{Par}_{k}(n)$ and $\mu \in \operatorname{Par}_{m}(n)$. For every $0 \leqslant t \leqslant n$, the multiplicity of the irreducible $G L_{k}(\boldsymbol{C}) \times G L_{m}(\boldsymbol{C})$-module $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M^{\otimes n}(t-1) \oplus$ $M^{\otimes n}(t)$ is

$$
\sum_{\substack{\alpha \vdash n-t \\ \beta \vdash t}} c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu}
$$

where $c_{\alpha \beta}^{\lambda}$ are Littlewood-Richardson coefficients, β^{\prime} is the partition conjugate to β, and $M^{\otimes n}(-1)=M^{\otimes n}(n)=0$.

Remark. Theorem 3.3 may be considered as an interpolation between Theorems 2.4 and 2.5. $M^{\otimes n}(0) \cong \operatorname{Sym}^{n}(M)$ and $M^{\otimes n}(-1)=0$. Substituting $t=0$ forces $\beta=\emptyset$. Hence $\lambda=\alpha=\mu$. So, the multiplicity is $\delta_{\lambda \mu}$. This gives Theorem 2.5.

Similarly, $M^{\otimes n}(n-1) \cong \wedge^{n}(M)$ and $M^{\otimes n}(n)=0$. Substituting $t=n$ forces $\alpha=\emptyset$. Hence $\lambda=\beta=\mu^{\prime}$. So, the multiplicity is $\delta_{\lambda \mu^{\prime}}$. This gives Theorem 2.4.

Proof. By Lemma 3.1,

$$
M^{\otimes n}(t) \cong \bigoplus_{\substack{\lambda \in \operatorname{Par}_{k}(n) \\ \mu \in \operatorname{Par}_{m}(n)}} \alpha_{\lambda, \mu,\left(n-t, 1^{t}\right)} V_{k}^{\lambda} \otimes S^{\left(n-t, 1^{t}\right)} \otimes V_{m}^{\mu}
$$

is the decomposition of this component into irreducibles.
Denote by 1_{t} and ε_{t} the trivial and sign characters, respectively, of S_{t}. By the combinatorial interpretation of the Littlewood-Richardson rule (cf. [8, Theorem 2.8.13]), for every $0 \leqslant t \leqslant n$

$$
\begin{equation*}
\left(1_{n-t} \otimes \varepsilon_{t}\right) \uparrow_{S_{n-t} \times S_{t}}^{S_{n}}=\chi^{\left(n-t, 1^{t}\right)}+\chi^{\left(n-t+1,1^{t-1}\right)} \tag{3.1}
\end{equation*}
$$

Hence, by Frobenius reciprocity,

$$
\begin{aligned}
\alpha_{\lambda, \mu,\left(n-t, 1^{t}\right)}+\alpha_{\lambda, \mu,\left(n-t+1,1^{t-1}\right)} & =\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\left(n-t, 1^{t}\right)}+\chi^{\left(n-t+1,1^{t-1}\right)}\right\rangle \\
& =\left\langle\chi^{\lambda} \chi^{\mu},\left(1_{n-t} \otimes \varepsilon_{t}\right) \uparrow \uparrow_{S_{n-t} \times S_{t}}^{S_{n}}\right\rangle \\
& =\left\langle\left(\chi^{\lambda} \chi^{\mu}\right) \downarrow_{S_{n-t} \times S_{t}}^{S_{n}}, 1_{n-t} \otimes \varepsilon_{t}\right\rangle \\
& =\left\langle\chi^{\lambda} \downarrow_{S_{n-t} \times S_{t}}^{S_{n}}, \chi^{\mu} \downarrow_{S_{n-t} \times S_{t}}^{S_{n}} \cdot\left(1_{n-t} \otimes \varepsilon_{t}\right)\right\rangle .
\end{aligned}
$$

By the Littlewood-Richardson rule the last expression is equal to

$$
\begin{aligned}
& \left\langle\sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\lambda} \chi^{\alpha} \otimes \chi^{\beta}, \sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\mu} \chi^{\alpha} \otimes \chi^{\beta} \cdot\left(1_{n-t} \otimes \varepsilon_{t}\right)\right\rangle \\
& \quad=\left\langle\sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\lambda} \chi^{\alpha} \otimes \chi^{\beta}, \sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\mu} \chi^{\alpha} \otimes \chi^{\beta^{\prime}}\right\rangle \\
& \quad=\sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu} .
\end{aligned}
$$

The following corollary generalizes the "duality" of Theorems 2.4 and 2.5.
Corollary 3.4. Let $\lambda \in \operatorname{Par}_{k}(n)$, and let $\mu, \mu^{\prime} \in \operatorname{Par}_{m}(n)$ be conjugate partitions. Then, for every $0 \leqslant t \leqslant n-1$, the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M^{\otimes n}(t)$ is equal to the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu^{\prime}}$ in $M^{\otimes n}(n-1-t)$.

