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Abstract

The hook components ofV⊗n interpolate between the symmetric power Symn(V )

and the exterior power∧n(V ). WhenV is the vector space ofk × m matrices overC,
we decompose the hook components into irreducibleGLk(C) × GLm(C)-modules. In
particular, classical theorems are proved as boundary cases. For the algebra of square
matrices overC, a bivariate interpolation is presented and studied.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The vector spaceMk,m of k×m matrices overC carries a (left)GLk(C)-action
and a (right)GLm(C)-action. A classical theorem of Ehresmann [2] describes
the decomposition of an exterior power ofMk,m into irreducible bimodules. The
symmetric analogue was given later (cf. [6]). See Section 2.3 below.

In this paper we present a natural interpolation between these theorems,
in terms of hook components of then-th tensor power ofMk,m. Duality and
asymptotics of the decomposition of hook components follow.
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Similar methods are then applied to the diagonal two-sidedGLk(C)-action
on the vector space ofk × k matrices. Classical theorems of Thrall [18] and
James [7] (for the symmetric powers of symmetric matrices), and of Helgason
[4], Shimura [14] and Howe [5] (for the symmetric powers of anti-symmetric
matrices) are extended, and a bivariate interpolation is presented.

Proofs are obtained using the representation theory of the symmetric and
hyperoctahedral groups, together with Schur–Weyl duality; no use is made of
highest-weight theory.

1.1. Main results

Let Mk,m be the vector space ofk × m matrices overC. The tensor power
M⊗n

k,m carries a naturalSn-action by permuting the factors. This action decomposes

the tensor power into irreducibleSn-modules. LetM⊗n
k,m(i) be the isotypic

component ofM⊗n
k,m corresponding to the irreducibleSn-representation indexed

by the hook(n − i,1i ), where 0� i � n − 1. This component still carries a
GLk(C)×GLm(C)-action.

Theorem 1.1. Let λ and µ be partitions ofn, of lengths at mostk and m,
respectively. For every0 � i � n the multiplicity of the irreducible GLk(C) ×
GLm(C)-moduleV λ

k ⊗ V
µ
m in M⊗n

k,m(i − 1)⊕M⊗n
k,m(i) is∑

α�n−i, β�i

cλ
αβc

µ

αβ ′

wherecλ
αβ are Littlewood–Richardson coefficients,β ′ is the partition conjugate

to β , andM⊗n
k,m(−1) = M⊗n

k,m(n) = 0.

See Theorem 3.3 below; for definitions and notation see Section 2 below. The-
orem 1.1 interpolates between two well-known classical theorems (Theorems 2.4
and 2.5 below; see the remark following Theorem 3.3).

The following corollary generalizes the duality between Theorem 2.4 and
Theorem 2.5.

Corollary 1.2. Let µ ⊆ (mm) andλ be partitions ofn. For every0 � i � n − 1

the multiplicity ofV λ
k ⊗V

µ
m in M⊗n

k,m(i) is equal to the multiplicity ofV λ
k ⊗V

µ′
m in

M⊗n
k,m(n− 1− i).

See Corollary 3.4 below.
Let λ andµ be partitions ofn. Define thedistance

d(λ,µ) := 1

2

∑
i

|λi −µi |.
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Theorem 1.3. If V λ
k ⊗V

µ
m appears as a factor inM⊗n

k,m(t) ( for some0 � t � n−1)
then

d(λ,µ) < km.

See Theorem 4.3 below. This shows that, forV λ
k ⊗ V

µ
m to appear in a hook

component,λ andµ must be very “close” to each other (fork andm fixed, n

tending to infinity).
Consider now the vector spaceMk,k of k × k square matrices overC. Let

M⊗n
k,k (i, j) be the component ofM⊗n

k,k (i) consisting of tensors withj skew

symmetric andn − j symmetric factors.M⊗n
k,k (i, j) carries aGLk(C) two-sided

diagonal action. The following theorem describes its decomposition as aGLk(C)-
module.

Theorem 1.4. Let λ be a partition of2n of length at mostk. For every0 � i � n

and0 � j � n, the multiplicity ofV λ
k in M⊗n

k,k (i, j)⊕M⊗n
k,k (i − 1, j) is∑

|α|+|β|+|γ |+|δ|=n,

|β|+|δ|=j,

|γ |+|δ|=i

cλ
2·α,(2·β)′,2∗γ,(2∗δ)′,

where the sum runs over all partitionsα,β, γ, δ with total sizen such that
β and δ have distinct parts and total sizej , and γ and δ have total sizei.
The operations∗ and · are defined in Section2.1. Definition of the(extended)
Littlewood–Richardson coefficients is given in Section2.2.

See Theorem 5.7 below. Theorem 1.4, fori = 0, interpolates between classical
results, regarding symmetric powers of the spaces of symmetric and skew
symmetric matrices (Theorems 2.6 and 2.7 below). Another boundary case,i = n,
gives an interpolation between exterior powers of the same matrix spaces.

Corollary 1.5. Let λ ⊆ (kk) be a partition of2n. For every0 � i � n − 1 and
0 � j � n, the multiplicity ofV λ

k in M⊗n
k,k (i, j) is equal to the multiplicity ofV λ′

k

in M⊗n
k,k (i, n− j).

See Corollary 5.8 below.

