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A group G is said to have the n-rewritable property Q n if for all
elements g1, g2, . . . , gn ∈ G , there exist two distinct permutations
σ ,τ ∈ Symn such that gσ(1) gσ(2) · · · gσ(n) = gτ (1) gτ (2) · · · gτ (n) . We
show here that if G satisfies Q n , then G has a characteristic
subgroup N such that |G : N| and |N ′| are both finite and have
sizes bounded by functions of n. This extends the result of Blyth
(1988) in [3] which asserts that if G satisfies Q n and if � is the
finite conjugate center of the group, then |G : �| and |�′| are both
finite with |G : �| bounded by a function of n. As a consequence,
any group with Q n satisfies the permutational property Pm with m
bounded by a function of n.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a multiplicative group and let � = �(G) denote its finite conjugate center. Thus

�(G) = {
g ∈ G

∣∣ ∣∣G : CG(g)
∣∣ < ∞}

is the set of all elements of G having just finitely many G-conjugates. It is clear that �(G) is a
characteristic subgroup of G .
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Following [6], G is said to have the n-permutational property Pn if for all g1, g2, . . . , gn ∈ G (in
that order), there exists a nonidentity permutation σ ∈ Symn such that

g1 g2 · · · gn = gσ (1)gσ (2) · · · gσ (n).

It was shown in [6] that if G has Pn , then |G : �| is finite and bounded by a function of n. Fur-
thermore, the commutator subgroup �′ of � is finite, but its order is not bounded by a function
of n.

Somewhat later, the n-rewritable property Q n was introduced in [3]. Here G is said to have Q n if
for all g1, g2, . . . , gn ∈ G (in that order), there exist two distinct permutations σ ,τ ∈ Symn such that

gσ (1)gσ (2) · · · gσ (n) = gτ (1)gτ (2) · · · gτ (n).

Obviously, Pn implies Q n , but examples in [3] show that the reverse implication is not true in general.
Nevertheless, it was shown in [3] that if G has Q n , then |G : �| is finite and bounded by a function
of n. Furthermore, �′ is finite and again its order is not bounded by a function of n. Groups with
properties Pn and Q n have been studied extensively, for example in [3–6,9,10].

There is a third property of groups that was considered somewhat earlier. Namely, G satisfies P In
if the group algebra K [G] satisfies a polynomial identity of degree n. This property actually depends
on the characteristic of the field K , and we discuss the known results in more detail in the last section
of this paper. For now, let us note that P In implies Pn (see Lemma 5.3), but that the converse is not
true in general. Furthermore, the first step in [13], characterizing groups G with P In is to show that
G has a characteristic subgroup N such that |G : N| is finite and bounded by a function of n, and that
|N ′| is finite and also bounded by a function of n. Obviously, such a subgroup N must be contained
in �, but not necessarily equal to �.

The goal of this paper is to show that the techniques of [13] (see also [14, Section 5.2]) used to
study P In can yield similar results for the properties Pn and Q n . Indeed, the Pn theorem is almost
a verbatim translation of the group ring argument. On the other hand, the Q n result is appreciably
more difficult and eventually depends upon the beautiful trick in [3]. With all of this, the main result
here is

Theorem 1.1. Let G be a group satisfying the rewritable property Q n. Then G has a characteristic subgroup N,
contained in �(G), such that |G : N| and |N ′| are finite and have sizes bounded by functions of n.

The bounds we obtain here are rather astronomical functions of n. On the other hand, the bounds
for the permutation property Pn are significantly smaller. Thus, we treat the Pn case first, as a warm
up for the more difficult Q n argument.

Recall that a group G is said to be perfect if G = G ′ , and let us say that G is normally perfect if
all normal subgroups of G are perfect. For example, any nonabelian simple group is perfect. Further-
more, if G is semisimple, that is a finite direct product of nonabelian simple groups, then all normal
subgroups of G are semisimple and hence G is normally perfect. The following is an extension of the
main result of [4]. Its proof is an immediate consequence of Theorem 1.1 and hence does not require
aspects of the classification of finite simple groups or computer computations.

Corollary 1.2. Let G be a normally perfect group satisfying the rewritable property Q n. Then G has finite order
bounded by a function of n.

Proof. Since G satisfies Q n , the main theorem implies that G has a normal subgroup N with both
|G : N| and |N ′| bounded by functions of n. But G is normally perfect and hence N = N ′ . Thus |G| =
|G : N| · |N ′| is bounded by a function of n. �

It is clear, in the above, that we only apply the normally perfect property of G to a specific char-
acteristic subgroup of finite index. Finally, we have
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Corollary 1.3. If G satisfies the rewritable property Q n, then G satisfies the permutational property Pm with
m bounded by a function of n.

Proof. Since G satisfies Q n , the main theorem implies that G has a normal subgroup N with both
|G : N| = a and |N ′| = b bounded by functions of n. Thus, by [6, Lemma 3.4], G satisfies Pm with
m = a(b + 1). �
2. The permutational property

In this section, we use the methods of [13] to prove the Pn version of Theorem 1.1. For the conve-
nience of the reader, we start by quoting some notation and several lemmas found in that paper.