Proof. It suffices to show that the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M^{\otimes n}(t-1) \oplus$ $M^{\otimes n}(t)$ is equal to the multiplicity of $V_{k}^{\lambda} \otimes V_{m}^{\mu^{\prime}}$ in $M^{\otimes n}(n-t) \oplus M^{\otimes n}(n-t-1)$. By Theorem 3.3, this is equivalent to the identity

$$
\sum_{\alpha \vdash n-t, \beta \vdash t} c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu}=\sum_{\alpha \vdash t, \beta \vdash n-t} c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu^{\prime}}
$$

But this follows from (2.1).
Examples. Let $\lambda \in \operatorname{Par}_{k}(n), \mu, \mu^{\prime} \in \operatorname{Par}_{m}(n)$. The multiplicities of $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ in $M^{\otimes n}(t)$ for $t=0$ and $t=n-1$ are given by Theorems 2.5 and 2.4. Consider two other pairs of t-values.

- $t=1$. For $\lambda=\mu$ the multiplicity is the number of (inner) corners in λ, minus 1. For $\lambda \neq \mu$ this is 1 if $|\lambda \backslash \mu|=1$, and zero otherwise.
- $t=n-2$. For $\lambda=\mu^{\prime}$ the multiplicity is the number of (inner) corners in λ, minus 1 . For $\lambda \neq \mu^{\prime}$ this is 1 if $\left|\lambda \backslash \mu^{\prime}\right|=1$, and zero otherwise.
- $t=2(n>2)$. The multiplicity is nonzero iff there is a partition α of $n-2$ such that λ / α is a horizontal strip and μ / α is a vertical strip, or vice versa.
- $t=n-3(n>2)$. The multiplicity is nonzero iff there is a partition α of $n-2$ such that λ / α is a horizontal strip and μ^{\prime} / α is a vertical strip, or vice versa.

4. Asymptotics

Let λ and μ be partitions of the same number n. Recalling the definition of the set difference $\lambda \backslash \mu$ from Section 2.1, define the distance

$$
d(\lambda, \mu):=|\lambda \backslash \mu| \quad\left(=\frac{1}{2} \sum_{i}\left|\lambda_{i}-\mu_{i}\right|\right)
$$

Lemma 4.1. If $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M^{\otimes n}(t)($ for some $0 \leqslant t \leqslant n-1)$ then $d(\lambda, \mu) \leqslant t$ and $d\left(\lambda, \mu^{\prime}\right) \leqslant n-1-t$.

Proof. By assumption, $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in both $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ and $M^{\otimes n}(t) \oplus M^{\otimes n}(t+1)$.

By Theorem 3.3, if $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M^{\otimes n}(t-1) \oplus M^{\otimes n}(t)$ then there exists a pair of partitions, $\alpha \vdash n-t$ and $\beta \vdash t$ such that, $c_{\alpha \beta}^{\lambda} c_{\alpha \beta^{\prime}}^{\mu} \neq 0$. $c_{\alpha \beta}^{\lambda} \neq 0 \Rightarrow \alpha \subseteq \lambda$ and $c_{\alpha \beta^{\prime}}^{\mu} \neq 0 \Rightarrow \alpha \subseteq \mu$. Hence $|\lambda \backslash \mu| \leqslant|\lambda \backslash \alpha|=t$. Also, $c_{\alpha \beta}^{\lambda} \neq 0 \Rightarrow \beta \subseteq \lambda$ and $c_{\alpha \beta^{\prime}}^{\mu} \neq 0 \Rightarrow \beta \subseteq \mu^{\prime}$. Hence $\left|\lambda \backslash \mu^{\prime}\right| \leqslant|\lambda \backslash \beta|=n-t$.

Similarly, if $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M^{\otimes n}(t) \oplus M^{\otimes n}(t+1)$ then $|\lambda \backslash \mu| \leqslant t+1$ and $\left|\lambda \backslash \mu^{\prime}\right| \leqslant n-t-1$.

Altogether, we get the desired claim.

Let ψ be an S_{n}-character (not necessarily irreducible). Define the height of ψ by

$$
\operatorname{height}(\psi):=\max \left\{\ell(\nu) \mid v \vdash n,\left\langle\psi, \chi^{\nu}\right\rangle \neq 0\right\} .
$$

The following result was proved by Regev.

Lemma 4.2 [8, Theorem 12]. For any $\lambda, \mu \vdash n$, $\operatorname{height}\left(\chi^{\lambda} \chi^{\mu}\right) \leqslant \ell(\lambda) \cdot \ell(\mu)$.

Theorem 4.3. If $V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M^{\otimes n}(t)($ for some $0 \leqslant t \leqslant n-1)$ then

$$
d(\lambda, \mu) \leqslant k m
$$

Proof.

$$
d(\lambda, \mu) \stackrel{(1)}{\leqslant} t \stackrel{(2)}{\leqslant} \operatorname{height}\left(\chi^{\lambda} \chi^{\mu}\right)-1 \stackrel{(3)}{\leqslant} \ell(\lambda) \cdot \ell(\mu)-1 \leqslant k m-1 .
$$

Inequalities (1), (2), and (3) follow from Lemmas 4.1, 3.1 (for $v=\left(n-t, 1^{t}\right)$), and 4.2 , respectively.