2. Background and notation

2.1. Partitions

Let n be a positive integer. Apartition of n is a vector of positive integers
λ = (λ1, λ2, . . . , λk), whereλ1 � λ2 � · · ·� λk andλ1+· · ·+λk = n. We denote
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this by λ � n. The sizeof a partitionλ � n, denoted|λ|, is n, and its length,
�(λ), is the number of parts. The empty partition∅ has size and length zero:
|∅| = �(∅) = 0. The set of all partitions ofn with at mostk parts is denoted by
Park(n).

For a partitionλ = (λ1, . . . , λk) define theconjugate partitionλ′ = (λ′1, . . . , λ′t )
by lettingλ′i be the number of parts ofλ that have size at leasti.

A partitionλ = (λ1, . . . , λk) may be viewed as the subset{
(i, j)

∣∣1 � i � k, 1 � j � λi

}⊂ Z2,

the correspondingYoung diagram. Using this interpretation, we may speak of
the intersectionλ ∩ µ and the set differenceλ\µ of any two partitions. The set
difference is called askew shape; whenµ ⊆ λ it is usually denotedλ/µ.

Let (km) := (k, . . . , k) (m equal parts). Thus, for example,λ ⊆ (km) means
λ1 � k andλ′1 � m.

We shall also use the Frobenius notation for partitions, defined as follows:
Let λ be a partition ofn and setd := max{i | λi − i � 0} (i.e., the length of the
main diagonal in the Young diagram ofλ). Then the Frobenius notation forλ is
(λ1 − 1, . . . , λd − d | λ′1 − 1, . . . , λ′d − d).

For any partition λ = (λ1, . . . , λk) of n define the following doubling
operation:

2 · λ := (2λ1, . . . ,2λk) � 2n.

If all the parts ofλ are distinct, define also

2∗ λ := (λ1, . . . , λk | λ1 − 1, . . . , λk − 1) � 2n,

in the Frobenius notation.

2.2. Representations

For any groupG denote the trivial representation by 1G. In this paper we shall
denote the irreducibleSn-modules (Specht modules) bySλ, and the irreducible
GLk(C)-modules (Weyl modules) byV λ

k .
The Littlewood–Richardson coefficients describe the decomposition of tensor

products of Weyl modules. Letµ � t andν � n− t . Then

V
µ
k ⊗ V ν

k
∼=

⊕
λ�n

cλ
µ,νV

λ
k ,

for k � max{�(λ), �(µ), �(ν)} (and the coefficientscλ
µ,ν are then independent

of k). By Schur–Weyl duality they are also the coefficients of the outer product of
Specht modules. Namely,

(Sµ ⊗ Sν)↑Sn

St×Sn−t

∼=
⊕
λ�n

cλ
µ,νS

λ.
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The following identity is well known: for all triples of partitionsλ,µ, ν,

cλ
µ,ν = cλ′

µ′,ν ′ . (2.1)

We shall also use the following notation forLittelwood–Richardson coefficients:

cλ
α,β,γ,δ :=

∑
µ,ν

cλ
α,µc

µ
β,νc

ν
γ,δ;

so that

V α
k ⊗ V

β
k ⊗ V

γ

k ⊗ V δ
k =

⊕
λ

cλ
α,β,γ,δV

λ
k .

Let Bn be the Weyl group of typeB and rank n, also known as the
hyperoctahedral group or the group of signed permutations. Abipartition of n

is an ordered pair(µ, ν) of partitions of total size|µ| + |ν| = n. The irreducible
characters ofBn are indexed by bipartitions ofn; denote byχµ,ν the character
indexed by(µ, ν).

Consider the following natural embeddings ofSn into Bn and ofBn into S2n:
S2n is the group of permutations on{−n, . . . ,−1,1, . . . , n}. Bn is embedded
as the subgroup of allπ ∈ S2n satisfyingπ(−i) = −π(i) (1 � i � n). Sn is
embedded as the subgroup of allπ ∈ Bn satisfying alsoπ(i) > 0 (1� i � n).

The following lemmas, used in Section 5, describe certain induced characters
via the above embeddings. Lemma 2.1 is an immediate consequence of [11,
Chapter I, Section 7, Example 4; Chapter I, Section 8, Examples 5–6; and
Chapter VII, (2.4)]. See also [17].

Lemma 2.1.

(a) 1Bn↑S2n

Bn
= χ(n),∅↑S2n

Bn
=

∑
λ�n

χ2·λ;

(b) χ∅,(n)↑S2n

Bn
=

∑
λ�n

χ(2·λ)′;

(c) χ(1n),∅↑S2n

Bn
=

∑
λ�n

χ2∗λ;

(d) χ∅,(1n)↑S2n

Bn
=

∑
λ�n

χ(2∗λ)′ ;

where the last two sums are over partitions with distinct parts.

Lemma 2.2.

(a) χ(n)↑Bn

Sn
=

n∑
i=0

χ(i),(n−i).

(b) χ(1n)↑Bn

Sn
=

n∑
i=0

χ(1i ),(1n−i).
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For a proof, see Appendix A.1.
The following lemma is a special case of the Littlewood–Richardson rule

for Bn; cf. [16, Lemma 7.1].

Lemma 2.3. χ(i),(n−i) = (χ(i),∅ ⊗ χ∅,(n−i))↑Bn

Bi×Bn−i
.

2.3. Symmetric and exterior powers of matrix spaces

In this subsection we cite well-known classical theorems, concerning the
decomposition into irreducibles of symmetric and exterior powers of matrix
spaces, which are to be generalized in this paper.

