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Abstract

A reflexive graph is a simple undirected graph where a loop has been added at each vertex. If G and H are reflexive graphs and
U ⊆ V (H), then a vertex map f : U → V (G) is called nonexpansive if for every two vertices x, y ∈ U , the distance between
f (x) and f (y) in G is at most that between x and y in H . A reflexive graph G is said to have the extension property (EP) if for
every reflexive graph H , every U ⊆ V (H) and every nonexpansive vertex map f : U → V (G), there is a graph homomorphism
�f : H → G that agrees with f on U . Characterizations of EP-graphs are well known in the mathematics and computer science
literature. In this article we determine when exactly, for a given “sink”-vertex s ∈ V (G), we can obtain such an extension �f ;s
that maps each vertex of H closest to the vertex s among all such existing homomorphisms �f . A reflexive graph G satisfying
this is then said to have the sink extension property (SEP). We then characterize the reflexive graphs with the unique sink extension
property (USEP), where each such sink extensions �f ;s is unique.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of determining whether or not vertex maps can be extended to graph homomorphisms is quite natural
and has been discussed extensively in both the mathematics and computer science literature. The problems addressed
and solved in this article were inspired by some partial results from [4–6]. Although not written in the language of
graphs and their homomorphisms, the main results of [4,5] and the parts of [6] that are relevant to this article, turn out to
be special cases of celebrated results from [13,8]. These results can also be found in the recent excellent books [12,14].
To the best of the author’s knowledge, the problems solved in this article, to characterize SEP-graphs and USEP-graphs
(see Definitions 3.1 and 3.2 in Section 3 below), have not been discussed elsewhere. We will in this article for the most
part use the notation and names from [12] for the sake of consistency.

The study of extending vertex maps to graph homomorphisms is inseparable from that of retracts of graphs
(see definition in the next Section 2). We will now briefly discuss some highlights of this ongoing study of graph
retracts:

It is generally believed that graph retracts were first studied in a comprehensive way in the 1970s first by Hell [10,11],
then a little later by Rival and Nowakowski [18,19]. Some highlights of later contributions in this discussion includes
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that of [13], a paper from which the discussion in [12] on retracts is partly based on, [15] where retracts from a metric
point of view is discussed, [1] on retracts in bipartite graphs and [16], where the “holes” are discussed. There, a hole
is precisely what Helly graphs do not have (see definition of the Helly property in the next Section 2). When exactly
cycles are retracts of planar graphs is determined in [27,26] the Helly property is used on posets. A game theoretic
approach involving cops and robbers is taken in [20]. Further studies of absolute retracts from a chromatic point of
view is presented in [24]. Retracts of posets is studied in [7,8]. Further studies of retracts are given by Erwin Pesch in
[21–23]. The more computational aspect of determining when a given graph is a retract is given in [3,9]. In [25] the
retract is studied from the more classical graph-contraction point of view.

The rest of this article is organized as follows: in Section 2 we introduce our notation, basic definitions and recapitulate
some known relevant results. Sections 3 and 4 contain the main results of this article, namely Corollary 3.14 and
Theorem 4.6. More specifically, in Section 3 we show that we can extend a vertex map to a homomorphism that further
maps everything as close to a given sink-vertex as possible. Finally, in Section 4 we determine for which graphs the
homomorphism discussed in Section 3 is unique.

2. Definitions, notation and recap of related results

Here in this section, we present our notation, terminology, and basic definitions. We also state and recapitulate some
known results closely related to what we consider and use in the following sections. There are numerous nice published
directly related results, but since the notation is nonstandard it can be difficult to parse through and clearly see what
implies what. Hence, it seems worthwhile to briefly discuss these results here in this section in terms of the notation
that we will be using. Most of the following terminology definitions and results can be found in [12] and also some in
[14]. In addition, we refer to [12, 2.13 Remarks] and [14, 5.6 Notes] for more detailed discussion on the history and
origin of the results presented here in this section. We start with the notation and basic definitions:

The natural numbers {1, 2, . . .} will be denoted by N and for k ∈ N the set {1, . . . , k} will be denoted by [k]. For a

set S, the set of all k-element subsets of S will be denoted by
(

S
k

)
. A simple graph G is an ordered pair (V (G), E(G))

where V (G) is a finite set of vertices and E(G) ⊆
(

V (G)
2

)
is the set of edges of G. A reflexive graph is a simple

graph G where we have added a loop at each vertex. Hence, the edge set E(G) of a reflexive graph can be viewed as

a subset of the disjoint union
(

V (G)
1

)
∪

(
V (G)

2

)
that contains

(
V (G)

1

)
. In this article, a graph is always either simple

or reflexive. The distance between vertices x and y in G, denoted by dG(x, y), is the minimum number of edges in a
path between x and y in G. A homomorphism � : H → G is a tuple � = (�V , �E) where �V : V (H) → V (G) and
�E : E(H) → E(G) are maps that satisfy the compatibility condition �E({x, y})={�V (x), �V (y)}. Note that the edge
map �E is completely determined by vertex map �V . When there is no danger of ambiguity we will write �(x) instead of
�V (x) for a vertex x and similarly for an edge. Note also that for any x, y ∈ V (H) we have dG(�(x), �(y))�dH (x, y).
Let H and G be graphs and U ⊆ V (H). A vertex map f : U → V (G) is nonexpansive (NE) if for all x, y ∈ U we have
dG(f (x), f (y))�dH (x, y). Note that if H and G are reflexive graphs then, � : H → G is a homomorphism if, and
only if, �V : V (H) → V (G) is an NE-map. For simple graphs H and G however, a vertex map � : V (H) → V (G)

is an NE-map if, and only if, we have the following.

For all x, y ∈ V (H) : {x, y} ∈ E(H) ⇒ {�(x), �(y)} ∈ E(G) or �(x) = �(y). (1)

Maps satisfying (1) have been called weak homomorphisms of simple graphs in the literature (see [14]). Note that if we
add a loop at each vertex of the graph G, thereby obtaining the reflexive graph G′, a weak homomorphism � : H → G

is equivalent to a homomorphism �′ : H → G′.

Definition 2.1. A reflexive graph G has the extension property (EP) if for every reflexive graph H , every U ⊆ V (H)

and every NE-map f : U → V (G) there is a homomorphism �f : H → G that agrees with f on U .

It should be clear how the EP can be modified for simple graphs. In [14, p. 152] it is shown that a simple graph
with the Helly property (see definition here below) has the EP. Further, a complete characterization of such simple
Helly-graphs is also given there. For a graph G, a quotient graph of G, denoted by G/�, is a graph with � as vertex
set, where � is a set partition of V (G), and where {S, S′} is an edge in G/� iff there is an edge {x, y} ∈ E(G) with
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x ∈ S and y ∈ S′. For each quotient G/� we have a natural surjective homomorphism p : G → G/�. A graph
G is a retract of H if G is a subgraph of H and there is a homomorphism r : H → G the restriction of which to
G ⊆ H is the identity homomorphism of G. Note that if r : H → G is a retraction then, for every x, y ∈ G we have
dG(x, y) = dG(r(x), r(y))�dH (x, y), but since trivially dH (x, y)�dG(x, y) for any subgraph G of H , we have here
that

dG(x, y) = dH (x, y) for any x, y ∈ V (G). (2)

A subgraph G of H satisfying (2) is called isometric.A graph G is an absolute retract if G is a retract of every graph H in
which it is an isometric subgraph of. For a graph G and a nonnegative integer �, a set NG

� [x]={z ∈ V (G) : dG(x, z)��}
is called a closed ball or a closed neighborhood of G. A graph G is said to have the Helly property if every collection
of closed balls in G, the intersection of each pair of which is nonempty, has a nonempty intersection. The following
nice characterization stems from [13] and is given in [12].