Let ψ be an S_{n}-character (not necessarily irreducible). Define the height of ψ by

$$
\operatorname{width}(\psi):=\max \left\{\mu_{1} \mid v \vdash n,\left\langle\psi, \chi^{v}\right\rangle \neq 0\right\} .
$$

The following result of Dvir strengthens Lemma 4.2.

Lemma 4.4 [2, Theorem 1.6]. For any $\lambda, \mu \vdash n$,
(1) \quad width $\left(\chi^{\lambda} \chi^{\mu}\right)=|\lambda \cap \mu| \quad$ and
(2) $\operatorname{height}\left(\chi^{\lambda} \chi^{\mu}\right)=\left|\lambda \cap \mu^{\prime}\right|$.

This result gives another way of proving Theorem 4.3.

Second proof of Theorem 4.3.

$$
\begin{aligned}
d(\lambda, \mu) & =|\lambda \backslash \mu|=n-|\lambda \cap \mu| \stackrel{(1)}{\leqslant} t \stackrel{(2)}{\leqslant} \operatorname{height}\left(\chi^{\lambda} \chi^{\mu}\right)-1 \stackrel{(3)}{=}\left|\lambda \cap \mu^{\prime}\right|-1 \\
& \leqslant k m-1
\end{aligned}
$$

Inequality (1) follows from Lemma 4.4(1), since $n-t \leqslant \operatorname{width}\left(\chi^{\lambda} \chi^{\mu}\right)$. Inequality (2) follows from Lemma 3.1. Equality (3) is Lemma 4.4(2).

Note. For any two partitions λ, μ of n with $\ell(\lambda) \leqslant k$ and $\ell(\mu) \leqslant m, V_{k}^{\lambda} \otimes V_{m}^{\mu}$ appears as a factor in $M_{k, m}^{\otimes n}$. Theorem 4.3 shows that, in order to appear in a hook component, λ and μ must be very "close" to each other (for fixed k and m and n tending to infinity).

5. Square matrices

Consider now the vector space $M_{k}=M_{k, k}$ of $k \times k$ matrices over \boldsymbol{C}. This space carries a diagonal (left and right) $G L_{k}(\boldsymbol{C})$-action, defined by

$$
g(m):=g \cdot m \cdot g^{t} \quad\left(\forall g \in G L_{k}(\boldsymbol{C}), \forall m \in M_{k}\right) .
$$

5.1. Symmetric powers

Recall from Section 2.1 the definition of $2 \cdot \lambda$, for a partition λ.
Theorem 5.1. For $\lambda \in \operatorname{Par}_{k}(2 n)$, the multiplicity of V_{k}^{λ} in $\operatorname{Sym}^{n}\left(M_{k}\right)$ is

$$
\sum_{|\mu|+|\nu|=n} c_{2 \cdot \mu,(2 \cdot v)^{\prime}}^{\lambda}
$$

Corollary 5.2. Let $\lambda \in \operatorname{Par}(2 n)$, $\lambda \subseteq\left(k^{k}\right)$ (i.e., $\lambda, \lambda^{\prime} \in \operatorname{Par}_{k}(2 n)$). Then the multiplicities of V_{k}^{λ} and of $V_{k}^{\lambda^{\prime}}$ in $\operatorname{Sym}^{n}\left(M_{k}\right)$ are equal.

Proof. This is an immediate consequence of Theorem 5.1, applying identity (2.1).

Proof of Theorem 5.1. Let $V \cong \boldsymbol{C}^{k}$. Then $V \otimes V$ carries a diagonal (left) $G L_{k}$ action, and

$$
M_{k} \cong V \otimes V
$$

as $G L_{k}$-modules. Thus

$$
M_{k}^{\otimes n} \cong V^{\otimes 2 n}
$$

as $G L_{k}$-modules. Moreover, $V^{\otimes 2 n}$ carries an $S_{2 n} \times G L_{k}$-action: $S_{2 n}$ permutes the $2 n$ factors in the tensor product, and $G L_{k}$ acts on all of them simultaneously (on the left). The $S_{2 n}$ - and $G L_{k}$-actions satisfy Schur-Weyl duality (the double commutant theorem), so that

$$
V^{\otimes 2 n} \cong \bigoplus_{\lambda \in \operatorname{Par}_{k}(2 n)} V_{k}^{\lambda} \otimes S^{\lambda}
$$

as $G L_{k} \times S_{2 n}$-modules.
Now, $\operatorname{Sym}^{n}\left(M_{k}\right)$ is the part of $M_{k}^{\otimes n}$ which is invariant under the action of $S_{n} \hookrightarrow S_{2 n}$, where the embedding $S_{n} \hookrightarrow S_{n} \times S_{n} \subseteq S_{2 n}$ is diagonal: $\pi \longmapsto(\pi, \pi)$. It follows that the multiplicity of V_{k}^{λ} in $\operatorname{Sym}^{n}\left(M_{k}\right)$ is equal to the multiplicity of the trivial character $1_{S_{n}}$ in the restriction $\chi^{\lambda} \downarrow_{S_{n}}^{S_{2 n}}$, where S_{n} is diagonally embedded.