Let Mk,m be the vector space ofk × m matrices overC. ThenMk,m carries
a (left) GLk(C)-action and a (right)GLm(C)-action. A classical theorem of
Ehresmann [2] (see also [10]) describes the decomposition of an exterior power
of Mk,m into irreducibleGLk(C)×GLm(C)-modules.

Theorem 2.4. Then-th exterior power ofMk,m is isomorphic, as a GLk(C) ×
GLm(C)-module, to

∧n(Mk,m) ∼=
⊕
λ�n

λ⊆(mk)

V λ
k ⊗ V λ′

m ,

whereλ′ is the partition conjugate toλ.

The following three results on symmetric powers were proved several times
independently; these results may be found in [3,6].

The symmetric analogue of Theorem 2.4 was studied, for example, in [6,
(11.1.1)] and [3, Theorem 5.2.7].

Theorem 2.5. Then-th symmetric power ofMk,m is isomorphic, as a GLk(C) ×
GLm(C)-module, to

Symn(Mk,m) ∼=
⊕
λ�n

�(λ)�min(k,m)

V λ
k ⊗ V λ

m.

Let M+
k,k be the vector space of symmetrick × k matrices overC. This space

carries a natural two sidedGLk(C)-action. The following theorem describes the
decomposition of its symmetric powers into irreducibleGLk(C)-modules.

Theorem 2.6. Then-th symmetric power ofM+
k,k is isomorphic, as a GLk(C)-

module, to

Symn
(
M+

k,k

) ∼= ⊕
λ∈Park(n)

V 2·λ
k .
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This theorem was proved by A.T. James [7], but had already appeared in an
early work of Thrall [18]. See also [5,14], [6, (11.2.2)] and [3, Theorem 5.2.9] for
further proofs and references.

Let M−
k,k be the vector space of skew symmetrick × k matrices overC.

Theorem 2.7. Then-th symmetric power ofM−
k,k is isomorphic, as a GLk(C)-

module, to

Symn
(
M−

k,k

)∼= ⊕
(2·λ)′∈Park(2n)

V
(2·λ)′
k .

This theorem is proved in [4,5,14]. See also [6, (11.3.2)] and [3, Theorem
5.2.11].

3. Hook components of M⊗n
k,m

ConsiderM = Mk,m = Ck×m, the vector space ofk × m matrices overC.
ThenM ∼= V ⊗W , whereV ∼=Ck andW ∼=Cm. ThusM carries a (left)GL(V )-
action and a (right)GL(W)-action, which commute. Its tensor powerM⊗n ∼=
V ⊗n ⊗ W⊗n thus carries aGL(V ) × Sn × Sn × GL(W) linear representation;
one copy of the symmetric groupSn permutes the factors inV ⊗n, and the other
copy of Sn permutes the factors inW⊗n. The actions of all four groups clearly
commute. We are interested in theGL(V )×Sn×GL(W)-action onM⊗n obtained
through the diagonal embeddingSn ↪→ Sn × Sn, π �→ (π,π).

Lemma 3.1.

M⊗n ∼=
⊕

λ∈Park(n)

ν∈Par(n)

µ∈Parm(n)

αλµνV
λ
k ⊗ Sν ⊗ V µ

m ,

whereαλµν := 〈χλχµχν,1Sn〉.

Proof. By Schur–Weyl duality (the double commutant theorem) [3, Theorem
9.1.2],

V⊗n ∼=
⊕

λ∈Park(n)

V λ
k ⊗ Sλ

asGL(V )× Sn-modules. Similarly,

W⊗n ∼=
⊕

λ∈Parm(n)

V λ
m ⊗ Sλ
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asGL(W) × Sn-modules. Therefore

M⊗n ∼= V ⊗n ⊗W⊗n ∼=
⊕

λ∈Park(n)

µ∈Parm(n)

V λ
k ⊗ Sλ ⊗ Sµ ⊗ V µ

m

asGL(V ) × Sn × Sn × GL(W)-modules.
Using the diagonal embeddingSn ↪→ Sn × Sn,

M⊗n ∼=
⊕

λ∈Park(n)

µ∈Parm(n)

V λ
k ⊗ (

Sλ ⊗ Sµ
)↓Sn×Sn

Sn
⊗ V µ

m

asGL(V ) × Sn ×GL(W)-modules.
Note that theSn-character of(Sλ ⊗ Sµ)↓Sn×Sn

Sn
is the standard inner tensor

product (sometimes called Kronecker product) of theSn-charactersχλ andχµ.
Hence, by elementary representation theory,(

Sλ ⊗ Sµ
)↓Sn×Sn

Sn

∼=
⊕
ν�n

αλµνS
ν, where

αλµν =
〈
χλχµ,χν

〉= 1

n!
∑
π∈Sn

χλ(π)χµ(π)χν(π) = 〈
χλχµχν,1Sn

〉
. ✷

In particular, Lemma 3.1 gives Theorems 2.4 and 2.5.

Corollary 3.2.

(1) Symn(M) ∼=
⊕
λ�n

�(λ)�min(k,m)

V λ
k ⊗ V λ

m.

(2) ∧n(M) ∼=
⊕
λ�n

λ⊆(mk)

V λ
k ⊗ V λ′

m .

Proof. Symn(M) is the isotypic component ofM⊗n corresponding to the trivial
characterχ(n) of the symmetric group. Thus, by Lemma 3.1,

Symn(M) ∼=
⊕

λ∈Park(n)

µ∈Parm(n)

αλ,µ,(n)V
λ
k ⊗ S(n) ⊗ V µ

m .