Let G be a group and let T be a subset of G . Following [13], we say that T has finite index in G if
there exist x1, x2, . . . , xn ∈ G , for some finite n, with

G = T x1 ∪ T x2 ∪ · · · ∪ T xn.

We then define the index |G : T | to be the minimum possible such integer n. Observe that if T is a
subgroup of G , then this agrees with the usual definition of index. We can construct subsets of finite
index in G by means of

Lemma 2.1. Let S = ⋃k
1 Hi gi be a finite union of cosets of the subgroups Hi of G and assume that S �= G. Then

there exist x1, x2, . . . , xt ∈ G, with t = (k + 1)!, such that
⋂t

1 Sxi = ∅. In particular, if T is a subset of G with
G = S ∪ T , then |G : T | � (k + 1)!.

In order to apply the above, we need a result like

Lemma 2.2. Let S = ⋃k
1 Hi gi be a finite union of cosets of subgroups Hi of G. If |G : Hi | > k for all i, then

S �= G.

This is presumably due to [11]. Next, we relate subsets of finite index to the subgroups they
generate. If T is a subset of G , let us write T ∗ = T ∪ {1} ∪ T −1.

Lemma 2.3. Let T be a subset of G with |G : T | � k. Then

(
T ∗)4k = T ∗ · T ∗ · · · T ∗ (

4k times
)

is the subgroup of G generated by T .

Finally, we introduce certain subsets of interest. Let G be a group. For each integer k, we define

�k = �k(G) = {
x ∈ G

∣∣ ∣∣G : CG(x)
∣∣ � k

}
.

Thus �k is a normal subset of G and �k = �∗
k in the notation of the preceding lemma. Furthermore,

�a · �b ⊆ �ab for all integers a and b, and of course, �k need not be a subgroup of G . The following
is a result of [16]. A somewhat shorter proof is contained in [13].

Lemma 2.4. Let G be a group and let k be a positive integer.

(i) If |G ′| � k, then G = �k(G).

(ii) If G = �k(G), then |G ′| � (k4)k4
.
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As a consequence of the latter two results we have

Lemma 2.5. Let k and l be positive integers and assume that |G : �k| � l. If N is the subgroup of G generated
by �k, then N is a characteristic subgroup of G with |G : N| � l, and with |N ′| finite and bounded by a function
of k and l.

Proof. Since �k ⊆ N , it follows that |G : N| � |G : �k| � l. Moreover since �k = (�k)
∗ , Lemma 2.3

implies that N = (�k)
4l

. But �a�b ⊆ �ab for any integers a and b, so we have

N = (�k)
4l = �k · �k · · ·�k

(
4l times

) ⊆ �r(G)

where r = k4l
, and this implies that N = �r(N). Thus, by Lemma 2.4(ii), |N ′| � (r4)r4

, and the latter is
a finite function of k and l. �

Following Ref. [13], we define a linear monomial in the noncommuting variables ζ1, ζ2, . . . , ζn to
be a polynomial μ of the form ζi1ζi2 · · · ζir with all i j distinct and with r = degμ. Thus μ is linear
in each variable that occurs in its expression, and μ = 1 if and only if degμ = 0. Furthermore, since
there are n! linear monomials of degree n, and since each such monomial has n + 1 initial segments,
it follows that there are at most (n + 1)! linear monomials in n variables. We now come to the main
result of this section.

Theorem 2.6. Let G be a group satisfying the permutational property Pn, and set k = n!. Then we have

(i) |G : �k(G)| � k · (k + 1)!, and
(ii) G has a characteristic subgroup N with |G : N| � k · (k + 1)!, and with |N ′| finite and bounded by a

function of n.

Proof. (i) We assume by way of contradiction that |G : �k| > k · (k +1)!. Let M1 = ∅, and for j � 2, let
M j denote the set of all nonidentity (that is, not degree 0) linear monomials in the noncommuting
variables ζ j, ζ j+1, . . . , ζn . By the above, |M j | � n! = k. We show now by induction on j = 1,2, . . . ,n
that for any x j, x j+1, . . . , xn ∈ G , we have either x j x j+1 · · · xn = xσ( j)xσ( j+1) · · · xσ(n) for some 1 �= σ ∈
Sym{ j, j + 1, . . . ,n} or we have μ(x j, x j+1, . . . , xn) ∈ �k for some μ ∈ M j . Since G satisfies Pn , the
result for j = 1 is clear.

Suppose the result holds for some j < n. Fix x j+1, x j+2, . . . , xn ∈ G and let x ∈ G play the role of
the jth variable. Let μ ∈ M j+1. If μ(x j+1, x j+2, . . . , xn) ∈ �k we are done. Thus we may assume that
μ(x j+1, x j+2, . . . , xn) /∈ �k for all μ ∈ M j+1.