By Frobenius reciprocity,

$$
\left\langle 1_{S_{n}}, \chi^{\lambda} \downarrow \downarrow_{S_{n}}^{S_{2 n}}\right\rangle=\left\langle 1_{S_{n}} \uparrow_{S_{n}}^{S_{2 n}}, \chi^{\lambda}\right\rangle
$$

We conclude that, for $\lambda \in \operatorname{Par}_{k}(2 n)$, the multiplicity of V_{k}^{λ}, in $\operatorname{Sym}^{n}\left(M_{k}\right)$ is

$$
\left\langle 1_{S_{n}} \uparrow_{S_{n}}^{S_{2 n}}, \chi^{\lambda}\right\rangle
$$

We shall compute these multiplicities in several steps.
First, we induce in two steps:

$$
1_{S_{n}} \uparrow_{S_{n}}^{S_{2 n}}=\left(1_{S_{n}} \uparrow_{S_{n}}^{B_{n}}\right) \uparrow_{B_{n}}^{S_{2 n}} .
$$

By Lemmas 2.2(a) and 2.3,

$$
\begin{aligned}
\left(\chi^{(n)} \uparrow_{S_{n}}^{B_{n}}\right) \uparrow_{B_{n}}^{S_{2 n}} & =\sum_{i=0}^{n} \chi^{(i),(n-i)} \uparrow_{B_{n}}^{S_{2 n}} \\
& =\sum_{i=0}^{n}\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-i)}\right) \uparrow_{B_{i} \times B_{n-i}}^{B_{n}} \uparrow_{B_{n}}^{S_{2 n}}
\end{aligned}
$$

$$
=\sum_{i=0}^{n}\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-i)}\right) \uparrow_{B_{i} \times B_{n-i}}^{S_{2 n}}
$$

Again, let us induce in two steps:

$$
\begin{aligned}
\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-i)}\right) \uparrow_{B_{i} \times B_{n-i}}^{S_{2 n}} & =\left(\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-i)}\right) \uparrow_{B_{i} \times B_{n-i}}^{S_{2 i} \times S_{2 n-2 i}}\right) \uparrow \begin{array}{l}
S_{2 n} \\
S_{2 i} \times S_{2 n-2 i} \\
\\
\end{array}=\left(\chi^{(i), \emptyset} \uparrow_{B_{i}}^{S_{2 i}} \otimes \chi^{\emptyset,(n-i)} \uparrow_{B_{n-i}}^{S_{2 n-2 i}}\right) \uparrow \uparrow_{S_{2 i} \times S_{2 n-2 i}}^{S_{2 n}}
\end{aligned}
$$

By Lemma 2.1, (a) and (b), the right-hand side is equal to

$$
\left(\sum_{\mu \vdash i} \chi^{2 \cdot \mu} \otimes \sum_{\nu \vdash n-i} \chi^{(2 \cdot v)^{\prime}}\right) \uparrow_{S_{2 i} \times S_{2 n-2 i}}^{S_{2 n}}
$$

We conclude that

$$
1_{S_{n}} \uparrow_{S_{n}}^{S_{2 n}}=\sum_{i=0}^{n} \sum_{\mu \vdash i, \nu \vdash n-i}\left(\chi^{2 \cdot \mu} \otimes \chi^{(2 \cdot v)^{\prime}}\right) \uparrow{ }_{S_{2 i} \times S_{2 n-2 i}}^{S_{2 n}}
$$

Applying the Littlewood-Richardson rule completes the proof.

5.2. A graded refinement of symmetric powers

The space $M_{k}^{\otimes n}$ carries not only an S_{n}-action but also a B_{n}-action, where the signed permutation $(i,-i)(1 \leqslant i \leqslant n)$ acts by transposing the i-th factor in the tensor product of n square matrices. $M_{k}=M_{k}^{+} \oplus M_{k}^{-}$, where $M_{k}^{+}\left(M_{k}^{-}\right)$ is the vector space of symmetric (skew symmetric) matrices of order $k \times k$. Consequently, $M_{k}^{\otimes n}$ is graded by the number of skew symmetric factors. The component of $M_{k}^{\otimes n}$ with i skew symmetric factors, denoted $M_{k}^{\otimes n}(i)$, is invariant under the B_{n}-action, as well as under the diagonal two-sided $G L_{k}$-action.

Lemma 5.3. If the irreducible B_{n}-character $\chi^{\mu, \nu}$ appears in the decomposition of the B_{n}-action on $M_{k}^{\otimes n}(i)$, then $|\nu|=i$.

For a proof see Appendix A.2.
Since the components $M_{k}^{\otimes n}(i)$ are invariant under the S_{n}-action, the S_{n} invariant subspace $\operatorname{Sym}^{n}\left(M_{k}\right)$ inherits the grading by the number of skew symmetric factors. Let $\operatorname{Sym}_{i}^{n}\left(M_{k}\right)$ denote the component with i skew symmetric factors. The following theorem refines Theorem 5.1.