But by the orthonormality of irreducible characters,

αλ,µ,(n) =
〈
χλχµ,χ(n)

〉= 〈
χλ,χµχ(n)

〉= 〈
χλ,χµ

〉= δλµ.

This proves (1), namely Theorem 2.5.
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Then-th exterior power is the isotypic component ofM⊗n corresponding to
the sign characterχ(1n) of the symmetric group. Recall that for any partition
µ � n, χµχ(1n) = χµ′

. Thus

αλ,µ,(1n) =
〈
χλχµ,χ(1n)

〉= 〈
χλ,χµχ(1n)

〉= 〈
χλ,χµ′ 〉 = δλµ′ .

This proves (2), namely, Theorem 2.4.✷
Let M be the vector space ofk × m matrices as before. The tensor power

M⊗n carries a naturalSn-action by permuting the factors. This action decomposes
into irreducibleSn-representations. LetM⊗n(t) be the component ofM⊗n,
corresponding to the irreducible hook representation(n − t,1t ), 0 � t � n − 1.
This component carries aGLk(C)× GLm(C)-action.

Theorem 3.3. Let λ ∈ Park(n) andµ ∈ Parm(n). For every0 � t � n, the multi-
plicity of the irreducible GLk(C)× GLm(C)-moduleV λ

k ⊗ V
µ
m in M⊗n(t − 1)⊕

M⊗n(t) is∑
α�n−t

β�t

cλ
αβc

µ

αβ ′

wherecλ
αβ are Littlewood–Richardson coefficients,β ′ is the partition conjugate

to β , andM⊗n(−1) = M⊗n(n) = 0.

Remark. Theorem 3.3 may be considered as an interpolation between Theo-
rems 2.4 and 2.5.M⊗n(0) ∼= Symn(M) andM⊗n(−1) = 0. Substitutingt = 0
forcesβ = ∅. Henceλ = α = µ. So, the multiplicity isδλµ. This gives Theo-
rem 2.5.

Similarly, M⊗n(n − 1) ∼= ∧n(M) andM⊗n(n) = 0. Substitutingt = n forces
α = ∅. Henceλ= β = µ′. So, the multiplicity isδλµ′ . This gives Theorem 2.4.

Proof. By Lemma 3.1,

M⊗n(t) ∼=
⊕

λ∈Park(n)

µ∈Parm(n)

αλ,µ,(n−t,1t )V
λ
k ⊗ S(n−t,1t ) ⊗ V µ

m

is the decomposition of this component into irreducibles.
Denote by 1t andεt the trivial and sign characters, respectively, ofSt . By the

combinatorial interpretation of the Littlewood–Richardson rule (cf. [8, Theorem
2.8.13]), for every 0� t � n

(1n−t ⊗ εt )↑Sn

Sn−t×St
= χ(n−t,1t ) + χ(n−t+1,1t−1). (3.1)

Hence, by Frobenius reciprocity,
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αλ,µ,(n−t,1t ) + αλ,µ,(n−t+1,1t−1) = 〈
χλχµ,χ(n−t,1t ) + χ(n−t+1,1t−1)

〉
= 〈

χλχµ, (1n−t ⊗ εt )↑Sn

Sn−t×St

〉
= 〈(

χλχµ
)↓Sn

Sn−t×St
,1n−t ⊗ εt

〉
= 〈

χλ↓Sn

Sn−t×St
, χµ↓Sn

Sn−t×St
· (1n−t ⊗ εt )

〉
.

By the Littlewood–Richardson rule the last expression is equal to〈 ∑
α�n−t, β�t

cλ
αβχα ⊗ χβ,

∑
α�n−t, β�t

c
µ
αβχα ⊗ χβ · (1n−t ⊗ εt )

〉

=
〈 ∑
α�n−t, β�t

cλ
αβχα ⊗ χβ,

∑
α�n−t, β�t

c
µ
αβχα ⊗ χβ ′

〉

=
∑

α�n−t, β�t

cλ
αβc

µ

αβ ′ . ✷

The following corollary generalizes the “duality” of Theorems 2.4 and 2.5.

Corollary 3.4. Let λ ∈ Park(n), and letµ,µ′ ∈ Parm(n) be conjugate partitions.
Then, for every0 � t � n− 1, the multiplicity ofV λ

k ⊗ V
µ
m in M⊗n(t) is equal to

the multiplicity ofV λ
k ⊗ V

µ′
m in M⊗n(n− 1− t).

Proof. It suffices to show that the multiplicity ofV λ
k ⊗ V

µ
m in M⊗n(t − 1) ⊕

M⊗n(t) is equal to the multiplicity ofV λ
k ⊗V

µ′
m in M⊗n(n− t)⊕M⊗n(n− t −1).

By Theorem 3.3, this is equivalent to the identity∑
α�n−t, β�t

cλ
αβc

µ

αβ ′ =
∑

α�t, β�n−t

cλ
αβc

µ′
αβ ′ .

But this follows from (2.1). ✷
Examples. Let λ ∈ Park(n), µ,µ′ ∈ Parm(n). The multiplicities ofV λ

k ⊗ V
µ
m in

M⊗n(t) for t = 0 andt = n− 1 are given by Theorems 2.5 and 2.4. Consider two
other pairs oft-values.

• t = 1. Forλ = µ the multiplicity is the number of (inner) corners inλ, minus
1. Forλ  = µ this is 1 if |λ \µ| = 1, and zero otherwise.

