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Abstract

For a random vector X in R
n, we obtain bounds on the size of a sample, for which the empirical pth

moments of linear functionals are close to the exact ones uniformly on a convex body K ⊂ R
n. We prove

an estimate for a general random vector and apply it to several problems arising in geometric functional
analysis. In particular, we find a short Lewis type decomposition for any finite dimensional subspace of Lp .
We also prove that for an isotropic log-concave random vector, we only need �np/2 logn� sample points
so that the empirical pth moments of the linear functionals are almost isometrically the same as the exact
ones. We obtain a concentration estimate for the empirical moments. The main ingredient of the proof is
the construction of an appropriate majorizing measure to bound a certain Gaussian process.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many problems of geometric functional analysis it is necessary to approximate a given ran-
dom vector by an empirical sample. More precisely, given a random vector X ∈ R

n, we want to
find the smallest number m such that the properties of X can be recovered from the empirical
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measure 1/m
∑m

j=1 δXj
, constructed with independent copies X1, . . . ,Xm of the vector X. In

particular, for p � 2 and for y ∈ R
n, we want to approximate the moments E|〈X,y〉|p by the

empirical averages 1/m
∑m

j=1 |〈Xj ,y〉|p with high probability. Moreover, we require this ap-
proximation to be uniform over y belonging to some convex symmetric set in R

n. A problem of
this type was considered in [4]. Formulated in analytic language, it asks about finding the small-
est m and a set of points x1, . . . , xm ∈ X such that for any function f from an n-dimensional
function space F ⊂ L1(X,μ),

(1 − ε)‖f ‖1 � 1

m

m∑
j=1

∣∣f (xj )
∣∣ � (1 − ε)‖f ‖1.

Another example of such problems originates in Computer Science. The probabilistic algorithm
for estimating the volume of an n-dimensional convex body, constructed by Kannan, Lovász, and
Simonovits [12] required to bring the body to a nearly isotropic position as a preliminary step.
To this end, one has to sample m random points x1, . . . , xm in the body L so that the empirical
isotropy tensor will be close to the exact one, namely∥∥∥∥∥ 1

m

m∑
j=1

xj ⊗ xj − 1

vol(L)

∫
L

x ⊗ x dx

∥∥∥∥∥ < ε. (1)

This problem was attacked with different probabilistic techniques. The original estimate of
[12] was significantly improved by Bourgain [3]. Using the decoupling method he proved that
m = C(ε)n log3 n vectors x1, . . . , xm uniformly distributed in the body L satisfy (1) with high
probability. This estimate was farther improved to (Cn/ε2) · log2(Cn/ε2) in [23,24]. The proof in
[23] used majorizing measures, while the later proof in [24] was based on the non-commutative
Khintchine inequality.

These problems were put into a general framework by Giannopoulos and Milman [8], who re-
lated them to the concentration properties of a random vector. Let α > 0 and let ν be a probability
measure on (X,Ω). For a function f :X → R define the ψα-norm by

‖f ‖ψα = inf

{
λ > 0

∣∣∣ ∫
X

exp
(|f |/λ)α

dν � 2

}
.

Chebychev’s inequality shows that the functions with bounded ψα-norm are strongly concen-
trated, namely ν{x | |f (x)| > λt} � C exp(−tα). Let μ be a Borel measure in R

n. It is called
isotropic if ∫

Rn

x ⊗ x dμ(x) = Id,

where Id is the identity operator in R
n. Note that this normalization is consistent with the one

used in [12,23,24]. The normalization used in [8,17] differs from it by the multiplicative coeffi-
cient L2

μ, where Lμ is the isotropic constant of μ (see [17]).
The paper [8] considers isotropic measures which satisfy the ψα-condition for scalar products:∥∥〈·, y〉∥∥ � C
ψα
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for all y ∈ Sn−1. Here and below C,c, . . . denote absolute constants, whose value may change at
each occurrence.

Note that by Borell’s lemma, any log-concave measure in R
n satisfies the ψ1-condition

[17,18]. Let p � 1 and let μ be an isotropic log-concave measure satisfying the ψα-condition
for scalar products with some α ∈ [1,2]. The central result of [8] provides an estimate for the
minimal size of a set of independent random vectors X1, . . . ,Xm distributed according to the
measure μ such that the empirical p-moments satisfy the inequality

Γ1(p) �
(

1

m

m∑
j=1

∣∣〈X,y〉∣∣p
)1/p

� Γ2(p), ∀y ∈ Sn−1. (2)

The ψα-condition implies that the Lp(μ)- and L2(μ)-norms of the function fy(x) = 〈x, y〉 are
equivalent. Thus the inequality (2) means that the empirical p-moment of fy is equivalent to the
real p-moment up to a constant coefficient.

In the present paper we use a different approach to this problem based on the majorizing
measure technique developed by Talagrand [26]. This approach lead to breakthrough results in
various problems in probabilistic combinatorics and analysis (see [26] and references therein). In
a similar context the majorizing measures were applied in [25] to select small almost orthogonal
submatrices of an orthogonal matrix, and in [23] to prove the estimate (1) with small m.

To state the results we have to introduce some notation. Let (Rn, 〈·,·〉) be a Euclidean space,
and let | · |2 be the associated Euclidean norm. For a symmetric convex body K in R

n, we
denote by ‖ · ‖K the norm, whose unit ball is K , and by Ko = {y ∈ R

n | ∀x ∈ K, 〈x, y〉 � 1}
the polar of K . We assume that the body K has the modulus of convexity of power type q � 2
(see Section 2 for the definition). Classical examples of convex bodies satisfying this property
are unit balls of finite dimensional subspaces of Lq [5] or of non-commutative Lq -spaces (like
Schatten trace class matrices [27]). We denote by D the radius of the symmetric convex set K ,
i.e. the smallest D such that K ⊂ DBn

2 . For every 1 � q � +∞, we define q∗ to be the conjugate
of q , i.e. 1/q + 1/q∗ = 1.

Given a random vector X in R
n, let X1, . . . ,Xm be m independent copies of X. Let K ⊂ R

n

be a convex symmetric body. Denote by

Vp(K) = sup
y∈K

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣
the maximal deviation of the empirical p-moment of X from the exact one. We would like to
bound Vp(K) under minimal assumptions on the body K and random vector X. This will allow
us to choose the size of the sample m for which this deviation is small with high probability.
Although the resulting statement is pretty technical, it is applicable to a wide range of problems
arising in geometric functional analysis. We discuss some examples in Sections 3, 4.

To bound such random process, we must have some control of the random variable
max1�j�m |Xj |2. To this end we introduce the parameter κp,m(X), which plays a key role below,

κp,m(X) =
(
E max

1�j�m
|Xj |p2

)1/p

.

We prove the following estimate for Vp(K).
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Theorem 1. Let K ⊂ (Rn, 〈·,·〉) be a symmetric convex body of radius D. Assume that K has
modulus of convexity of power type q for some q � 2. Let p � q and let q∗ be the conjugate of q .
Let X be a random vector in R

n, and let X1, . . . ,Xm be independent copies of X. Assume that

Cp,λ

(logm)2/q∗

m

(
D · κp,m(X)

)p � δ2 · sup
y∈K

E
∣∣〈X,y〉∣∣p

for some δ < 1. Then

EVp(K) � 2δ · sup
y∈K

E
∣∣〈X,y〉∣∣p.