Theorem 5.4. For $\lambda \in \operatorname{Par}_{k}(2 n)$, the multiplicity of V_{k}^{λ} in $\operatorname{Sym}_{i}^{n}\left(M_{k}\right)$ is

$$
\sum_{\mu \vdash n-i, v \vdash i} c_{2 \cdot \mu,(2 \cdot v)^{\prime}}^{\lambda} .
$$

Note. Theorem 5.4 interpolates between two classical results, Theorems 2.6 and 2.7. Indeed, $\operatorname{Sym}_{0}^{n}\left(M_{k}\right)=\operatorname{Sym}^{n}\left(M_{k}^{+}\right)$is the n-th symmetric power of the vector space of symmetric matrices. In this case $i=0$, so $v=\emptyset$. Hence

$$
\sum_{\mu \vdash n} c_{2 \cdot \mu, \emptyset}^{\lambda}= \begin{cases}1, & \text { if } \lambda=2 \cdot \mu \text { for some } \mu \vdash n \\ 0, & \text { otherwise }\end{cases}
$$

This gives Theorem 2.6. Similarly, $\operatorname{Sym}_{n}^{n}\left(M_{k}\right)=\operatorname{Sym}^{n}\left(M_{k}^{-}\right)$. In this case $i=n$, $\mu=\emptyset$, and a similar computation gives Theorem 2.7.

An analogue of Corollary 3.4 follows.
Corollary 5.5. Let $\lambda, \lambda^{\prime} \in \operatorname{Par}_{k}(2 n)$ be conjugate partitions. Then, for every $0 \leqslant i \leqslant n$, the multiplicity of V_{k}^{λ} in $\operatorname{Sym}_{i}^{n}\left(M_{k}\right)$ is equal to the multiplicity of $V_{k}^{\lambda^{\prime}}$ in $\operatorname{Sym}_{n-i}^{n}\left(M_{k}\right)$.

Proof. Combine Theorem 5.4 with identity (2.1).
Proof of Theorem 5.4. This is a refinement of the proof of Theorem 5.1. In this refinement the group B_{n} appears in an essential way, whereas in the proof of Theorem 5.1 it was used only as a technical tool.
$M_{k}^{\otimes n}$ is a B_{n}-module, and $\operatorname{Sym}^{n}\left(M_{k}\right)$ is its submodule, for which the B_{n} action, when restricted to S_{n}, is trivial. Hence, if the irreducible B_{n}-character $\chi^{\mu, \nu}$ appears in $\operatorname{Sym}^{n}\left(M_{k}\right)$, then

$$
\left\langle\chi^{\mu, v} \downarrow_{S_{n}}^{B_{n}}, 1_{S_{n}}\right\rangle \neq 0
$$

By Lemma 2.2(a),

$$
\left\langle\chi^{\mu, \nu} \downarrow{ }_{S_{n}}^{B_{n}}, 1_{S_{n}}\right\rangle=\left\langle\chi^{\mu, v}, 1_{S_{n}} \uparrow_{S_{n}}^{B_{n}}\right\rangle=\left\langle\chi^{\mu, \nu}, \sum_{j=0}^{n} \chi^{(n-j),(j)}\right\rangle,
$$

and this is nonzero (and equal to 1) if and only if $\mu=(n-j)$ and $v=(j)$ for some $1 \leqslant j \leqslant n$.

Combining this with Lemma 5.3 we conclude that $\chi^{(n-i),(i)}$ is the unique irreducible B_{n}-character in $\operatorname{Sym}_{i}^{n}\left(M_{k}\right)$.

Now, as in the proof of Theorem 5.1, the multiplicity of V_{k}^{λ} in $\operatorname{Sym}_{i}^{n}\left(M_{k}\right)$ is

$$
\left\langle\chi^{\lambda} \downarrow_{B_{n}}^{S_{2 n}}, \chi^{(n-i),(i)}\right\rangle=\left\langle\chi^{\lambda}, \chi^{(n-i),(i)} \uparrow_{B_{n}}^{S_{2 n}}\right\rangle .
$$

By Lemmas 2.3 and 2.1,

$$
\begin{aligned}
\chi^{(n-i),(i)} \uparrow_{B_{n}}^{S_{2 n}} & =\left(\chi^{(n-i), \emptyset} \otimes \chi^{\emptyset,(i)}\right) \uparrow_{B_{n-i} \times B_{i}}^{S_{2 n}} \\
& =\left(\sum_{\mu \vdash n-i} \chi^{2 \cdot \mu} \otimes \sum_{\nu \vdash i} \chi^{(2 \cdot \nu)^{\prime}}\right) \uparrow_{S_{2 n-2 i} \times S_{2 i}}^{S_{2 n}}
\end{aligned}
$$

The Littlewood-Richardson rule completes the proof of Theorem 5.4.

5.3. Hook components of tensor powers

In this subsection we generalize the results of the previous sections to obtain a bivariate interpolation between symmetric and exterior powers of symmetric and skew symmetric matrices.

As before, the n-th tensor power $M_{k}^{\otimes n}$ carries an S_{n}-action. The symmetric power $\operatorname{Sym}^{n}\left(M_{k}\right)$ is the S_{n}-invariant part, i.e., corresponds to the trivial character $\chi^{(n)}$. The exterior power corresponds to the sign character $\chi^{\left(1^{n}\right)}$. We shall denote the factor corresponding to the hook character $\chi^{\left(n-t, 1^{t}\right)}(0 \leqslant t \leqslant n-1)$ by $M_{k}^{\otimes n}(t)$ with the convention $M_{k}^{\otimes n}(-1)=M_{k}^{\otimes n}(n)=0$.