• t = n − 2. Forλ = µ′ the multiplicity is the number of (inner) corners inλ,
minus 1. Forλ  = µ′ this is 1 if |λ \µ′| = 1, and zero otherwise.

• t = 2 (n > 2). The multiplicity is nonzero iff there is a partitionα of n − 2
such thatλ/α is a horizontal strip andµ/α is a vertical strip, or vice versa.

• t = n−3 (n > 2). The multiplicity is nonzero iff there is a partitionα of n−2
such thatλ/α is a horizontal strip andµ′/α is a vertical strip, or vice versa.
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4. Asymptotics

Let λ andµ be partitions of the same numbern. Recalling the definition of the
set differenceλ\µ from Section 2.1, define thedistance

d(λ,µ) := |λ \µ|
(
= 1

2

∑
i

|λi −µi |
)

.

Lemma 4.1. If V λ
k ⊗V

µ
m appears as a factor inM⊗n(t) ( for some0� t � n− 1)

thend(λ,µ) � t andd(λ,µ′) � n− 1− t .

Proof. By assumption,V λ
k ⊗V

µ
m appears as a factor in bothM⊗n(t−1)⊕M⊗n(t)

andM⊗n(t)⊕M⊗n(t + 1).
By Theorem 3.3, ifV λ

k ⊗ V
µ
m appears as a factor inM⊗n(t − 1) ⊕ M⊗n(t)

then there exists a pair of partitions,α � n − t andβ � t such that,cλ
αβc

µ

αβ ′  = 0.

cλ
αβ  = 0 ⇒ α ⊆ λ and c

µ

αβ ′  = 0 ⇒ α ⊆ µ. Hence |λ\µ| � |λ\α| = t . Also,

cλ
αβ  = 0⇒ β ⊆ λ andc

µ

αβ ′  = 0⇒ β ⊆ µ′. Hence|λ\µ′|� |λ\β| = n− t .

Similarly, if V λ
k ⊗ V

µ
m appears as a factor inM⊗n(t) ⊕ M⊗n(t + 1) then

|λ\µ| � t + 1 and|λ\µ′|� n− t − 1.
Altogether, we get the desired claim.✷
Let ψ be anSn-character (not necessarily irreducible). Define theheightof ψ

by

height(ψ) := max
{
�(ν)

∣∣ν � n, 〈ψ,χν 〉  = 0
}
.

The following result was proved by Regev.

Lemma 4.2 [8, Theorem 12].For anyλ,µ � n,

height
(
χλχµ

)
� �(λ) · �(µ).

Theorem 4.3. If V λ
k ⊗V

µ
m appears as a factor inM⊗n(t) ( for some0 � t � n−1)

then

d(λ,µ) � km.

Proof.

d(λ,µ)
(1)

� t
(2)

� height
(
χλχµ

)− 1
(3)

� �(λ) · �(µ)− 1 � km− 1.

Inequalities (1), (2), and (3) follow from Lemmas 4.1, 3.1 (forν = (n − t,1t )),
and 4.2, respectively.✷
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Let ψ be anSn-character (not necessarily irreducible). Define theheightof ψ

by

width(ψ) := max
{
µ1

∣∣ν � n, 〈ψ,χν 〉  = 0
}
.

The following result of Dvir strengthens Lemma 4.2.

Lemma 4.4 [2, Theorem 1.6].For anyλ,µ � n,

(1) width
(
χλχµ

) = |λ∩µ| and

(2) height
(
χλχµ

)= |λ∩µ′|.

This result gives another way of proving Theorem 4.3.

Second proof of Theorem 4.3.

d(λ,µ) = |λ\µ| = n− |λ∩µ| (1)

� t
(2)

� height
(
χλχµ

)− 1
(3)= |λ∩µ′| − 1

� km− 1.

Inequality (1) follows from Lemma 4.4(1), sincen− t � width(χλχµ). Inequal-
ity (2) follows from Lemma 3.1. Equality (3) is Lemma 4.4(2).✷
Note. For any two partitionsλ,µ of n with �(λ) � k and�(µ) � m, V λ

k ⊗ V
µ
m

appears as a factor inM⊗n
k,m. Theorem 4.3 shows that, in order to appear in a hook

component,λ andµ must be very “close” to each other (for fixedk andm andn

tending to infinity).

5. Square matrices

Consider now the vector spaceMk = Mk,k of k×k matrices overC. This space
carries a diagonal (left and right)GLk(C)-action, defined by

g(m) := g ·m · gt (∀g ∈ GLk(C), ∀m ∈ Mk).

5.1. Symmetric powers

Recall from Section 2.1 the definition of 2· λ, for a partitionλ.

Theorem 5.1. For λ ∈ Park(2n), the multiplicity ofV λ
k in Symn(Mk) is∑

|µ|+|ν|=n

cλ
2·µ,(2·ν)′.
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Corollary 5.2. Let λ ∈ Par(2n), λ ⊆ (kk) (i.e., λ,λ′ ∈ Park(2n)). Then the
multiplicities ofV λ

k and ofV λ′
k in Symn(Mk) are equal.