Next, for each σ ∈ Sym{ j, j + 1, . . . ,n} with σ �= 1, let

Sσ = {x = x j ∈ G | x jx j+1 · · · xn = xσ ( j)xσ ( j+1) · · · xσ (n)}.

If Sσ �= ∅ and σ fixes j, then we can cancel the initial x factor and conclude that

x j+1x j+2 · · · xn = xσ ( j+1)xσ ( j+2) · · · xσ (n)

for some 1 �= σ ∈ Sym{ j + 1, j + 2, . . . ,n}. Thus we may assume that if Sσ �= ∅, then σ does not fix j.
Now suppose Sσ �= ∅ and let x ∈ Sσ so that

x x j+1x j+2 · · · xn = xσ ( j)xσ ( j+1) · · · x · · · xσ (n).
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In particular, if we set ρ = x j+1x j+2 · · · xn , then the above is equivalent to

ρ = x j+1x j+2 · · · xn = x−1(xσ ( j)xσ ( j+1) · · ·)x · · · xσ (n) = x−1λσ xλσ ,

where λσ and λσ depend only upon σ . Indeed, since σ( j) �= j, λσ is a linear monomial in M j+1
evaluated at x j+1, x j+2, . . . , xn , and therefore, by assumption, λσ /∈ �k . We conclude from the above
displayed equation that x−1λσ x = ρ(λσ )−1 and it follows that if Sσ is nonempty, then it consists of
precisely one right coset of CG(λσ ), say Sσ = CG(λσ )hσ .

Write S = ⋃
σ Sσ = ⋃

σ CG(λσ )hσ . Since λσ /∈ �k , it follows that |G : CG(λσ )| > k, and since there
are at most k cosets in the above union for S , we conclude from Lemma 2.2 that S �= G . Thus by
Lemma 2.1, G\S has index � (k + 1)! in G .

Finally, set M j \ M j+1 = F j and let μ ∈ F j so that μ involves the variable ζ j . Write μ = μ′ζ jμ
′′ ,

where μ′ and μ′′ are linear monomials in the variables ζ j+1, ζ j+2, . . . , ζn . Then μ(x, x j+1, . . . , xn) ∈ �k
if and only if

x = x j ∈ μ′(x j+1, . . . , xn)−1�kμ
′′(x j+1, . . . , xn)

−1 = �k gμ,

a fixed right translate of �k , since �k is a normal subset of G . Thus, if T = ⋃
μ∈F j

�k gμ , then the
inductive assumption implies that G = S ∪ T . Indeed, for any g ∈ G , either g, x j+1, . . . , xn satisfies the
permutational property and g ∈ Sσ for some σ �= 1, or μ(g, x j+1, . . . , xn) ∈ �k for some μ ∈ F j and
g ∈ T .

It follows that T ⊇ G \ S , so

|G : T | � |G : G \ S| � (k + 1)!.
But T = ⋃

μ∈F j
�k gμ and |F j | � |M j | � k, so we see that

|G : �k| � |F j| · |G : T | � k · (k + 1)!,
a contradiction by assumption. Therefore the inductive statement is proved.

In particular, the inductive result holds for j = n and this is a contradiction. Indeed, when j = n
there are no nonidentity permutations in Sym{n} and Mn = {ζn}. Thus we conclude that x ∈ �k for
all x ∈ G , contradicting G �= �k . In other words, the assumption that |G : �k| > k · (k + 1)! is false and
(i) is proved.

(ii) Here we set l = k · (k + 1)!, and we let N be the characteristic subgroup of G generated by �k .
Since |G : �k| � l, Lemma 2.5 yields the result. �

As a consequence, we obtain the main result of [6].

Corollary 2.7. Let the group G satisfy the permutational property Pn, and set k = n!. Then |G : �(G)| �
k · (k + 1)! and |�(G)′| is finite.

Proof. Since �k(G) ⊆ �(G), Theorem 2.6 implies that |G : �(G)| � |G : �k(G)| � k · (k + 1)!. Further-
more, since �(G) is a subgroup of G , it follows easily that |�(G) : �k(G)| � |G : �k(G)| � k · (k + 1)!
and thus �(G) = ⋃

i �k(G)xi is a finite union of translates of �k . Now each xi ∈ � has only finitely
many conjugates in G and hence there exists an integer a with xi ∈ �a(G) for all i. In other words,
�(G) = �k(G)�a(G) ⊆ �ka(G) and we conclude from Lemma 2.4 that �(G)′ , the commutator sub-
group of �(G), is finite. �

As was observed in [6], the order of �(G)′ cannot be bounded by a function of n. For example, let
G = A � B be a finite Frobenius group, where A is the abelian kernel and B is a cyclic complement of
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order b. Then G satisfies P2b , G = �(G), and G ′ = A can be arbitrarily large independent of b. Finally,
we have

Corollary 2.8. Let G be a normally perfect group satisfying the permutational property Pn. Then G has finite
order bounded by a function of n.

This is, of course, an extension of one of the main results of [2], and its proof follows from The-
orem 2.6 and uses the argument of Corollary 1.2. The specific bound can be obtained via a close
reading of the proof of Lemma 2.5.