Theorem 5.6. For every $0 \leqslant t \leqslant n-1$ and $\lambda \in \operatorname{Par}_{k}(2 n)$, the multiplicity of V_{k}^{λ} in $M_{k}^{\otimes n}(t) \oplus M_{k}^{\otimes n}(t-1)$ is

$$
\sum_{\substack{|\alpha|+|\beta|=n-t,|\gamma|+|\delta|=t}} c_{2 \cdot \alpha,(2 \cdot \beta)^{\prime}, 2 * \gamma,(2 * \delta)^{\prime}}^{\lambda},
$$

where the sum runs over all partitions α and β with total size $n-t$, and partitions γ and δ with distinct parts and total size t. The operations \cdot and $*$ are as defined in Section 2.1, and the extended Littlewood-Richardson coefficients are as defined in Section 2.2.

Proof. Similar arguments to those in the proof of Theorem 5.1 show that the multiplicity of V_{k}^{λ} in the hook component $M_{k}^{\otimes n}(t) \oplus M_{k}^{\otimes n}(t-1)$ is

$$
\left\langle\left(\chi^{\left(n-t, 1^{t}\right)}+\chi^{\left(n-t+1,1^{t-1}\right)}\right) \uparrow_{S_{n}}^{S_{2 n}}, \chi^{\lambda}\right\rangle
$$

By (3.1), this is equal to

$$
\begin{aligned}
& \left\langle\left(\chi^{(n-t)} \otimes \chi^{\left(1^{t}\right)}\right) \uparrow_{S_{n-t} \times S_{t} \uparrow}^{S_{n}} S_{S_{n}}^{S_{n}}, \chi^{\lambda}\right\rangle \\
& \quad=\left\langle\left(\chi^{(n-t)} \otimes \chi^{\left(1^{t}\right)}\right) \uparrow_{S_{n-t} \times S_{t}}^{\left.B_{n-t} \times B_{t} \uparrow_{B_{n-t} \times B_{t}}^{S_{2 n}}, \chi^{\lambda}\right\rangle}\right.
\end{aligned}
$$

By Lemmas 2.2 and 2.3, for every t,

$$
\begin{aligned}
& \left(\chi^{(n-t)} \otimes \chi^{\left(1^{t}\right)}\right) \uparrow_{S_{n-t} \times S_{t}}^{B_{n-t} \times B_{t}} \\
& \quad=\chi^{(n-t)} \uparrow_{S_{n-t}}^{B_{n-t}} \otimes \chi^{\left(1^{t}\right)} \uparrow_{S_{t}}^{B_{t}}=\sum_{i=0}^{n-t} \chi^{(i),(n-t-i)} \otimes \sum_{j=0}^{t} \chi^{\left(1^{j}\right),\left(1^{t-j}\right)} \\
& \quad=\sum_{i=0}^{n-t}\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-t-i)}\right) \uparrow_{B_{i} \times B_{n-t-i}}^{B_{n-t}} \\
& \quad \otimes \sum_{j=0}^{t}\left(\chi^{\left(1^{j}\right), \emptyset} \otimes \chi^{\emptyset,\left(1^{t-j}\right)}\right) \uparrow_{B_{j} \times B_{t-j}}^{B_{t}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\chi^{(n-t)} \otimes \chi^{\left(1^{t}\right)}\right) \uparrow_{S_{n-t} \times S_{t}}^{S_{2 n}} \\
& =\sum_{i=0}^{n-t} \sum_{j=0}^{t}\left(\chi^{(i), \emptyset} \otimes \chi^{\emptyset,(n-t-i)} \otimes \chi^{\left(1^{j}\right), \emptyset}\right. \\
& \left.\otimes \chi^{\emptyset,\left(1^{t-j}\right)}\right) \uparrow_{B_{i} \times B_{n-t-i} \times B_{j} \times B_{t-j}}^{S_{2 i} \times S_{2(n-t-i)} \times S_{2 j} \times S_{2(t-j)}} \uparrow_{S_{2 i} \times S_{2(n-t-i)} \times S_{2 j} \times S_{2(t-j)}} \\
& =\sum_{i=0}^{n-t} \sum_{j=0}^{t}\left(\chi^{(i), \emptyset} \uparrow_{B_{i}}^{S_{2 i}} \otimes \chi^{\emptyset,(n-t-i)} \uparrow_{B_{n-t-i}}^{S_{2(n-t-i)}} \otimes \chi^{\left(1^{j}\right), \emptyset} \uparrow_{B_{j}}^{S_{2 j}}\right. \\
& \left.\otimes \chi^{\emptyset,\left(1^{t-j}\right)} \uparrow_{B_{t-j}}^{S_{2(t-j)}}\right) \uparrow_{S_{2 i} \times S_{2(n-t-i)} \times S_{2 j} \times S_{2(t-j)}}^{S_{2 n}} .
\end{aligned}
$$

Lemma 2.1 and the Littlewood-Richardson rule complete the proof.
Let $M_{k}^{\otimes n}(i, j)$ be the component of $M_{k}^{\otimes n}(i)$ with j skew symmetric factors. The following result is a common refinement of Theorems 5.4 and 5.6.