The constant Cp,λ in Theorem 1 depends on p and on the parameter λ in the definition of the
modulus of convexity of power type q (see Section 2.1 for the definition).

Note that minimal assumptions on the vector X are enough to guarantee that EVp(K) becomes
small for large m. Indeed, assume that the variable |X|2 possesses a finite moment of order p + ε

for some positive ε. Then

κp,m(X) �
(

E

m∑
j=1

|Xj |p+ε

2

)1/p+ε

� m1/p+ε
(
E|X|p+ε

2

)1/p+ε
,

so the quantity

(logm)2/q∗

m
· κp

p,m(X)

tends to 0 when m goes to ∞. Moreover, in most cases, κp,m(X) may be bounded by a simpler
quantity:

κp,m(X) �
(

E

m∑
j=1

|Xj |p2
)1/p

� e
(
E|X|s)1/s =: eMs, (3)

where s = max(p, logm).
Theorem 1 improves the results of [8] in two ways. First, it contains an almost isometric

approximation of the Lp-moments of the random vector by empirical samples (see Theorem 2
below). Second, the assumption on the norm of a random vector X used in Theorem 1 is weaker
than the ψα-assumption on the scalar products, appearing in [8]. This allows to handle the sit-
uations, where the ψα-estimate does not hold (see, e.g., approximate Lewis decompositions,
discussed in Section 3).

While Theorem 1 combined with Chebychev’s inequality provides a bound for Vp(K), which
holds with high probability, it is often useful to have this probability exponentially close to 1. Us-
ing a measure concentration result of Talagrand [14, Theorem 6.21], we obtain such probability
estimate in Theorem 4.

We apply Theorem 1 to isotropic log-concave random vectors. This class includes many nat-
urally arising types of random vectors, in particular a vector uniformly distributed in an isotropic
convex body (see Section 4 for exact definitions). The empirical moments of log-concave vectors
have been extensively studied in the last years [3,7,8,12,24]. We will prove the following
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Theorem 2. For any ε ∈ (0,1) and p � 2 there exists n0(ε,p) such that for any n � n0(ε,p),
the following holds: Let X be a log-concave isotropic random vector in R

n, and let X1, . . . ,Xm

be independent copies of X. If

m = ⌊
Cp ε−2np/2 logn

⌋
then for any t > ε, with probability greater than 1 − C exp(−(t/C′

pε)1/p), for any y ∈ R
n,

(1 − t)E
∣∣〈X,y〉∣∣p � 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p � (1 + t)E
∣∣〈X,y〉∣∣p.

The constants Cp and C′
p are positive real numbers depending only on p.

Theorem 2 provides an almost isometric approximation of the exact moments, instead of the
isomorphic estimates of [8], and achieves it with fewer sample vectors. In the case p = 2, it
also improves the estimate of [24], and extends to the general setting the estimate obtained by
Giannopoulos, Hartzoulaki and Tsolomitis [7] for a random vector uniformly distributed in a
1-unconditional isotropic convex body.

The rest of the paper is organized as follows. In Section 2 we formulate and prove the main
results for abstract random vectors. The key step of the proof of Theorem 1 is the estimate of the
Gaussian random process

Zy =
m∑

j=1

gj

∣∣〈Xj ,y〉∣∣p,

where gj are independent standard Gaussian random variables N (0,1). To obtain such estimate
we construct an appropriate majorizing measure and apply the Majorizing Measure Theorem of
Talagrand [26]. In Sections 3 and 4, we provide applications of Theorem 1. Since we require only
the existence of high-order moments of the norm of X we can apply Theorem 1 to the measures
supported by the contact points of a convex body, like in [22,23], as well as to finding a short
Lewis-type decomposition, as described in Section 3. In Section 4, we study in detail the case of
log-concave random vectors X. In the last part of this paper, we extend the results obtained in
[8] for a uniform distribution on a discrete cube to a general random vector X, which satisfies a
ψ2 estimate for the scalar products 〈X,y〉, y ∈ R

n.

2. Maximal deviation of the empirical p-moment

2.1. Statement of the results

Let K ⊂ R
n be a convex symmetric body. The modulus of convexity of K is defined for any

ε ∈ (0,2) by

δK(ε) = inf

{
1 −

∥∥∥∥x + y
∥∥∥∥ , ‖x‖K = 1, ‖y‖K = 1, ‖x − y‖K > ε

}
.

2 K
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We say that K has modulus of convexity of power type q � 2 if δK(ε) � cεq for every ε ∈ (0,2).
It is known (see, e.g., [21, Proposition 2.4] or [6]) that this property is equivalent to the fact that
the inequality ∥∥∥∥x + y

2

∥∥∥∥
q

K

+ λ−q

∥∥∥∥x − y

2

∥∥∥∥
q

K

� 1

2

(‖x‖q
K + ‖y‖q

K

)
holds for all x, y ∈ R

n. Here λ > 0 is a constant depending only on c and q . Referring to this
inequality below, we shall say that K has modulus of convexity of power type q with constant λ.

Our main result is the following theorem, which implies Theorem 1 from the Introduction.

Theorem 3. Let K ⊂ R
n be a symmetric convex body of radius D. Assume that K has modulus

of convexity of power type q with constant λ for some q � 2, and let q∗ be the conjugate of q .
Let X be a random vector in R

n and let X1, . . . ,Xm be independent copies of X. For p � q set

A = Cpλp (logm)1/q∗
√

m

(
Dκp,m(X)

)p/2
and B = sup

y∈K

E
∣∣〈X,y〉∣∣p.

Then

E sup
y∈K

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣ � A2 + A
√

B.

The assumption of Theorem 1 reads A2 � δ2 · B , hence A2 + A
√

B � 2δB . Thus, Theorem 1
follows immediately from Theorem 3.

Remark. In fact we shall prove a slightly better inequality. Define

κ ′
p,m(X,K) =

(
E max

1�j�m
|Xj |22 max

1�j�m
‖Xj‖p−2

Ko

)1/p;

then Theorem 3 holds, if the quantity (Dκp,m(X))p/2 is replaced by Dκ ′
p,m(X,K)p/2. Since

K ⊂ DBn
2 , it is clear that

κ ′
p,m(X,K)p/2 � Dp/2−1κp,m(X)p/2.

The proof of this theorem is based on the following lemma.

Lemma 1. Let K ⊂ R
n be a symmetric convex body of radius D. Assume that K has modulus of

convexity of power type q with constant λ for some q � 2, λ > 0. Let q∗ be the conjugate of q .
Then for every p � q , and every deterministic vectors X1, . . . ,Xm in R

n,

E sup
y∈K

∣∣∣∣∣
m∑

j=1

εj

∣∣〈Xj ,y〉∣∣p
∣∣∣∣∣ � Cpλp(logm)1/q∗

D max
1�j�m

|Xj |2 sup
y∈K

(
m∑

j=1

∣∣〈Xj ,y〉∣∣2(p−1)

)1/2

,

where expectation is taken over the Bernoulli random variables (εj )1�j�m.
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The proof of the lemma uses a specific construction of a majorizing measure. It will be pre-
sented in Section 2.2.