3. The rewritable property

Now we move on to consider the rewritable property. Our goal in this section is to prove the main
theorem of this paper, namely Theorem 1.1, and some appropriate corollaries. As will be apparent,
the proof here is appreciably harder than that of Theorem 2.6. It uses a mixture of the subsets of
finite index techniques from [13], along with a key trick from Ref. [3]. We simplify matters a bit by
replacing the sequences found in [3] by certain sets, but the idea is basically the same. As will also be
apparent, the bounds here are rather astronomical functions of n, so we will not be concerned with
small improvements in the bounds. We begin with

Theorem 3.1. Let G be a group satisfying the rewritable property Q n. Then there exist functions k and l of n,
such that |G : �k(G)| � l.

Proof. We first define a sequence of constants that depend upon n, namely

m = n!, p = m2, q = p · 2p, k = m · qp and l = k · (k + 1)!.

Our goal here is to show that |G : �k| � l. As in the proof of Theorem 2.6, we assume that |G : �k| > l
and derive a contradiction. Indeed, we proceed in essentially the same manner, but using somewhat
different notation.

Let Mn = ∅ and for each j = 1,2, . . . ,n − 1, let M j denote the set of all nonidentity linear
monomials in the noncommuting variables ζ1, ζ2, . . . , ζ j . Thus |M j | � |Mn−1| � n! = m. We show
by inverse induction on 1 � j � n that if x1, x2, . . . , x j ∈ G , then either there exist distinct permuta-
tions σ ,τ ∈ Sym j with

xσ (1)xσ (2) · · · xσ ( j) = xτ (1)xτ (2) · · · xτ ( j),

or there exists a linear monomial μ ∈ M j with μ(x1, x2, . . . , x j) ∈ �k . Since G satisfies Q n , the state-
ment is trivially true for j = n.

Suppose now that the inductive result holds for some j + 1 with 2 � j + 1 � n. We show that it
holds for j. To this end, let x1, x2, . . . , x j be fixed elements of G . If there exists a linear monomial
μ ∈ M j with μ(x1, x2, . . . , x j) ∈ �k , then we are done. Thus, we can assume that this is not the case.
In particular, if M = {μ(x1, x2, . . . , x j) | μ ∈ M j} ⊆ G , then M ∩ �k = ∅ and |M| � |M j | � m.

For each σ ∈ Sym j+1, let us write

φσ (ζ1, . . . , ζ j, ζ j+1) = ζσ (1) · · · ζσ ( j)ζσ ( j+1)

= μσ (ζ1, . . . , ζ j) · ζ j+1 · μσ (ζ1, . . . , ζ j),

so that μσ and μσ are linear monomials in ζ1, ζ2, . . . , ζ j , possibly of degree 0. Furthermore, for any
x ∈ G , set
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fσ (x) = xσ (1)xσ (2) · · · xσ ( j+1) = φσ (x1, . . . , x j, x),

where x plays the role of x j+1. Thus fσ (x) = λσ xλσ , where λσ = μσ (x1, . . . , x j) and λσ =
μσ (x1, . . . , x j). For convenience, we will use degλσ to denote the degree of the monomial μσ . Note
that λσ and λσ depend only upon σ and not upon x.

Now, let P denote the set of all pairs π = (σ , τ ) of distinct permutations σ ,τ ∈ Sym j+1 and with
deg λσ � deg λτ . Thus |P | < [( j + 1)!]2 � [n!]2 = m2 = p. Now, for each π = (σ , τ ) ∈ P , we define

dπ = λ−1
τ λσ , and eπ = λτ (λσ )−1.

Claim 1. If x ∈ G \ �k M−1 , then there exists π = (σ , τ ) ∈ P with fσ (x) = fτ (x), and hence with
x−1dπ x = eπ .

Proof. Let x ∈ G and observe that the inductive result holds for the ( j + 1)-tuple x1, x2, . . . , x j, x j+1
with x j+1 = x. First, suppose that there exists μ ∈ M j+1 with μ(x1, x2, . . . , x j+1) ∈ �k . Then, by
assumption, μ /∈ M j , and hence μ involves the variable ζ j+1, say

μ(ζ1, . . . , ζ j, ζ j+1) = μ′(ζ1, . . . , ζ j) · ζ j+1 · μ′′(ζ1, . . . , ζ j).