Theorem 2.2. A reflexive graph is an absolute retract if, and only if, it has the Helly property.

In view of the above Definition 2.1 we have in fact the following:

Observation 2.3. For a reflexive graph G the following are equivalent:

1. G has the EP.
2. G is an absolute retract.
3. G has the Helly property.

Although the equivalence in Observation 2.3 is known and can be obtained by a combination of theorems and such
from [14,12], we conclude this section however by a simple, algebraic and self contained proof of the missing part of
Theorem 2.2, that a reflexive graph has the EP if, and only if, it is an absolute retract:

Proof (Observation 2.3). First assume that G is an isometric subgraph of H and that G has the EP. In this case the
identity map V (G) → V (G) is an NE-map which, by the EP of G, can be extended to a homomorphism r : H → G,
showing that G is a retract of H .

Conversely, for reflexive graphs H and G, a vertex set U ⊆ V (H) and a vertex map f : U → V (G), let (H +G)/f

denote the quotient of the disjoint union of H and G where we have for each x ∈ U identified f (x) with x. More
specifically, in the partition of the disjoint union of V (G) and V (H) that the map f induces, each x ∈ V (H)\U and
each y ∈ V (G)\f (U) is a singleton set in the partition, whereas for each y ∈ f (U) the set Sy = {y} ∪ f −1(y) makes
up a nonsingleton set of the partition. �

Lemma 2.4. If f : U → V (G) is an NE-map, then (H + G)/f contains G as an isometric subgraph.

Proof. It is clear that (H + G)/f contains G as a subgraph. Let x, y ∈ V (G) be given and P = (x0, x1, . . . , xk) be a
shortest x, y-path in (H + G)/f that has the fewest possible edges from E(H)\E(G). If P contains no edge in E(H)

then k = dG(x, y) and we are done. Otherwise, there is a sub-path P ′ = (xi, . . . , xj ) of P with i < j and xi, xj ∈ U

containing an edge from E(H)\E(G) that lies entirely in the image of H in (H + G)/f . Since f is an NE-map there
is however another path P ′′ starting at xi and ending at xj with length at most that of P ′ and that lies in the image of
G in (H + G)/f . Replacing P ′ by P ′′ in P we obtain a x, y-path in (H + G)/f of length at most k, but with fewer
edges from E(H)\E(G). This contradicts our choice of P and completes the argument. �

Assume now that G is an absolute retract. Let H be a reflexive graph, U ⊆ V (H) and f : U → V (G) a NE-map.
By Lemma 2.4 there is retraction r : (H + G)/f → G. In this case �f : H → G defined by

H
p→(H + G)/f

r→ G,

(where p denotes the natural projection), agrees with f on U . This completes our proof. �
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Although a priori, a different and seemingly a more restrictive definition, graphs with the EP turn out to be precisely
the absolute retracts. In the next sections, we will continue in this manner by studying two sub-classes of reflexive
graphs satisfying the EP and describing them completely.

3. On graphs satisfying the SEP or the USEP

In this section, we discuss two stronger conditions than the EP. We study whether or not we can impose the additional
condition on our extending homomorphism that it maps all the vertices closest to a given sink-vertex among all existing
extensions of our given NE-map, and whether or not such an extension homomorphism is unique.

For reflexive graphs G and H and s ∈ V (G) there is always a homomorphism �s : H → G such that for every
homomorphism � : H → G and every vertex x ∈ V (H) we have dG(�s(x), s)�dG(�(x), s), namely by letting
�s(x) = s for each x ∈ V (H). However, if we require that both � and �s extend a given NE-map f : U → V (G) for
some U ⊆ V (H), then such a trivial choice for our �s is clearly not an option.