Proof. This is an immediate consequence of Theorem 5.1, applying iden-
tity (2.1). ✷
Proof of Theorem 5.1. Let V ∼= Ck . ThenV ⊗ V carries a diagonal (left)GLk-
action, and

Mk
∼= V ⊗ V

asGLk-modules. Thus

M⊗n
k

∼= V⊗2n

asGLk-modules. Moreover,V ⊗2n carries anS2n ×GLk-action:S2n permutes the
2n factors in the tensor product, andGLk acts on all of them simultaneously
(on the left). TheS2n- andGLk-actions satisfy Schur–Weyl duality (the double
commutant theorem), so that

V⊗2n ∼=
⊕

λ∈Park(2n)

V λ
k ⊗ Sλ,

asGLk × S2n-modules.
Now, Symn(Mk) is the part ofM⊗n

k which is invariant under the action of
Sn ↪→ S2n, where the embeddingSn ↪→ Sn ×Sn ⊆ S2n is diagonal:π �−→ (π,π).
It follows that the multiplicity ofV λ

k in Symn(Mk) is equal to the multiplicity

of the trivial character 1Sn in the restrictionχλ↓S2n

Sn
, whereSn is diagonally

embedded.
By Frobenius reciprocity,〈

1Sn,χ
λ↓S2n

Sn

〉= 〈
1Sn↑S2n

Sn
,χλ

〉
.

We conclude that, forλ ∈ Park(2n), the multiplicity ofV λ
k , in Symn(Mk) is〈

1Sn↑S2n

Sn
,χλ

〉
.

We shall compute these multiplicities in several steps.
First, we induce in two steps:

1Sn↑S2n

Sn
= (

1Sn↑Bn

Sn

)↑S2n

Bn
.

By Lemmas 2.2(a) and 2.3,

(
χ(n)↑Bn

Sn

)↑S2n

Bn
=

n∑
i=0

χ(i),(n−i)↑S2n

Bn

=
n∑

i=0

(
χ(i),∅ ⊗ χ∅,(n−i)

)↑Bn

Bi×Bn−i
↑S2n

Bn
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=
n∑

i=0

(
χ(i),∅ ⊗ χ∅,(n−i)

)↑S2n

Bi×Bn−i
.

Again, let us induce in two steps:(
χ(i),∅ ⊗ χ∅,(n−i)

)↑S2n

Bi×Bn−i
= ((

χ(i),∅ ⊗ χ∅,(n−i)
)↑S2i×S2n−2i

Bi×Bn−i

)↑S2n

S2i×S2n−2i

= (
χ(i),∅↑S2i

Bi
⊗ χ∅,(n−i)↑S2n−2i

Bn−i

)↑S2n

S2i×S2n−2i
.

By Lemma 2.1, (a) and (b), the right-hand side is equal to(∑
µ�i

χ2·µ ⊗
∑

ν�n−i

χ(2·ν)′
)
↑S2n

S2i×S2n−2i
.

We conclude that

1Sn↑S2n

Sn
=

n∑
i=0

∑
µ�i, ν�n−i

(
χ2·µ ⊗ χ(2·ν)′)↑S2n

S2i×S2n−2i
.

Applying the Littlewood–Richardson rule completes the proof.✷
5.2. A graded refinement of symmetric powers

The spaceM⊗n
k carries not only anSn-action but also aBn-action, where

the signed permutation(i,−i) (1 � i � n) acts by transposing thei-th factor
in the tensor product ofn square matrices.Mk = M+

k ⊕ M−
k , whereM+

k (M−
k )

is the vector space of symmetric (skew symmetric) matrices of orderk × k.
Consequently,M⊗n

k is graded by the number of skew symmetric factors. The
component ofM⊗n

k with i skew symmetric factors, denotedM⊗n
k (i), is invariant

under theBn-action, as well as under the diagonal two-sidedGLk-action.

Lemma 5.3. If the irreducibleBn-characterχµ,ν appears in the decomposition
of theBn-action onM⊗n

k (i), then|ν| = i.

For a proof see Appendix A.2.
Since the componentsM⊗n

k (i) are invariant under theSn-action, theSn-
invariant subspace Symn(Mk) inherits the grading by the number of skew
symmetric factors. Let Symni (Mk) denote the component withi skew symmetric
factors. The following theorem refines Theorem 5.1.

Theorem 5.4. For λ ∈ Park(2n), the multiplicity ofV λ
k in Symn

i (Mk) is∑
µ�n−i, ν�i

cλ
2·µ,(2·ν)′.
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Note. Theorem 5.4 interpolates between two classical results, Theorems 2.6
and 2.7. Indeed, Symn0(Mk) = Symn(M+

k ) is the n-th symmetric power of the
vector space of symmetric matrices. In this casei = 0, soν = ∅. Hence∑

µ�n

cλ
2·µ,∅ =

{
1, if λ = 2 ·µ for someµ � n;
0, otherwise.

This gives Theorem 2.6. Similarly, Symnn(Mk) = Symn(M−
k ). In this casei = n,

µ = ∅, and a similar computation gives Theorem 2.7.

An analogue of Corollary 3.4 follows.

Corollary 5.5. Let λ,λ′ ∈ Park(2n) be conjugate partitions. Then, for every
0 � i � n, the multiplicity ofV λ

k in Symn
i (Mk) is equal to the multiplicity ofV λ′

k

in Symn
n−i (Mk).

Proof. Combine Theorem 5.4 with identity (2.1).✷
Proof of Theorem 5.4. This is a refinement of the proof of Theorem 5.1. In this
refinement the groupBn appears in an essential way, whereas in the proof of
Theorem 5.1 it was used only as a technical tool.