Then μ(x1, . . . , x j, x) ∈ �k if and only if

x = x j+1 ∈ μ′(x1, . . . , x j)
−1 · �k · μ′′(x1, . . . , x j)

−1

= �k · μ′(x1, . . . , x j)
−1 · μ′′(x1, . . . , x j)

−1

since �k is a normal subset of G . But

μ′(x1, . . . , x j)
−1 · μ′′(x1, . . . , x j)

−1 = [
μ′′(x1, . . . , x j) · μ′(x1, . . . , x j)

]−1

and μ′′μ′ is clearly a member of M j . Thus, in this case, we see that x ∈ �k M−1.
In particular, if x ∈ G \ �k M−1, then there exist distinct σ ,τ ∈ Sym j+1 with fσ (x) = fτ (x). By

symmetry, we can assume that degλσ � degλτ , so that π = (σ , τ ) ∈ P . Finally,

λσ xλσ = fσ (x) = fτ (x) = λτ xλτ

implies that x−1(λ−1
τ λσ )x = λτ (λσ )−1, or equivalently x−1dπ x = eπ . �

Next, let Q denote the set of all pairs (π, P ) where π ∈ P , P is a subset of P (possibly empty),
and π /∈ P . We say that the length of the pair (π, P ) is the size of P , and hence all these lengths are
nonnegative and bounded by |P | − 1 < p. Furthermore, |Q| < |P | · 2|P | � p · 2p = q. For convenience,
we say that (π, P ) is a Blyth pair if there exists an element g ∈ G with g ∈ CG(dκ ) for all κ ∈ P
and with g−1dπ g = eπ . For each Blyth pair, we choose one such group element g having the listed
properties, and we let B0 denote the set of all such choices. Thus B0 is a subset of G with |B0| �
|Q| < q. In particular, if B = B0 ∪{1}, then |B| � q. Furthermore, since 1 ∈ B , we have Bi+1 = Bi · B ⊇ Bi

for all integers i.

Claim 2. Let S = ⋃
u∈M CG(u)B p and let T = �k M−1 B p. Then G �= S ∪ T .
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Proof. Notice that S is a union of |M| · |B p| � |M| · |B|p � m · qp = k cosets of the various CG(u) with
u ∈ M . Thus, since each such group element u is not contained in �k , we have |G : CG(u)| > k, and
S �= G by Lemma 2.2. We conclude therefore from Lemma 2.1 that G \ S has index � (k + 1)! in G .

In particular, if G = S ∪ T , then |G : T | � (k + 1)!. But T is a union of at most |M| · |B|p � k right
translates of �k , so this implies that |G : �k| � k · (k + 1)! = l, contrary to our original assumption. �

Since G �= S ∪ T , we can choose a group element g ∈ G \ (S ∪ T ) which we fix for the remainder
of this argument. Now we say that the pair (π, P ) ∈ Q is a g-Blyth pair of length � if |P | = � and
if there exists h ∈ g B−� with h−1(dπ )h = eπ and with h ∈ CG(dκ ) for all κ ∈ P . Since g /∈ T , Claim 1
implies that there exists a g-Blyth pair of length 0.

Finally, let us choose a g-Blyth pair (π ′, P ′) of largest possible length �′ so that �′ � |P |−1 < p−1,
and let h′ ∈ g B−�′

be the corresponding group element. Then (h′)−1dπ ′h′ = eπ ′ and h′ ∈ CG(dκ ′ ) for
all κ ′ ∈ P ′ . We attempt to construct a g-Blyth pair (π, P ) of larger length � = �′ + 1. To start with,
(π ′, P ′) is a Blyth pair, so there exists b ∈ B with b−1dπ ′b = eπ ′ and with b ∈ CG(dκ ′ ) for all κ ′ ∈ P ′ .
In particular, if we set h = h′b−1, then h ∈ CG(dκ ) for all κ ∈ P = P ′ ∪ {π ′}. Furthermore, note that
|P | = �′ + 1 = � since π ′ /∈ P ′ . Also h = h′b−1 ∈ g B−�′

B−1 = g B−� . Finally, since g /∈ T = �k M−1 B p

and � � p, we see that h /∈ �k M−1. Claim 1 therefore implies that there exists a pair π = (σ , τ ) ∈ P
with h−1dπh = eπ .

The pair (π, P ) now satisfies almost all of the conditions for being a g-Blyth pair of length � > �′ .
But �′ was chosen maximal, so (π, P ) cannot satisfy the remaining condition, namely π /∈ P . In other
words, we must have π ∈ P and therefore h ∈ CG(dπ ). But h−1dπh = eπ , so dπ = eπ . Thus λ−1

τ λσ =
dπ = eπ = λτ (λσ )−1, and hence λσ λσ = λτ λτ .

Recall that

φσ = ζσ (1) · · · ζσ ( j)ζσ ( j+1) = μσ (ζ1, . . . , ζ j) · ζ j+1 · μσ (ζ1, . . . , ζ j),

with λσ = μσ (x1, . . . , x j) and λσ = μσ (x1, . . . , x j). In particular, μσ μσ is a product of all the vari-
ables ζ1, ζ2, . . . , ζ j in some order. Similarly, λτ = μτ (x1, . . . , x j) and λτ = μτ (x1, . . . , x j).

Suppose first that μσ μσ = μτμτ . Since degλσ � deg λτ , it follows that μτ must be an initial
segment of μσ , say μσ = μτρ for some linear monomial ρ . Then μτρμσ = μσ μσ = μτμτ , so μτ =
ρμσ . If ρ = 1, then μσ = μτ and μσ = μτ , so φσ = φτ and therefore σ = τ , certainly a contradiction.
Thus ρ �= 1 and hence ρ ∈ M j . Note that dπ = λ−1

τ λσ = ρ(x1, . . . , x j) ∈ M , and h centralizes dπ , so
h ∈ CG(dπ ) and g ∈ h · B p ∈ CG(dπ )B p ⊆ S , again a contradiction.