Proof of Theorem 3. The proof is based on a standard symmetrization argument. We denote by
X′

1, . . . ,X
′
m independent copies of X1, . . . ,Xm. Let (εj )

m
j=1 be independent symmetric Bernoulli

random variables, which are independent of all others. Then the expectation of

Vp(K) = sup
y∈K

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣
can be estimated as follows:

mEVp(K) = E sup
y∈K

∣∣∣∣∣
m∑

j=1

∣∣〈Xj ,y〉∣∣p − mE
∣∣〈X,y〉∣∣p

∣∣∣∣∣
= E sup

y∈K

∣∣∣∣∣
m∑

j=1

(∣∣〈Xj ,y〉∣∣p − E
∣∣〈X′

j , y
〉∣∣p)∣∣∣∣∣

� EXEX′ sup
y∈K

∣∣∣∣∣
m∑

j=1

(∣∣〈Xj ,y〉∣∣p − ∣∣〈X′
j , y

〉∣∣p)∣∣∣∣∣
= EXEX′Eε sup

y∈K

∣∣∣∣∣
m∑

j=1

εj

(∣∣〈Xj ,y〉∣∣p − ∣∣〈X′
j , y

〉∣∣p)∣∣∣∣∣
� 2EXEε sup

y∈K

∣∣∣∣∣
m∑

j=1

εj

∣∣〈Xj ,y〉∣∣p
∣∣∣∣∣.

Therefore, Lemma 1 implies

EVp(K) � CpλpD
(logm)1/q∗

√
m

EX max
1�j�m

|Xj |2 sup
y∈K

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣2(p−1)

)1/2

.

Since p � 2, it is easy to see that

EX max
1�j�m

|Xj |2 sup
y∈K

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣2(p−1)

)1/2

� EX max
1�j�m

|Xj |2 max
1�j�m

‖Xj‖p/2−1
Ko sup

y∈K

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/2

� κ ′
p,m(X,K)p/2

(
EX sup

y∈K

1

m

m∑∣∣〈Xj ,y〉∣∣p
)1/2
j=1



O. Guédon, M. Rudelson / Advances in Mathematics 208 (2007) 798–823 805
� κ ′
p,m(X,K)p/2

(
EVp(K) + sup

y∈K

E
∣∣〈X,y〉∣∣p)1/2

.

We get that EVp(K) � A′(EVp(K) + B)1/2 where

A′ = CpλpD
(logm)1/q∗

√
m

κ ′
p,m(X,K)p/2 and B = sup

y∈K

E
∣∣〈X,y〉∣∣p

which proves the announced result. �
We present now a deviation inequality for the positive random variable Vp(K) under the

assumption that |X|2 satisfies some ψα estimate. Mendelson and Pajor [16] studied the same de-
viation inequality in the case p = 2 and K = Bn

2 using a symmetrization argument. Our approach
is based on a concentration result of Talagrand (Theorem 6.21 in [14]).

Theorem 4. With the same notation as in Theorem 3, let Vp(K) be the random variable

Vp(K) = sup
y∈K

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣.
Assume that ‖|X|2‖ψα < ∞ for some 0 < α � p. Then there exists a positive constant cα,p

depending only on α and p such that

∀t > 0, P
(
Vp(K) � t

)
� 2 exp

(−(t/Q)α/p
)
,

where

Q = cα,p

(
EVp(K) + (logm)p/α

m
Dp

∥∥|X|2
∥∥p

ψα

)
.

Remark. Observe that in the typical case, Q is of the order EVp(K) for which we may use
Theorem 3. By Lemma 2 (see below),

κp,m(X) � C(p logm)1/α
∥∥|X|2

∥∥
ψα

;

therefore, using Theorem 3,

Q � Cα,p

(
2A2

1 + A1
√

B
)
,

where

A1 = λpDp/2 (logm)1/q∗+p/2α

√
m

∥∥|X|2
∥∥

ψα
and B = sup

y∈K

E
∣∣〈X,y〉∣∣p.

For the proof of this theorem, we need an elementary lemma.
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Lemma 2. Let δ > 0 and let Z1, . . . ,Zm be independent copies of a random variable Z. Then

∥∥∥ max
j=1,...,m

|Zj |
∥∥∥

ψδ

� C log1/δ m · ‖Z‖ψδ .

Proof. Note that for any random variable Y the inequality ‖Y‖ψδ � A is equivalent to

‖Y‖r � CAr1/δ

for all r > 1. Assume that r < logm. Then

∥∥∥ max
j=1,...,m

|Zj |
∥∥∥

r
�

∥∥∥∥∥
(

m∑
j=1

|Zj |logm

)1/ logm∥∥∥∥∥
r

�
(

E

(
m∑

j=1

|Zj |logm

)r/ logm)1/r

�
(

m∑
j=1

E|Zj |logm

)1/ logm

� C log1/δ m · ‖Z‖ψδ .

If r > logm, then using maxj=1,...,m aj � (
∑m

j=1 ar
j )

1/r , we get

∥∥∥ max
j=1,...,m

|Zj |
∥∥∥

r
�

(
m∑

j=1

E|Zj |r
)1/r

� m1/r‖Z‖r � Cr1/δ · ‖Z‖ψδ .

These two inequalities imply the lemma. �
Proof of Theorem 4. To any vector x ∈ R

n we associate the function fx defined on K by

fx :K → R

y �→ 1

m

(∣∣〈x, y〉∣∣p − E
∣∣〈X,y〉∣∣p)

.

Let fX be the random vector of L∞(K) associated to X. Now we apply Theorem 6.21 of
Ledoux–Talagrand [14] to ‖∑m

j=1 fXj
‖ where the Xj ’s are independent copies of X. By de-

finition,

∥∥∥∥∥
m∑

j=1

fXj

∥∥∥∥∥
L∞(K)

= Vp(K),

and

‖fX‖L∞(K) � 1

m

(
sup

∣∣〈X,y〉∣∣p + sup E
∣∣〈X,y〉∣∣p)

� Dp

m

(|X|p2 + E|X|p2
)
.

y∈K y∈K
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Theorem 6.21 of Ledoux–Talagrand [14] states that if α/p � 1, there exists a constant cα,p

depending only on α/p such that

∥∥Vp(K)
∥∥

ψα/p
� cα,p

(
EVp(K) +

∥∥∥ max
1�j�m

‖fXj
‖L∞(K)

∥∥∥
ψα/p

)
.

Moreover,

∥∥∥ max
1�j�m

‖fXj
‖L∞(K)

∥∥∥
ψα/p

� 2Dp

m

∥∥∥ max
1�j�m

|Xj |p2
∥∥∥

ψα/p

= 2Dp

m

∥∥∥ max
1�j�m

|Xj |2
∥∥∥p

ψα

.