M⊗n
k is a Bn-module, and Symn(Mk) is its submodule, for which theBn-

action, when restricted toSn, is trivial. Hence, if the irreducibleBn-character
χµ,ν appears in Symn(Mk), then〈

χµ,ν↓Bn

Sn
,1Sn

〉  = 0.

By Lemma 2.2(a),

〈
χµ,ν↓Bn

Sn
,1Sn

〉= 〈
χµ,ν,1Sn↑Bn

Sn

〉=
〈
χµ,ν,

n∑
j=0

χ(n−j),(j)

〉
,

and this is nonzero (and equal to 1) if and only ifµ = (n − j) andν = (j) for
some 1� j � n.

Combining this with Lemma 5.3 we conclude thatχ(n−i),(i) is the unique
irreducibleBn-character in Symni (Mk).

Now, as in the proof of Theorem 5.1, the multiplicity ofV λ
k in Symn

i (Mk) is〈
χλ↓S2n

Bn
,χ(n−i),(i)

〉= 〈
χλ,χ(n−i),(i)↑S2n

Bn

〉
.

By Lemmas 2.3 and 2.1,

χ(n−i),(i)↑S2n

Bn
= (

χ(n−i),∅ ⊗ χ∅,(i)
)↑S2n

Bn−i×Bi

=
( ∑

µ�n−i

χ2·µ ⊗
∑
ν�i

χ(2·ν)′
)
↑S2n

S2n−2i×S2i
.

The Littlewood–Richardson rule completes the proof of Theorem 5.4.✷
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5.3. Hook components of tensor powers

In this subsection we generalize the results of the previous sections to obtain a
bivariate interpolation between symmetric and exterior powers of symmetric and
skew symmetric matrices.

As before, then-th tensor powerM⊗n
k carries anSn-action. The symmetric

power Symn(Mk) is theSn-invariant part, i.e., corresponds to the trivial charac-
ter χ(n). The exterior power corresponds to the sign characterχ(1n). We shall
denote the factor corresponding to the hook characterχ(n−t,1t ) (0 � t � n − 1)

by M⊗n
k (t) with the conventionM⊗n

k (−1)= M⊗n
k (n) = 0.

Theorem 5.6. For every0� t � n−1 andλ ∈ Park(2n), the multiplicity ofV λ
k in

M⊗n
k (t)⊕M⊗n

k (t − 1) is∑
|α|+|β|=n−t,

|γ |+|δ|=t

cλ
2·α,(2·β)′,2∗γ,(2∗δ)′,

where the sum runs over all partitionsα and β with total sizen − t , and
partitionsγ andδ with distinct parts and total sizet . The operations· and∗ are
as defined in Section2.1, and the extended Littlewood–Richardson coefficients are
as defined in Section2.2.

Proof. Similar arguments to those in the proof of Theorem 5.1 show that the
multiplicity of V λ

k in the hook componentM⊗n
k (t) ⊕M⊗n

k (t − 1) is〈(
χ(n−t,1t ) + χ(n−t+1,1t−1)

)↑S2n

Sn
,χλ

〉
.

By (3.1), this is equal to〈(
χ(n−t ) ⊗ χ(1t )

)↑Sn

Sn−t×St
↑S2n

Sn
,χλ

〉
= 〈(

χ(n−t ) ⊗ χ(1t )
)↑Bn−t×Bt

Sn−t×St
↑S2n

Bn−t×Bt
, χλ

〉
.

By Lemmas 2.2 and 2.3, for everyt ,(
χ(n−t ) ⊗ χ(1t )

)↑Bn−t×Bt

Sn−t×St

= χ(n−t )↑Bn−t

Sn−t
⊗ χ(1t )↑Bt

St
=

n−t∑
i=0

χ(i),(n−t−i) ⊗
t∑

j=0

χ(1j ),(1t−j )

=
n−t∑
i=0

(
χ(i),∅ ⊗ χ∅,(n−t−i)

)↑Bn−t

Bi×Bn−t−i

⊗
t∑

j=0

(
χ(1j ),∅ ⊗ χ∅,(1t−j )

)↑Bt

Bj×Bt−j
.
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Hence

(
χ(n−t ) ⊗ χ(1t ))↑S2n

Sn−t×St

=
n−t∑
i=0

t∑
j=0

(
χ(i),∅ ⊗ χ∅,(n−t−i) ⊗ χ(1j ),∅

⊗ χ∅,(1t−j )
)↑S2i×S2(n−t−i)×S2j×S2(t−j)

Bi×Bn−t−i×Bj×Bt−j
↑S2n

S2i×S2(n−t−i)×S2j×S2(t−j)

=
n−t∑
i=0

t∑
j=0

(
χ(i),∅↑S2i

Bi
⊗ χ∅,(n−t−i)↑S2(n−t−i)

Bn−t−i
⊗ χ(1j ),∅↑S2j

Bj

⊗ χ∅,(1t−j )↑S2(t−j)

Bt−j

)↑S2n

S2i×S2(n−t−i)×S2j×S2(t−j)
.

Lemma 2.1 and the Littlewood–Richardson rule complete the proof.✷
Let M⊗n

k (i, j) be the component ofM⊗n
k (i) with j skew symmetric factors.

The following result is a common refinement of Theorems 5.4 and 5.6.

Theorem 5.7. For every0 � i � n, 0 � j � n andλ ∈ Park(2n), the multiplicity
of V λ

k in M⊗n
k (i, j)⊕M⊗n

k (i − 1, j) is∑
|α|+|β|+|γ |+|δ|=n

|β|+|δ|=j

|γ |+|δ|=i

cλ
2·α,(2·β)′,2∗γ,(2∗δ)′,

where the sum is over all partitionsα,β, γ, δ with total sizen such thatβ andδ

have distinct parts and total sizej , andγ andδ have total sizei.