We conclude that μσ μσ �= μτμτ and therefore λσ λσ = λτ λτ yields a nontrivial rewriting of
x1, x2, . . . , x j . Thus the induction step is proved.

In particular, the inductive result holds when j = 1. But here there is only one element in Sym1
and M1 consists of the unique monomial μ(ζ1) = ζ1. We conclude therefore that for all x ∈ G , x =
μ(x) ∈ �k , so G = �k , and this contradicts our assumption that |G : �k| > l. Thus |G : �k| � l and the
theorem is proved. �

Theorem 1.1 and hence Corollary 1.2 now follow immediately from the above and Lemma 2.5. As
a consequence, using the argument of Corollary 2.7, we also obtain the main result of [3], namely

Corollary 3.2. Let the group G satisfy the rewritable property Q n. Then |�(G)′| and |G : �(G)| are finite, with
the latter bounded by a function of n.

4. A generalization

There are numerous generalizations of the Pn and Q n properties in the literature. Here, we offer
an interesting generalization of n-permutational groups. Let m and n be positive integers and suppose
that A is a set of n-tuples (a1,a2, . . . ,an) of elements of G with |A| = m. A group G is said to be
(m,n)-permutational with respect to A if for every n-tuple (x1, x2, . . . , xn) of elements of G there
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exist an n-tuple (a1,a2, . . . ,an) ∈ A and a nonidentity permutation σ ∈ Symn such that

x1a1x2a2 . . . xnan = xσ (1)aσ (1)xσ (2)aσ (2) . . . xσ (n)aσ (n).

Using the same proof as that of Theorem 2.6, we obtain

Proposition 4.1. If G is an (m,n)-permutational group with respect to A, then setting k = m · n!, we have

(i) [G : �k] � k · (k + 1)!, and
(ii) G has a characteristic subgroup N with |G : N| � k · (k + 1)!, and with |N ′| finite and bounded by a

function of n.

Proof. We assume by way of contradiction that [G : �k] > k · (k + 1)!. Let M1 = ∅ and, for j � 2,
let M j denote the set of all linear monomials in the noncommuting variables ζ j, ζ j+1, . . . , ζn . As we
have observed, this implies that |M j | � n!. We show now by induction on j = 1,2, . . . ,n that, for any
x j, x j+1, . . . , xn ∈ G , there exists (a1,a2, . . . ,an) ∈ A such that either

x ja jx j+1a j+1 · · · xnan = xσ ( j)aσ ( j)xσ ( j+1)aσ ( j+1) · · · xσ (n)aσ (n)

for some 1 �= σ ∈ Sym{ j, j+1, . . . ,n} or μ(x ja j, x j+1a j+1, . . . , xnan) ∈ �k for some monomial μ ∈ M j .
Since G is an (m,n)-permutational group, the result for j = 1 is given.

Suppose the result holds for some j < n. Fix x j+1, x j+2 . . . , xn ∈ G and let x play the role of
the jth variable. Let μ ∈ M j+1. If μ(x j+1a j+1, . . . , xnan) ∈ �k for some (a1,a2, . . . ,an) ∈ A, then
we are done. Thus we may assume that μ(x j+1a j+1, . . . , xnan) /∈ �k for all μ ∈ M j+1 and for all
(a1,a2, . . . ,an) ∈ A.

Next, for each 1 �= σ ∈ Sym{ j, j + 1, . . . ,n} and α = (a1,a2, . . . ,an) ∈ A, let

Sσ ,α = {x = x j ∈ G | x ja jx j+1a j+1 · · · xnan = xσ ( j)aσ ( j)xσ ( j+1)aσ ( j+1) · · · xσ (n)aσ (n)}.
If Sσ ,α �= ∅ and σ fixes j, then we can cancel the beginning x ja j factors and conclude that

x j+1a j+1 · · · xnan = xσ ( j+1)aσ ( j+1) · · · xσ (n)aσ (n)

for some 1 �= σ ∈ Sym{ j + 1, . . . ,n}. Thus we can assume that if Sσ ,α �= ∅, then σ does not fix j.
Now suppose Sσ ,α �= ∅ and let x ∈ Sσ ,α so that

xa jx j+1a j+1x j+2a j+2 · · · xnan = xσ ( j)aσ ( j)xσ ( j+1)aσ ( j+1) · · · xa j · · · xσ (n)xσ (n).

In particular, if we set ρ = x j+1a j+1x j+2a j+2 · · · xnan , then we have

ρ = x j+1a j+1x j+2a j+2 · · · xnan

= (xa j)
−1(xσ ( j)aσ ( j)xσ ( j+1)aσ ( j+1) · · ·)(xa j) · · · xσ (n)aσ (n)

= (xa j)
−1λσ,α(xa j)λσ ,α,

where λσ,α and λσ,α depend only upon σ and α. Indeed, since σ( j) �= j, λσ,α is a linear monomial
in M j+1 evaluated at x j+1a j+1, x j+2a j+2, . . . , xnan , and therefore, by assumption, λσ,α /∈ �k .