Lemma 2 implies ∥∥∥ max
1�j�m

|Xj |2
∥∥∥

ψα

� C(logm)1/α
∥∥|X|2

∥∥
ψα

. (4)

This proves that

∥∥Vp(K)
∥∥

ψα/p
� cα,p

(
EVp(K) + (logm)p/α

m
Dp

∥∥|X|2
∥∥p

ψα

)
.

The deviation inequality follows from the Chebychev inequality. �
2.2. Construction of majorizing measures

Let us recall the assumptions of Lemma 1. The ambient space is R
n equipped with a Euclidean

structure and we denote by | · |2 the norm associated. The symmetric convex body K has a
modulus of convexity of power type q � 2 with a constant λ, which means that

∀x, y ∈ R
n,

∥∥∥∥x + y

2

∥∥∥∥
q

K

+ λ−q

∥∥∥∥x − y

2

∥∥∥∥
q

K

� 1

2

(‖x‖q
K + ‖y‖q

K

)
(5)

and satisfies also the inclusion K ⊂ DBn
2 , which means that

∀x ∈ R
n, |x|2 � D‖x‖K.

Let p � q � 2, and X1, . . . ,Xm be m fixed vectors in R
n. We define the random process Vy for

all y ∈ R
n by

Vy =
m∑

j=1

εj

∣∣〈Xj ,y〉∣∣p,

where εj are independent symmetric Bernoulli random variables. It is well known that this
process satisfies a sub-Gaussian tail estimate: ∀y, y ∈ R

n, ∀t > 0,

P
(|Vy − Vy | � t

)
� 2 exp

(
− ct2

˜2

)
,

d (y, y )
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where

d̃2(y, y ) =
m∑

j=1

(∣∣〈Xj ,y〉∣∣p − ∣∣〈Xj ,y 〉∣∣p)2
.

Instead of working with this function which is not a metric, it will be preferable to consider the
following quasi-metric

d2(y, y ) =
m∑

j=1

∣∣〈Xj ,y − y 〉∣∣2(∣∣〈Xj ,y〉∣∣2(p−1) + ∣∣〈Xj ,y 〉∣∣2(p−1))
.

The following propositions state inequalities that we will need to prove Lemma 1. Proposition 1
gives some information concerning the geometry of the balls associated to the metric d and
Proposition 2 explains relation between metric d , new Euclidean norm and the following norm
defined by

‖x‖∞ = max
1�j�m

∣∣〈Xj ,x〉∣∣.
We denote by Bρ(x) the ball of center x with radius ρ for the quasi-metric d .

Proposition 1. For all y, y ∈ K ,

d̃(y, y ) � p d(y, y ), (6)

d(y, y ) �
√

2‖y − y‖∞ sup
y∈K

(
m∑

j=1

∣∣〈Xj ,y〉∣∣2(p−1)

)1/2

, (7)

‖y − y‖∞ � D max
1�j�m

|Xj |2 ‖y − y‖K. (8)

Moreover, the quasi-metric d satisfies the generalized triangle inequality, and for any point x,
the ball Bρ(x) is a convex set: for all u1, . . . , uN ∈ R

n and all x, y, z ∈ R
n,

d(u1, uN) � 2p

N−1∑
i=1

d(ui, ui+1) and d2
(

x,
y + z

2

)
� 1

2

(
d2(x, y) + d2(x, z)

)
. (9)

To prove it, we will need the following basic inequalities on real numbers.

Lemma 3. For every x, y ∈ R
+ and p � 2, we have

∣∣xp − yp
∣∣ � p|x − y|

√
x2p−2 + y2p−2. (10)

Moreover, if f (s, t) = |s − t |√|s|2p−2 + |t |2p−2 then for all r1, . . . , rN ∈ R,

f (r1, rN ) � 2p

N−1∑
f (ri, ri+1),
i=1
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and for all r, s, t ∈ R,

f
(
r, (s + t)/2

)2 �
(
f (r, s)2 + f (r, t)2)/2.

Proof. The first inequality is straightforward. To prove the second one, consider two cases. When
r1rN � 0, since

|r1 − rN |
√

|r1|2p−2 + |rN |2p−2 �
√

2
∣∣|r1|p − |rN |p∣∣,

the conclusion follows from the triangle inequality and inequality (10). When r1rN � 0, we can
assume without loss of generality that r1 � 0 and rN � 0. Then

f (r1, rN ) = (
r1 + |rN |)√r

2p−2
1 + |rN |2p−2 �

(
r1 + |rN |)(rp−1

1 + |rN |p−1)
� 2

(
r
p

1 + |rN |p)
.

Let m < N be a number such that rm � 0 and rm+1 � 0. Then

r
p

1 + |rN |p �
m−1∑
i=1

∣∣|ri |p − |ri+1|p
∣∣ + r

p
m + |rm+1|p +

N−1∑
i=m+1

∣∣|ri |p − |ri+1|p
∣∣.

Combining the previous inequalities with (10), we get

f (r1, rN ) � 2
m−1∑
i=1

∣∣|ri |p − |ri+1|p
∣∣ + 2

(
r
p
m + |rm+1|p

) + 2
N−1∑

i=m+1

∣∣|ri |p − |ri+1|p
∣∣

� 2p

m−1∑
i=1

f (ri, ri+1) + 2(rm − rm+1)
(
r
p−1
m + |rm+1|p−1) + 2p

N−1∑
i=m+1

f (ri, ri+1)

� 2p

m−1∑
i=1

f (ri, ri+1) + 2
√

2f (rm, rm+1) + 2p

N−1∑
i=m+1

f (ri, ri+1)

which proves the announced result. The last inequality follows from the fact that for p � 2, the
function v �→ (1 − v)2(1 + v2p−2) is convex on R, which can be checked by computing the
second derivative. �
Proof of Proposition 1. Inequalities (6) and (9) clearly follow from the three inequalities proved
in Lemma 3. Inequalities (7) and (8) follow from simple observations about d and the fact that
K ⊂ DBn

2 . �
Proposition 2. Let M = supy∈K

∑m
j=1 |〈Xj ,y〉|2(p−1). For a fixed u ∈ K , we define the Euclid-

ean norm | · |Eu
associated to u by

|z|2Eu
=

m∑∣∣〈X�, z〉
∣∣2∣∣〈X�,u〉∣∣2(p−1)

, ∀z ∈ R
n.
�=1
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Then the following inequality holds for all z, z ∈ R
n:

d2(z, z ) � 2 · 4p−1(|z − z|2Eu
+ M‖z − z‖2∞

(‖z − u‖2p−2
K + ‖z − u‖2p−2

K

))
.

Proof. By homogeneity of the statement, we can assume that

M = sup
y∈K

m∑
j=1

∣∣〈Xj ,y〉∣∣2(p−1) = 1.