Theorem 5.7. For every $0 \leqslant i \leqslant n, 0 \leqslant j \leqslant n$ and $\lambda \in \operatorname{Par}_{k}(2 n)$, the multiplicity of V_{k}^{λ} in $M_{k}^{\otimes n}(i, j) \oplus M_{k}^{\otimes n}(i-1, j)$ is

$$
\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n \\|\beta|+|\delta|=j \\|\gamma|+|\delta|=i}} c_{2 \cdot \alpha,(2 \cdot \beta)^{\prime}, 2 * \gamma,(2 * \delta)^{\prime}}^{\lambda},
$$

where the sum is over all partitions $\alpha, \beta, \gamma, \delta$ with total size n such that β and δ have distinct parts and total size j, and γ and δ have total size i.

Proof. Lemma 5.3, used as in the proof of Theorem 5.4, shows that the factors of $M_{k}^{\otimes n}(i, j) \oplus M_{k}^{\otimes n}(i-1, j)$ in the decomposition given in Theorem 5.6 are those for which $|\beta|+|\delta|=j$.

Corollary 5.8. Let $\lambda \subseteq\left(k^{k}\right)$ be a partition of $2 n$. For every $0 \leqslant i \leqslant n-1$ and $0 \leqslant j \leqslant n$, the multiplicity of V_{k}^{λ} in $M_{k}^{\otimes n}(i, j)$ is equal to the multiplicity of $V_{k}^{\lambda^{\prime}}$ in $M_{k}^{\otimes n}(i, n-j)$.

Proof. It suffices to show that for every $0 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$, the multiplicity of V_{k}^{λ} in $M_{k}^{\otimes n}(i, j) \oplus M_{k}^{\otimes n}(i-1, j)$ is equal to the multiplicity of $V_{k}^{\lambda^{\prime}}$ in
$M_{k}^{\otimes n}(i, n-j) \oplus M_{k}^{\otimes n}(i-1, n-j)$. By Theorem 5.7, the multiplicity of V_{k}^{λ} in $M_{k}^{\otimes n}(i, j) \oplus M_{k}^{\otimes n}(i-1, j)$ is

$$
\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n \\|\beta|+|\delta|=j \\|\gamma|+|\delta|=i}} c_{2 \cdot \alpha,(2 \cdot \beta)^{\prime}, 2 * \gamma,(2 * \delta)^{\prime}}^{\lambda} .
$$

By (2.1) and the definition of $c_{\alpha, \beta, \gamma, \delta}^{\lambda}$, this is equal to

$$
\sum_{\substack{|\alpha|+|\beta|+|\gamma|+|\delta|=n \\|\beta|+|||=j\\| \gamma|+|\delta|=i}} c_{(2 \cdot \alpha)^{\prime}, 2 \cdot \beta,(2 * \gamma)^{\prime}, 2 * \delta,}^{\lambda^{\prime}},
$$

which is the multiplicity of $V_{k}^{\lambda^{\prime}}$ in $M_{k}^{\otimes n}(i, n-j) \oplus M_{k}^{\otimes n}(i-1, n-j)$.

Acknowledgments

The authors thank R. Howe, N. Wallach and an anonymous referee for their useful comments.

Appendix A

A.1. Proof of Lemma 2.2

Lemma 2.2 follows from a more general result.
For partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$, let $\lambda \oplus \mu$ be the skew shape defined by

$$
\lambda \oplus \mu:=\left(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{1}, \ldots, \lambda_{k}+\mu_{1}, \mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) /\left(\mu_{1}^{k}\right)
$$

Theorem A.1. If (λ, μ) is a bipartition of n then the restriction

$$
\chi^{\lambda, \mu} \downarrow_{S_{n}}^{B_{n}}=\chi^{\lambda \oplus \mu} .
$$

Proof. The characters $\chi^{\lambda \oplus \mu}$ and $\chi^{\lambda, \mu}$, evaluated at elements of S_{n}, have the same recursive formula (Murnaghan-Nakayama rule). For $\chi^{\lambda, \mu}$ see [16, Theorem 4.3]. For $\chi^{\lambda \oplus \mu}$ see [9, Theorem 5.6.16].

Proof of Lemma 2.2. (a) Let (λ, μ) be a bipartition of n. By Frobenius reciprocity and Theorem A.1,

$$
\begin{aligned}
\left\langle\chi^{(n)} \uparrow S_{S_{n}}^{B_{n}}, \chi^{\lambda, \mu}\right\rangle & =\left\langle\chi^{(n)}, \chi^{\lambda, \mu} \downarrow{ }_{S_{n}}^{B_{n}}\right\rangle=\left\langle\chi^{(n)}, \chi^{\lambda \oplus \mu}\right\rangle \\
& = \begin{cases}1, & \max \{\ell(\lambda), \ell(\mu)\} \leqslant 1, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

The last equality follows from the Littlewood-Richardson rule, reformulated for skew shapes $[15,(7.64)]$. By this rule, $\left\langle\chi^{(n)}, \chi^{\lambda \oplus \mu}\right\rangle$ is nonzero (and equal to 1) if and only if $\lambda \oplus \mu$ is a horizontal strip (i.e., each column contains at most one box).
(b) The proof for $\chi^{\left(1^{n}\right)}$ is similar.