Since the above displayed equation is equivalent to

x−1λσ,αx = a jρ(λσ ,α)−1a−1
j ,



M.I. Elashiry, D.S. Passman / Journal of Algebra 345 (2011) 190–201 199
it is clear that Sσ ,α consists of precisely one right coset of CG(λσ ,α), say Sσ ,α = CG(λσ ,α)hσ ,α . Write
S = ⋃

σ ,α Sσ ,α = ⋃
σ ,α CG(λσ ,α)hσ ,α . Since λσ,α /∈ �k , it follows that |G : CG(λσ ,α)| > k, and since

there are at most m ·n! = k cosets in the above union for S , we conclude from Lemma 2.2 that S �= G .
Thus by Lemma 2.1, G\S has index � (k + 1)! in G .

Finally, set M j \ M j+1 = F j and let μ ∈ F j so that μ involves the variable ζ j . Thus we can
write μ = μ′ζ jμ

′′ , where μ′ and μ′′ are linear monomials in the variables ζ j+1, ζ j+2, . . . , ζn . If α =
(a1,a2, . . . ,an) ∈ A, then μ(x ja j, x j+1a j+1, . . . , xnan) ∈ �k if and only if

xa j = x ja j ∈ μ′(x j+1a j+1, . . . , xnan)
−1�kμ

′′(x j+1a j+1, . . . , xnan)
−1 = �k gμ,α,

since �k is a normal subset of G . In particular, this occurs if and only if x ∈ �k gμ,αa j
−1, a fixed right

translate of �k .
Thus if T = ⋃

μ,α �k gμ,αa j
−1, where the union is over all μ ∈ F j and α ∈ A, then the inductive

assumption implies that G = S ∪ T . Indeed, suppose g ∈ G . If there exist σ and α with

x ja jx j+1a j+1 · · · xnan = xσ ( j)aσ ( j)xσ ( j+1)aσ ( j+1) · · · xσ (n)aσ (n)

and x j = g , then g ∈ Sσ ,α ⊆ S . On the other hand, if there exist μ and α with

μ(x ja j, x j+1a j+1, . . . , xnan) ∈ �k

and x j = g , then g ∈ �k gμ,αa j
−1 ⊆ T . It follows that T ⊇ G \ S , and hence [G : T ] � [G : G \ S] �

(k + 1)!. But T is a union of at most |A| · |F j | � m · n! = k right translates of �k , so this yields
|G : �k| � k · |G : T | � k · (k + 1)!, contrary to our assumption. Consequently, the induction step is
proved.

In particular, the inductive result holds when j = n. Here, there are no nonidentity permutations in
Sym{n}, and Mn = {ζn}. We conclude that, for each x ∈ G , there exists α ∈ A with xan ∈ �k and hence
with x ∈ �ka−1

n . In other words, we have G = ⋃
α �ka−1

n , where an is the nth entry of α, and thus
|G : �k| � m � k. Therefore the assumption [G : �k] > k(k + 1)! is false, and part (i) of the proposition
is proved. Of course, part (ii) is an immediate consequence of (i) and Lemma 2.5. �

Obviously, there are corollaries of the above concerning the structure of �(G) for (m,n)-
permutational groups, and the nature of G under the additional assumption that G is normally perfect.
However, we will not bother to list these here.

5. Polynomial identities

In this final section, we briefly discuss the known results on group algebras satisfying a polyno-
mial identity. To start with, let K be a field and let F = K 〈ζ1, ζ2, ζ3, . . .〉 be the free K -algebra in
the noncommuting variables ζ1, ζ2, ζ3, . . . . A K -algebra R is said to satisfy the polynomial identity
f (ζ1, ζ2, . . . , ζk) ∈ F if f (r1, r2, . . . , rk) = 0 for all r1, r2, . . . , rk ∈ R . For example, any commutative
algebra satisfies ζ1ζ2 − ζ2ζ1. In general, we think of polynomial identities as weakened versions of
commutativity. A simple linearization argument shows that

Lemma 5.1. If R satisfies a polynomial identity of degree n, then R satisfies a multilinear identity of the form

f (ζ1, ζ2, . . . , ζn) =
∑

σ∈Symn

kσ ζσ (1)ζσ (2) · · · ζσ (n),

with kσ ∈ K and k1 = 1.
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A multilinear polynomial of particular importance is the standard polynomial given by

sn(ζ1, ζ2, . . . , ζn) =
∑

σ∈Symn

(−1)σ ζσ (1)ζσ (2) · · · ζσ (n),

where (−1)σ is the sign of the permutation. Indeed, the main result of [1] asserts

Theorem 5.2. Let S be a commutative K -algebra and let R = Mn(S) be the ring of n ×n matrices over S. Then
R satisfies s2n, the standard identity of degree 2n, but no polynomial identity of smaller degree.