For any z ∈ R
n, let Lz = {� ∈ {1, . . . ,m} | |〈X�, z〉| � 2|〈X�,u〉|}. Then by convexity of the

function t �→ t2p−2, we have

∑
�∈Lz

∣∣〈X�, z〉
∣∣2(p−1) � 22p−3

∑
�∈Lz

∣∣〈X�, z − u〉∣∣2(p−1) + 22p−3
∑
�∈Lz

∣∣〈X�,u〉∣∣2(p−1)

� 22p−3
∑
�∈Lz

∣∣〈X�, z − u〉∣∣2(p−1) + 1

2

∑
�∈Lz

∣∣〈X�, z〉
∣∣2(p−1)

,

which proves (since M = 1) that for any z ∈ R
n,

∑
�∈Lz

∣∣〈X�, z〉
∣∣2(p−1) � 4p−1‖z − u‖2p−2

K .

Hence, for any z, z ∈ R
n,

∑
�∈Lz

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1) � ‖z − z‖2∞

∑
�∈Lz

∣∣〈X�, z〉
∣∣2(p−1)

� 4p−1‖z − u‖2p−2
K ‖z − z‖2∞.

For any l /∈ Lz we have |〈Xl, z〉| � 2|〈Xl,u〉|, so

∑
�/∈Lz

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1) � 4p−1

m∑
�=1

∣∣〈X�, z − z〉∣∣2∣∣〈X�,u〉∣∣2(p−1)
.

The same inequalities hold if we exchange the roles of z and z. To compute d2(zi, zj ), we split
the sum in four parts and apply the inequalities above:

d2(z, z ) =
m∑

�=1

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1) + ∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉

∣∣2(p−1)

=
∑
�∈Lz

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1) +

∑
�/∈Lz

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1)

+
∑
�∈L

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1) +

∑
�/∈L

∣∣〈X�, z − z〉∣∣2∣∣〈X�, z〉
∣∣2(p−1)
z z
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� 2 · 4p−1(|z − z|2Eu
+ ‖z − z‖2∞

(‖z − u‖2p−2
K + ‖z − u‖2p−2

K

))
. �

Proof of Lemma 1. By inequality (6), we may treat Vy as a sub-Gaussian process with the
quasi-metric p · d . By homogeneity of the statement, we can assume that

sup
y∈K

m∑
j=1

∣∣〈Xj ,y〉∣∣2(p−1) = 1.

Denote Q = max1�j�m |Xj |2. We want to show that

E sup
y∈K

|Vy | � CpλpQ(logm)1/q∗
D. (11)

By Proposition 1, the diameter of the set K with respect to the metric d is bounded by 2
√

2QD.
Let r be a fixed number chosen such that r = cp2 for a large universal constant c and k0 be the
largest integer such that r−k0 � 2

√
2QD.

The proof of inequality (11) is based on the majorizing measure theory of Talagrand [26]. The
following theorem is a combination of Proposition 2.3, Theorem 4.1 and Proposition 4.5 of [26].
Note that assuming that r � 2, one can set K(r) = C in Proposition 2.3, and K(2,1, r) = C in
Proposition 4.5.

Theorem. [26] Let r � 2. Let φk :K → R
+ for k � k0 be a family of maps satisfying the fol-

lowing assumption: There exists A > 0 such that for any point x ∈ K , for any k � k0 and any
N ∈ N,

(H) for any points x1, . . . , xN ∈ Br−k (x) with d(xi, xj ) � r−k−1, i �= j , we have

max
i=1,...,N

φk+2(xi) � φk(x) + 1

A
r−k

√
logN.

Then for any fixed y0 ∈ K ,

E sup
y∈K

|Vy − Vy0 | � cA · sup
k�k0, x∈K

φk(x).

To obtain the conclusion of Lemma 1, set y0 = 0.
To complete the proof, we have to define the functionals φk :K → R

+. Let k1 be the smallest
integer such that r−k1 � QD/

√
n. For k � k1 + 1, set

φk(x) = 1 + 1

2 log r
+

√
n

QD(logm)1/q∗

k∑
l=k1

r−l
√

log
(
1 + 4QDrl

)
.

Note that in this range of k the functionals φk do not depend on x. We shall show that with this
choice of φk , the condition (H) follows from the classical volumetric estimate of the covering
numbers.
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For k0 � k � k1, the functionals φk are defined by

φk(x) = min
{‖y‖q

K, y ∈ B4pr−k (x)
} + k − k0

logm
.

Since q � 2 then 1 � q∗ � 2 and (logm)1/q∗ �
√

logm. It is easy to see using definitions of k0
and k1 that

sup
x∈K,k�k0

φk(x) � c.

We shall prove that our functionals satisfy condition (H) for

A = (Cλ)pQD(logm)1/q∗
,

where C is a large numerical constant. That will conclude the proof of Lemma 1 with a new
constant C. �
Proof of condition (H). Let N ∈ N, x ∈ K , x1, . . . , xN ∈ Br−k (x) with d(xi, xj ) � r−k−1. We
have to prove that

max
i=1,...,N

φk+2(xi) − φk(x) � r−k
√

logN

(Cλ)pQD(logm)1/q∗ .

For k � k1 − 1, we always have

φk+2(xi) − φk(x) �
√

n log(1 + 4QDrk+2)

QD(logm)1/q∗ r−k−2.

Since the points x1, . . . , xN are well separated in the metric d , they are also well separated in the
norm ‖ · ‖K . Indeed, by (7) and (8), we have

‖xi − xj‖K � r−k−1/QD
√

2.

By the classical volumetric estimate, the maximal cardinality of a t-net in a convex symmetric
body K ⊂ R

n with respect to ‖ · ‖K does not exceed (1 + 2/t)n. Therefore,

√
logN �

√
n log

(
1 + 2

√
2QDrk+1

)
,

which proves the desired inequality.
The case k0 � k � k1 − 2 is much more difficult. Our proof uses estimates of the cover-

ing numbers, in particular, the dual Sudakov inequality [20]. Recall that the covering number
N(W,‖ · ‖X, t) is the minimal cardinality of ‖ · ‖X-balls of radius t needed to cover the W .

For j = 1, . . . ,N denote by zj ∈ K the points which satisfy

‖zj‖q = min
{‖y‖q

, y ∈ B4pr−k−2(xj )
}
.
K K
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Denote by u ∈ K a point such that ‖u‖q
K = min{‖y‖q

K, y ∈ B4pr−k (x)}. Set

θ = max
j

‖zj‖q
K − ‖u‖q

K.

Then we have maxj φk+2(xj ) − φk(x) = θ + 2/(logm). We shall prove that

θ + 2

logm
� r−k

√
logN/A. (12)

Since d(xi, xj ) � r−k−1, zl ∈ B4pr−k−2(xl), and d satisfies a generalized triangle inequality, the
points (zj )1�j�N remain well separated. Indeed,

r−k−1 � d(xi, xj ) � 2p
(
d(xi, zi) + d(zi, zj ) + d(zj , xj )

)
� 2pd(zi, zj ) + 16p2r−k−2

and since r = cp2, we have

d(zi, zj ) � r−k−1/cp

for all i �= j . Recall that r = cp2. Using again the generalized triangle inequality, we get that

d(x, zj ) � 2p
(
d(x, xj ) + d(xj , zj )

)
� 2p

(
r−k + 4pr−k−2) � 4pr−k.