A.2. Proof of Lemma 5.3

Proof. Let $\sigma_{i}:=(i,-i) \in B_{n}(1 \leqslant i \leqslant n)$, and let η be the sum $\sum_{i=1}^{n} \sigma_{i} \in \boldsymbol{C}\left[B_{n}\right]$. Consider the tensor product $w=w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \in M_{k}^{\otimes n}$, where each w_{i} is either a symmetric or a skew symmetric matrix. Then according to the B_{n}-action, defined in Section 5.2,

$$
\sigma_{i}(w)= \begin{cases}w, & \text { if } w_{i} \text { is symmetric } \\ -w, & \text { if } w_{i} \text { is skew symmetric. }\end{cases}
$$

Hence, for every vector $v \in M_{k}^{\otimes n}(i)$,

$$
\begin{equation*}
\eta(v)=(n-2 i) v . \tag{A.1}
\end{equation*}
$$

On the other hand, the set $\left\{\sigma_{i} \mid 1 \leqslant i \leqslant n\right\}$ is a conjugacy class in B_{n}. Thus the element $\eta=\sum_{i=1}^{n} \sigma_{i}$ is in the center of $\boldsymbol{C}\left[B_{n}\right]$. By Schur's lemma, for every vector v in the irreducible B_{n}-module $S^{\mu, \nu}$,

$$
\eta(v)=c^{\mu, \nu} \cdot v, \quad \text { where } c^{\mu, v}=\frac{\chi^{\mu, v}(\eta)}{\chi^{\mu, v}(\mathrm{id})}=\frac{n \chi^{\mu, v}\left(\sigma_{1}\right)}{\chi^{\mu, v}(\mathrm{id})} .
$$

Let $f^{\lambda}, f^{\mu, \nu}$ be the number of standard Young tableaux (bitableaux) of shapes $\lambda,(\mu, v)$, respectively. Recall that

$$
\chi^{\mu, \nu}(\mathrm{id})=f^{\mu, \nu}=\binom{n}{|\nu|} f^{\mu} f^{\nu},
$$

and that $\chi^{\mu, \nu}\left(\sigma_{1}\right)$ is equal to the number of standard Young bitableaux of shape (μ, v), in which the digit 1 is in the first diagram μ, minus the number of those in which 1 is in the second diagram ν. Thus

$$
\chi^{\mu, \nu}\left(\sigma_{1}\right)=\binom{n-1}{|\nu|} f^{\mu} f^{\nu}-\binom{n-1}{|\nu|-1} f^{\mu} f^{\nu}=\frac{n-2|\nu|}{n}\binom{n}{|\nu|} f^{\mu} f^{\nu} .
$$

It follows that

$$
c^{\mu, \nu}=\frac{n \chi^{\mu, \nu}\left(\sigma_{1}\right)}{\chi^{\mu, v}(\mathrm{id})}=n-2|\nu| ;
$$

and therefore

$$
\begin{equation*}
\eta(v)=(n-2|\nu|) v \quad\left(\forall v \in S^{\mu, v}\right) . \tag{A.2}
\end{equation*}
$$

Combining (A.1) with (A.2) completes the proof.

References

[1] Y. Dvir, On the Kronecker product of S_{n} characters, J. Algebra 154 (1993) 125-140.
[2] C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934) 396443.
[3] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, in: Encyclopedia Math. Appl., Vol. 68, Cambridge University Press, 1998.
[4] S. Helgason, A duality for symmetric spaces with applications, Adv. Math. 5 (1970) 1-54
[5] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539-570.
[6] R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991) 565-619.
[7] A.T. James, Zonal polynomials of the real positive definite matrices, Ann. of Math. 74 (1961) 456-469.
[8] G.D. James, A. Kerber, The Representation Theory of the Symmetric Group, in: Encyclopedia Math. Appl., Vol. 16, Addison-Wesley, 1981.
[9] A. Kerber, Algebraic Combinatorics via Finite Group Actions, Bibliographisches Institut, Mannheim, 1991.
[10] B. Kostant, Lie algebra cohomology and the generalized Borel Weil theorem, Ann. of Math. 74 (1961) 329-387.
[11] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., in: Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1995.
[12] A. Regev, The Kronecker product of S_{n} characters and an $A \otimes B$ theorem for Capelli identities, J. Algebra 66 (1980) 505-510.
[13] J.P. Serre, Linear Representations of Finite Groups, Springer-Verlag, 1977.
[14] G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984) 463-488.
[15] R.P. Stanley, in: Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, Cambridge, 1999.
[16] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989) 359-396.
[17] J.R. Stembridge, On Schur Q-functions and the primitive idempotents of commutative Hecke algebra, J. Algebraic Combin. 1 (1992) 71-95.
[18] R. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942) 371-388.

[^0]: * Corresponding author.

 E-mail addresses: radin@math.biu.ac.il (R.M. Adin), frumkin@math.tau.ac.il (A. Frumkin), yuvalr@math.biu.ac.il (Y. Roichman).
 ${ }^{1}$ Research was supported in part by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by internal research grants from Bar-Ilan University.