As a consequence of the above, we have

Lemma 5.3. Let K [G] be the group algebra of the group G over the field K .

(i) If K [G] satisfies a polynomial identity of degree n, then G satisfies the permutational property Pn.
(ii) If G has an abelian subgroup A of finite index n, then K [G] satisfies s2n, the standard identity of degree

2n.

Proof. (i) We can assume that K [G] satisfies the multilinear polynomial identity f (ζ1, ζ2, . . . , ζn)

given by Lemma 5.1. In particular, if g1, g2, . . . , gn ∈ G ⊆ K [G], then f (g1, g2, . . . , gn) = 0. But no-
tice that the coefficient k1 = 1, so g = g1 g2 · · · gn is a group element summand of f (g1, g2, . . . , gn).
Thus, since the elements of G are K -linearly independent in K [G], there must exist at least one
other term in f (g1, g2, . . . , gn) that gives rise to g . In other words, there exists 1 �= σ ∈ Symn with
g1 g2 · · · gn = g = gσ(1) gσ(2) · · · gσ(n) , and hence G satisfies Pn .

(ii) Write V = K [G]. Then V is a faithful right K [G]-module, via right multiplication. Furthermore,
via left multiplication, V is a free left K [A]-module with right coset representatives of A in G as a
free basis. Since left and right multiplications commute as operators on V , it follows that K [G] is
contained isomorphically in EndK [A](V ) ∼= Mn(K [A]). But K [A] is commutative, so Mn(K [A]) satisfies
s2n , by Theorem 5.2, and therefore so does K [G]. �

Part (i) above is, of course, our comment in the Introduction that P In implies Pn . On the other
hand, part (ii) leads us to ask whether K [G] satisfying a polynomial identity is equivalent to G having
an abelian subgroup of finite index. This turns out to be the case in characteristic 0.

If G is a finite group and K is an algebraically closed field of characteristic 0, then the group alge-
bra K [G] is semisimple and hence is a direct sum of full matrix rings Md(K ), where d is the degree
of the corresponding irreducible representation. In particular, if K [G] satisfies a polynomial identity
of degree n, then Theorem 5.2 implies that d � n/2. In other words, all irreducible representations of
G have degree bounded by n/2. Using the character theory of finite groups, and then lifting the result
to arbitrary groups, [8] proved

Theorem 5.4. Let K be a field of characteristic 0. If K [G] satisfies a polynomial identity of degree n, then G has
an abelian subgroup A of finite index, with |G : A| bounded by a function of n.

Since group algebras in characteristic p > 0 are not necessarily semiprimitive, they cannot be
studied entirely via their representation theory. Thus, more combinatorial arguments were needed,
starting with papers [12] and [15]. For convenience, we say that a group A is p-abelian if A′ is a
finite p-group. Then the main result of [13] asserts

Theorem 5.5. Let K be a field of characteristic p > 0 and let G be a group.

(i) If G has a p-abelian subgroup A of finite index, then K [G] satisfies a polynomial identity of degree
2|G : A| · |A′|.
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(ii) If K [G] satisfies a polynomial identity of degree n, then G has a p-abelian subgroup A of finite index with
|G : A| · |A′| bounded by a function of n.

The proof of part (ii) above did not use the Pn property, but it is certainly familiar. It starts by
showing that there exist integers k and l, depending on n, with |G : �k| � l. As usual, we suppose,
by way of contradiction, that |G : �k| > l. Now let K [G] satisfy the multilinear polynomial identity
f (ζ1, ζ2, . . . , ζn) given by Lemma 5.1 and, for each j = 1,2, . . . ,n, define f j(ζ j, ζ j+1, . . . , ζn) to be the
polynomial determined by

f (ζ1, ζ2, . . . , ζn) = ζ1ζ2 · · · ζ j−1 f j

+ terms not starting with ζ1ζ2 · · · ζ j−1,

so that f1 = f , fn = ζn , and f j is multilinear of degree n − j + 1. It is then shown, by induction on
j = 1,2, . . . ,n, that for all g j, g j+1, . . . , gn ∈ G , we have either f j(g j, g j+1, . . . , gn) = 0, or there exists
a nonidentity linear monomial μ with μ(g j, g j+1, . . . , gn) ∈ �k .

Finally, in view of the preceding two theorems, it is easy to construct examples to show that Pn

does not imply P In (see also [7]). Indeed, let q be any prime and let Gq be an infinite central product
of nonabelian groups of order q3. Then |G ′

q| = q, Gq is a q-group, and Gq has no abelian subgroups
of finite index. Thus Gq has no p-abelian subgroups of finite index, for any p �= q, and hence K [Gq]
does not satisfy a polynomial identity unless K has characteristic q. To remedy the latter, choose a
second prime r, construct the analogous group Gr , and let G = Gq × Gr . Then K [G] cannot satisfy a
polynomial identity of any degree over any field K . Furthermore, since |G ′| = qr, we know from [6]
that G satisfies Pqr .
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