It means that zj ∈ B4pr−k (x), u ∈ B4pr−k (x), and the convexity of the balls for the quasi-metric
d proved in Proposition 1 implies (u + zj )/2 ∈ B4pr−k (x). Since K has modulus of convexity of
power type q , inequality (5) holds. By the definition of u, we get that for all j = 1, . . . ,N ,

λ−q

∥∥∥∥zj − u

2

∥∥∥∥
q

K

� 1

2

(‖zj‖q
K + ‖u‖q

K

) −
∥∥∥∥zj + u

2

∥∥∥∥
q

K

�
‖zj‖q

K − ‖u‖q
K

2
� θ

2
.

This proves that ∀j = 1, . . . ,N,‖zj − u‖K � 2λθ1/q . Let δ > 0. Consider the set

U = u + 2λθ1/qK

which contains all the zj ’s and let S be the maximal number of points in U that are 2δ separated
in ‖ · ‖∞. Then U is covered by S subsets of diameter smaller than 2δ in ‖ · ‖∞ metric, and so
S � N(U,‖ · ‖∞,2δ). Set

δ = c̃pλ1−pr−kθ1/q−1,

where the constant c̃ will be chosen later. Since U = u + 2λθ1/qK and K ⊂ DBn
2 , the dual

Sudakov inequality [20] implies

√
logS �

√
logN

(
Bn

2 ,‖ · ‖∞, δ/Dλθ1/q
)
� cDλθ1/q

E‖G‖∞/δ.

Here G denotes a standard Gaussian vector in R
n. It is well known that
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E‖G‖∞ = E max
j=1,...,m

∣∣〈Xj ,G〉∣∣ � cQ
√

logm.

We consider now two cases.
First, assume that S �

√
N . Then by previous estimate and the definition of δ, we get√

logN � cQλD
√

logmθ1/q/δ � θ c̃prkQλpD
√

logm

which easily proves (12) (since q∗ � 2).
The second case is when S �

√
N . Since U is covered by S balls of diameter smaller than 2δ

in ‖ · ‖∞, there exists a subset J of {1, . . . ,N} with #J �
√

N such that

∀i, j ∈ J, ‖zi − zj‖∞ � 2δ.

By Proposition 2 applied to the Euclidean norm defined by

|y|2Eu
=

m∑
�=1

∣∣〈X�,y〉∣∣2∣∣〈X�,u〉∣∣2(p−1)
,

we get that

d2(zi, zj ) � 2 · 4p−1(|zi − zj |2Eu
+ 4pλ2p−2θ(2p−2)/qδ2).

Since θ � 1 and q � p, the definition of δ implies

42pλ2p−2θ(2p−2)/qδ2 � (4c̃)2pr−2kθ2(p/q−1) � (4c̃)2pr−2k.

Recall that d(zi, zj ) � r−k−1/cp and r = cp2. Hence,

r−2k/cp6 � d(zi, zj )
2 � 2 · 4p−1|zi − zj |2Eu

+ 2(4c̃)2pr−2k.

Choosing c̃ small enough, we get that for all i, j ∈ J ,

|zi − zj |Eu
� r−k−1cp.

Since K ⊂ DBn
2 , we have the following estimate for the covering numbers:

#J � N
(
U, | · |Eu

, cpr−k−1) = N
(
K, | · |Eu

, cpr−k−1/2λθ1/q
)

� N
(
Bn

2 , | · |Eu
, cpr−k−1/2λθ1/qD

)
.

Recall that G denotes a standard Gaussian vector in R
n. By the dual Sudakov inequality [20], we

have √
logN

(
Bn

2 , | · |Eu
,

cpr−k−1

2λDθ1/q

)
� Cprk+1θ1/qλDE|G|Eu

� Cprk+1θ1/qλD
(
E|G|2E

)1/2
.

u
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Since for all y ∈ K ,
∑m

j=1 |〈Xj ,y〉|2(p−1) � 1, we obtain

E|G|2Eu
=

m∑
�=1

|X�|22
∣∣〈X�,u〉∣∣2(p−1) � Q2.

Since #J �
√

N , we have
√

logN � Cprk+1λDQθ1/q with a universal constant C. Moreover,
by Young’s inequality

θ1/q � (logm)1/q∗(
θ/q + 1/(q∗ logm)

)
and since q∗ � 2 � q and λ � 1, we get

√
logN � (Cλ)p rk+1 D Q (logm)1/q∗

(
θ + 2

logm

)
.

This completes the proof of (12) and the proof of condition (H) for the functionals φk . �
3. Approximate Lewis decomposition

It is well known that if E is an n-dimensional subspace of Lp , then E is (1 + ε)-isomorphic
to an n-dimensional subspace of �N

p with N depending on n, p and ε. Lewis [15] proved that
any linear subspace E of �N

p possesses a special decomposition of the identity. More precisely,
there exists a Euclidean structure on E with the scalar product 〈·,·〉, vectors y1, . . . , yN ∈ E and
scalars c1, . . . , cN > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∀i, 〈yi, yi〉 = 1,

‖x‖E =
(

N∑
i=1

ci

∣∣〈x, yi〉
∣∣p)1/p

, ∀x ∈ E,

IdE =
N∑

i=1

ciyi ⊗ yi .

Denote by (H, | · |H ) the linear space E equipped with this Euclidean structure. Recall that
p∗ denotes the conjugate of p. In the following theorem, we prove that both spaces E and H can
be (1 + ε)-embedded in �m

p and �m
2 respectively via the same linear operator

T : RN → R
m,

whenever m is of the order of ε−2np/2 log2/p∗
(n/ε4/p). This extends a classical result of Bour-

gain, Lindenstrauss and Milman [4] (and [14] for a better dependance on ε) and some results
in [22] concerning the number of contact points of a convex body needed to approximate the
identity decomposition.

Theorem 5. Let E be an n-dimensional subspace of Lp for some p � 2. Then for every ε > 0
there exists a Euclidean structure H = (E, 〈·,·〉) on E and m points x1, . . . , xm in E with

m � Cp

2
np/2 log2/p∗

(
n

4/p

)
� Cp

2
np/2 log2

(
n

4/p

)

ε ε ε ε
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such that ∀j , |xj |H = 1 and for all y ∈ E,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ε)‖y‖E �
(

n

m

m∑
j=1

∣∣〈y, xj 〉
∣∣p)1/p

� (1 + ε)‖y‖E,

(1 − ε)|y|H �
(

n

m

m∑
j=1

∣∣〈y, xj 〉
∣∣2

)1/2

� (1 + ε)|y|H .

Proof. Let X be the random vector taking values yi with probability ci/n. Then for all y ∈ E,

E
∣∣〈X,y〉∣∣p = ‖y‖p

E/n and E
∣∣〈X,y〉∣∣2 = |y|2H /n and |X|H = 1.

We will apply Theorem 1 twice: first time for the unit ball of E, and then for the unit ball
of H .