Proof. Lemma 5.3, used as in the proof of Theorem 5.4, shows that the factors of
M⊗n

k (i, j)⊕M⊗n
k (i − 1, j) in the decomposition given in Theorem 5.6 are those

for which |β| + |δ| = j . ✷
Corollary 5.8. Let λ ⊆ (kk) be a partition of2n. For every0 � i � n − 1 and
0 � j � n, the multiplicity ofV λ

k in M⊗n
k (i, j) is equal to the multiplicity ofV λ′

k

in M⊗n
k (i, n− j).

Proof. It suffices to show that for every 0� i � n and 0� j � n, the multiplicity
of V λ

k in M⊗n
k (i, j) ⊕ M⊗n

k (i − 1, j) is equal to the multiplicity ofV λ′
k in
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M⊗n
k (i, n − j) ⊕ M⊗n

k (i − 1, n − j). By Theorem 5.7, the multiplicity ofV λ
k

in M⊗n
k (i, j)⊕M⊗n

k (i − 1, j) is∑
|α|+|β|+|γ |+|δ|=n

|β|+|δ|=j

|γ |+|δ|=i

cλ
2·α,(2·β)′,2∗γ,(2∗δ)′.

By (2.1) and the definition ofcλ
α,β,γ,δ, this is equal to∑

|α|+|β|+|γ |+|δ|=n

|β|+|δ|=j

|γ |+|δ|=i

cλ′
(2·α)′,2·β,(2∗γ )′,2∗δ,

which is the multiplicity ofV λ′
k in M⊗n

k (i, n− j)⊕M⊗n
k (i − 1, n− j). ✷
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Appendix A

A.1. Proof of Lemma 2.2

Lemma 2.2 follows from a more general result.
For partitionsλ = (λ1, . . . , λk) andµ = (µ1, . . . ,µm), let λ ⊕ µ be the skew

shape defined by

λ⊕µ := (λ1 +µ1, λ2 +µ1, . . . , λk +µ1,µ1,µ2, . . . ,µm)
/(

µk
1

)
.

Theorem A.1. If (λ,µ) is a bipartition ofn then the restriction

χλ,µ↓Bn

Sn
= χλ⊕µ.

Proof. The charactersχλ⊕µ andχλ,µ, evaluated at elements ofSn, have the same
recursive formula (Murnaghan–Nakayama rule). Forχλ,µ see [16, Theorem 4.3].
Forχλ⊕µ see [9, Theorem 5.6.16].✷
Proof of Lemma 2.2. (a) Let (λ,µ) be a bipartition ofn. By Frobenius
reciprocity and Theorem A.1,
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〈
χ(n)↑Bn

Sn
,χλ,µ

〉 = 〈
χ(n),χλ,µ↓Bn

Sn

〉= 〈
χ(n),χλ⊕µ

〉
=

{
1, max{�(λ), �(µ)}� 1,
0, otherwise.

The last equality follows from the Littlewood–Richardson rule, reformulated for
skew shapes [15, (7.64)]. By this rule,〈χ(n),χλ⊕µ〉 is nonzero (and equal to 1)
if and only if λ ⊕ µ is a horizontal strip (i.e., each column contains at most one
box).

(b) The proof forχ(1n) is similar. ✷
A.2. Proof of Lemma 5.3

Proof. Let σi := (i,−i) ∈ Bn (1 � i � n), and letη be the sum
∑n

i=1 σi ∈C[Bn].
Consider the tensor productw = w1 ⊗ w2 ⊗ · · · ⊗ wn ∈ M⊗n

k , where eachwi is
either a symmetric or a skew symmetric matrix. Then according to theBn-action,
defined in Section 5.2,

σi(w) =
{

w, if wi is symmetric,
−w, if wi is skew symmetric.

Hence, for every vectorv ∈ M⊗n
k (i),

η(v) = (n− 2i)v. (A.1)

On the other hand, the set{σi | 1 � i � n} is a conjugacy class inBn. Thus
the elementη = ∑n

i=1 σi is in the center ofC[Bn]. By Schur’s lemma, for every
vectorv in the irreducibleBn-moduleSµ,ν ,

η(v) = cµ,ν · v, wherecµ,ν = χµ,ν(η)

χµ,ν(id)
= nχµ,ν(σ1)

χµ,ν(id)
.

Let f λ, f µ,ν be the number of standard Young tableaux (bitableaux) of shapes
λ, (µ, ν), respectively. Recall that

χµ,ν(id) = f µ,ν =
(

n

|ν|
)

f µf ν,

and thatχµ,ν(σ1) is equal to the number of standard Young bitableaux of shape
(µ, ν), in which the digit 1 is in the first diagramµ, minus the number of those in
which 1 is in the second diagramν. Thus

χµ,ν(σ1) =
(

n− 1

|ν|
)

f µf ν −
(

n− 1
|ν| − 1

)
f µf ν = n− 2|ν|

n

(
n

|ν|
)

f µf ν.

It follows that

cµ,ν = nχµ,ν(σ1)

χµ,ν(id)
= n− 2|ν|;
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and therefore

η(v) = (n− 2|ν|)v (∀v ∈ Sµ,ν). (A.2)

Combining (A.1) with (A.2) completes the proof.✷
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