Since E is a subspace of Lp , by Clarkson’s inequality [5], BE has modulus of convex-
ity of power type p with constant λ = 1. From Lewis decomposition, we get ‖y‖E � |y|H �
n1/2−1/p‖y‖E which means that for D = n1/2−1/p ,

BH ⊂ BE ⊂ DBH .

Let X1, . . . ,Xm be independent copies of X, then

sup
y∈BE

E
∣∣〈X,y〉∣∣p = 1/n and κp,m(X) =

(
E max

1�j�m
|Xj |pH

)1/p

= 1.

Applying Theorem 1 with δ = ε, we get that if m � Cpnp/2(logm)2/p∗
/ε2, then

E sup
y∈BE

∣∣∣∣∣ n

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − ‖y‖p
E

∣∣∣∣∣ � ε.

Now, we apply Theorem 1 for K = BH which clearly has modulus of convexity of power
type 2 (i.e. satisfies inequality (5) for q = 2). In that case, D = 1, and

sup
|y|H �1

E
∣∣〈X,y〉∣∣2 = 1/n and κ2,m(X) =

(
E max

1�j�m
|Xj |22

)1/2 = 1.

Applying Theorem 1 for q = p = 2 and δ = ε, we get that if m � C2n logm/ε2,

E sup
|y|H �1

∣∣∣∣∣ n

m

m∑
j=1

∣∣〈Xj ,y〉∣∣2 − |y|2H
∣∣∣∣∣ � ε.

Choosing the smallest integer m such that, for a new constant C̃,

m � C̃p

2
np/2(logn/ε4/p

)2/p∗
ε
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we get by Chebychev’s inequality that there exist m vectors x1, . . . , xm of Euclidean norm 1 such
that for all y ∈ E,

∣∣∣∣∣ n

m

m∑
j=1

∣∣〈xj , y〉∣∣p − ‖y‖p
E

∣∣∣∣∣ � ε‖y‖p
E

and

∣∣∣∣∣ n

m

m∑
j=1

∣∣〈xj , y〉∣∣2 − |y|2H
∣∣∣∣∣ � ε|y|2H

which gives the desired result. �
4. Isotropic log-concave vectors in RRR

n

We investigate the case of X being an isotropic log-concave vector in R
n (or also a vector

uniformly distributed in an isotropic convex body). Let us recall some definitions and classical
facts about log-concave measures. A probability measure μ on R

n is said to be log-concave if
for every compact sets A,B , and every λ ∈ [0,1], μ(λA+ (1−λ)B) � μ(A)λμ(B)1−λ. There is
always a Euclidean structure 〈·,·〉 on R

n for which this measure is isotropic, i.e. for every y ∈ R
n,

E〈X,y〉2 =
∫
Rn

〈x, y〉2 dμ(x) = |y|22.

A particular case of a log-concave probability measure is the normalized uniform (Lebesgue)
measure on a convex body. Borell’s inequality [2] (see also [17,18]) implies that the linear func-
tionals x �→ 〈x, y〉 satisfy Khintchine type inequalities with respect to log-concave probability
measures. Namely, if p � 2, then for every y ∈ R

n,

(
E〈X,y〉2)1/2 �

(
E

∣∣〈X,y〉∣∣p)1/p � Cp
(
E〈X,y〉2)1/2

, (13)

or in other words

∥∥〈·, y〉∥∥
ψ1

� C
(
E〈X,y〉2)1/2

.

We have stated in (3) that it is easy to deduce some information about the parameter κp,m(X)

from the behavior of the moment Ms of order s = max(p, logm) of the Euclidean norm of the
random vector X. These moments were studied for a random vector uniformly distributed in an
isotropic 1-unconditional convex body in [1], and for a vector uniformly distributed in the unit
ball of a Schatten trace class in [11], where it was proved that when s � c

√
n, Ms is of the same

order as M2 (up to constant not depending on s). Very recently, Paouris [19] proved that the
same statement is valid for any log-concave isotropic random vector in R

n. We state precisely
his result.



818 O. Guédon, M. Rudelson / Advances in Mathematics 208 (2007) 798–823
Theorem. [19] There exist constants c,C > 0 such that for any log-concave isotropic random
vector X in R

n, for any p � c
√

n,

(
E|X|p2

)1/p � C
(
E|X|22

)1/2
.

From this sharp estimate, we will deduce the following

Lemma 4. Let X be an isotropic log-concave random vector in R
n and let (Xj )1�j�m be inde-

pendent copies of X. If m � ec
√

n, then for any p � 2,

κp,m(X) =
(
E max

1�j�m
|Xj |p2

)1/p

�
{

C
√

n if p � logm,

Cp
√

n if p � logm.

Proof. Since X is isotropic, and for every y ∈ R
n, E〈X,y〉2 = |y|22, we get E|X|22 = n. By

Borell’s inequality [2], ∀q � 2, (E|X|q2)1/q � Cq
√

n. Therefore if p � logm,

(
E max

1�j�m
|Xj |p2

)1/p

�
(

E

∑
1�j�m

|Xj |p2
)1/p

� Cpm1/p
√

n � Cp
√

n.

If p � logm, by (3),

(
E max

1�j�m
|Xj |p2

)1/p

� e
(
E|X|logm

2

)1/ logm
.

Since m � ec
√

n, logm � c
√

n, the theorem of Paouris implies

(
E|X|logm

2

)1/ logm � C
√

n,

which concludes the proof of the lemma. �
Corollary 1. Let X be an isotropic log-concave random vector in R

n, and let (Xj )1�j�m be

independent copies of X. Then for every m � ec
√

n,∥∥∥ max
1�j�m

|Xj |2
∥∥∥

ψ1
� C

√
n.

Proof. By Lemma 4, we know that

∀r � 2,
(
E max

1�j�m
|Xj |r2

)1/r

� Cr
√

n

which proves the claimed estimate for the ψ1-norm. �
Remark. Recall that for a random isotropic log-concave vector, Borell’s inequality implies that∥∥|X|2

∥∥
ψ1

� C
√

n.

Therefore, a direct application of Lemma 2 is not enough to obtain the desired estimate.
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We are now able to give a proof of Theorem 2. It is based on the estimates of κp,m(X) proved
above.

Proof of Theorem 2. Let ε ∈ (0,1) and p � 2 and set n0(ε,p) = cp + ε−4/p where cp depends
only on p. For any n � n0(ε,p), for any log-concave isotropic random vector X in R

n, set

Vp = sup
y∈Bn

2

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣,

where X1, . . . ,Xm are independent copies of X. Assume that p � logm and m � ec
√

n then by
Lemma 4, we know that

κp,m(X)p � c
p

1 np/2.

We shall use Theorem 1 with K = Bn
2 which is uniformly convex of power type 2 with constant 1

and for which D = 1. By (13),

1 � sup
y∈Bn

2

E
∣∣〈X,y〉∣∣p � pp,

therefore Theorem 1 implies that for every δ ∈ (0,1), satisfying Cpnp/2(logm) � δ2m, we have

E sup
y∈Bn

2

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣ � 2δpp.

By taking δ such that 2δpp = ε, we deduce that

if m � C′
pε−2np/2 log

(
nε−4/p

)
then EVp � ε.

Since n � n0(ε,p), it is easy to see that if

m = ⌊
Cpε−2np/2 logn

⌋
,

then m � C′
pε−2np/2 log(nε−4/p), m � ec

√
n and p � logm which allows us to use the estimate

EVp � ε.
To get a deviation inequality for Vp , we will apply a result similar to Theorem 4. We know by

Corollary 1 that ∥∥∥ max
1�j�m

|X|2
∥∥∥

ψ1
� C

√
n.

Following the proof of Theorem 4 and replacing inequality (4) by the previous estimate, we
easily see that

‖Vp‖ψ1/p
� Cp

(
EVp + 2np/2 )

.

m
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Since �Cpε−2np/2 logn� = m then

EVp � ε and 2np/2/m � ε

and we deduce from the Chebychev inequality that for any t > 0,

P(Vp � t) � C exp
(−(

t/C′
pε

)1/p)
.

Therefore, for any t � ε, with probability greater than 1 − C exp(−(t/C′
pε)1/p), Vp � t which

means that

∀y ∈ R
n,

∣∣∣∣∣ 1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p − E
∣∣〈X,y〉∣∣p

∣∣∣∣∣ � t |y|p2 .

Since |y|2 = (E〈X,y〉2)1/2 � (E|〈X,y〉|p)1/p , we get the claimed result of Theorem 2. �
Remark. Since by Borell’s inequality (13), for any y ∈ R

n,

|y|2 = (
E〈X,y〉2)1/2 �

(
E

∣∣〈X,y〉∣∣p)1/p � Cp
(
E〈X,y〉2)1/2 = Cp|y|2,

it is clear that Theorem 2 improves the results of Giannopoulos and Milman [8].

5. When the linear functionals associated to the random vector X satisfy a ψ2-condition

Let start this section considering the case when X is a Gaussian vector in R
n. Let Xj , j =

1, . . . ,m, be independent copies of X. For t ∈ R
m denote by Xt,y the Gaussian random variable

Xt,y =
m∑

j=1

tj 〈Xj ,y〉.

Observe that if p∗ denotes the conjugate of p, then

sup
t∈Bm

p∗
Xt,y =

(
m∑

j=1

∣∣〈Xj ,y〉∣∣p
)1/p

.

Let Z and Y be Gaussian vectors in R
m and R

n respectively. Using Gordon’s inequalities
[9], it is easy to show that whenever E|Z|p � ε−1

E|Y |2 (i.e. for a universal constant c,
m � cppp/2ε−pnp/2)

E|Z|p − E|Y |2 � E inf
y∈Sn−1

(
m∑

j=1

∣∣〈Xj ,y〉∣∣p
)1/p

� E sup
y∈Sn−1

(
m∑

j=1

∣∣〈Xj ,y〉∣∣p
)1/p

� E|Z|p + E|Y |2,
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where (E|Z|p + E|Y |2)/(E|Z|p − E|Y |2) � (1 + ε)/(1 − ε). It is therefore possible to get
(with high probability with respect to the dimension n, see [10]) a family of m random vectors
X1, . . . ,Xm such that for every y ∈ R

n,

A|y|2 �
(

1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/p

� A
1 + ε

1 − ε
|y|2.

This argument significantly improves the bound on m in Theorem 2 for Gaussian random vectors.
In this part we will be interested in isomorphic moment estimates (instead of almost isometric

as in Theorem 2). We will be able to extend the estimate for the Gaussian random vector to
random vector X satisfying the ψ2 condition for linear functionals y �→ 〈X,y〉 with the same
dependance on m.

Recall that a random variable Z satisfies the ψ2 condition if and only if for any λ ∈ R,

E exp(λZ) � 2 exp
(
cλ2 · ‖Z‖2

2

)
.

We prove the following

Theorem 6. Let X be an isotropic random vector in R
n such that all functionals y �→ 〈X,y〉

satisfy the ψ2 condition. Let X1, . . . ,Xm be independent copies of X. Then for every p � 2 and
every m � np/2,

E sup
y∈Bn

2

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/p

� c
√

p.

Note that the results of Part 3 of [8] follow immediately from Theorem 6, since the random
vector with independent ±1 coordinates satisfies the ψ2 condition for scalar products.

Proof. Since X is isotropic,

∥∥〈X,y〉∥∥
ψ2

� c
∥∥〈X,y〉∥∥2 = c|y|.

Hence, for any λ ∈ R

E expλ〈X,y〉 � 2ecλ2|y|22 .

Writing

� = Xt,y − Xt ′,y′ =
m∑

j=1

((
tj − t ′j

)〈Xj ,y〉 + t ′j 〈Xj ,y − y′〉),
it is easy to find a new constant c � 1 such that for every t, t ′ ∈ Bm

p∗ , y, y′ ∈ Bn
2 and every λ ∈ R

+,

E exp(λ�) � 2ecλ2(|t−t ′|22+|y−y′|22).
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This means that ‖�‖ψ2 � c(|t − t ′|22 + |y − y′|22)1/2, and so Xt,y is a sub-Gaussian random
process with respect to the distance

d
(
(t, y); (t ′, y′)

) = (|t − t ′|22 + |y − y′|22
)1/2

.

Let Gt,y = 〈Z, t〉 + 〈Y,y〉, where Z ∈ R
m and Y ∈ R

n are two independent Gaussian vectors.
Then (

E|Gt,y − Gt ′,y′ |2)1/2 = d
(
(t, y); (t ′, y′)

)
.

The natural metric for the random process Xt,y is bounded by the metric of the process Gt,y . The
Majorizing Measure Theorem of Talagrand [26] implies that

E sup
(t,y)∈V

Xt,y � C sup
(t,y)∈V

Gt,y

for any compact set V ⊂ R
m × R

n. Therefore,

E sup
y∈Bn

2

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/p

= 1

m1/p
E sup

t∈Bm
p∗

sup
y∈Bn

2

m∑
j=1

tj 〈Xj ,y〉 � C

m1/p
E sup

t∈Bm
p∗

sup
y∈Bn

2

Gt,y

= C

m1/p

(
E|Z|p + E|Y |2

)
� C

(√
p +

√
n

m1/p

)
.

This proves that if m � np/2, then

E sup
y∈Bn

2

(
1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/p

� c
√

p,

as claimed. �
Remark. Let X be an isotropic random vector in R

n satisfying the ψ2 estimate for the scalar
products. It is not difficult to see, using Corollary 2.7 in [8], that if m � Cn, then with probability
greater than 3/4

c2|y|2 �
(

1

m

m∑
j=1

∣∣〈Xj ,y〉∣∣p
)1/p

for every y ∈ R
n. Therefore, using Theorem 6, it is easy to deduce that if m � np/2, then with

probability greater than 1/2

∀y ∈ R
n, c2|y|2 �

(
1

m

m∑∣∣〈Xj ,y〉∣∣p
)1/p

� c1
√

p |y|2

j=1
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with universal constants c1, c2 � 1. This generalizes results of [8] and gives an isomorphic ver-
sion of the result of Klartag and Mendelson [13] valid for every p � 2.
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