Definition 3.1. Let G be a reflexive graph with the EP and s ∈ V (G). For H a reflexive graph, U ⊆ V (H) and
f : U → V (G) an NE-map, an extending homomorphism �f ;s : H → G of f is called a s-sink extension (s-SE)
if dG(�f ;s(x), s)�dG(�f (x), s) for all x ∈ V (H) and for all homomorphisms �f extending f . If every f can be
extended to an s-SE, then G has the s-sink extension property (s-SEP). If G has the s-SEP for every s ∈ V (G) then G

has the sink extension property (SEP).

Note that if G has the SEP and s ∈ V (G), H , U ⊆ V (H) and NE-map f : U → V (G) are given, then for each
x ∈ V (H) the nonnegative integer m(x)=minf {dG(�f (x), s)} is unique, namely dG(�f ;s(x), s) where �f ;s : H → G

is an s-SE of f . However, the homomorphism �f ;s itself is not necessarily unique.

Definition 3.2. Let G be a reflexive graph. We say that G has the unique sink extension property (USEP) if G has the
SEP and for every s ∈ V (G), every reflexive graph H , every U ⊆ V (H) and every NE-map f : U → V (G), the s-SE
�f ;s : H → G is unique.

Recall that a block of a graph is a connected maximal subgraph with no cut-vertices. Call a connected reflexive
graph G a block-tree, if each block on two or more vertices of G is a clique. The following claims are easy to prove by
induction on the number of blocks.

Claim 3.3. Between any two vertices in a block-tree there is a unique shortest path.

If G is a block-tree and s ∈ V (G), let Ts be the subgraph of G formed by the union of all the shortest paths between
s and x for each x ∈ V (G).

Claim 3.4. For a block-tree G and s ∈ V (G) we have the following:

1. Ts is a spanning subtree of G.
2. Viewing Ts as a rooted tree at s, then the vertices of each block in G form a rooted sub-star in Ts with all its

vertices, except the star-root, on the level just below the star-root.
3. For any vertices x, y ∈ V (G) we have dTs (x, y)�dG(x, y) + 1.

We can now prove the following.

Theorem 3.5. Every reflexive block-tree has the USEP.

Proof. Let G be a reflexive block-tree and s ∈ V (G). View Ts as rooted spanning tree at s of G. Let H be a reflexive
graph, U ⊆ V (H) and f : U → V (G) an NE-map. For each x ∈ V (H) and u ∈ U let

Nu(x) = {v ∈ V (G) : dG(f (u), v)�dH (u, x)}.
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There is a unique vertex zu(x) ∈ Nu(x) that is closest to s among all vertices of Nu(x), namely the vertex on the unique
path from f (u) to s in Ts at distance min{dH (u, x), dG(f (u), s)} from f (u) in G. We now argue that the vertices
{zu(x) : u ∈ U} lie on an ancestral path in Ts w.r.t. the root s: assume that there are u′, u′′ ∈ U where neither of zu′(x)

or zu′′(x) is an ancestor of the other in Ts . This means in particular that neither zu′(x) nor zu′′(x) equals s and that
dTs (zu′(x), zu′′(x))�2. Hence, by definition of zu′(x) and zu′′(x) we then have

dTs (f (u′), f (u′′)) = dTs (f (u′), zu′(x)) + dTs (zu′(x), zu′′(x)) + dTs (zu′′(x), f (u′′))
�dH (u′, x) + 2 + dH (u′′, x)

�dH (u′, u′′) + 2.

By Claim 3.4 we then have dG(f (u′), f (u′′)) > dH (u′, u′′) which contradicts that f is an NE-map. Therefore the
vertices of {zu(x) : u ∈ U} all lie on an ancestral path in Ts rooted at s.

Define �f ;s(x) to be the unique vertex z∗(x) ∈ {zu(x) : u ∈ U} that is the descendant of all of them (note, here a
vertex is considered a descendant of itself!) Since for each u ∈ U we have Nu(u)={f (u)}, we clearly have z∗(u)=f (u)

and hence �f ;s agrees with f on U .
If now x′ is adjacent to x in H , then |dH (u, x) − dH (u, x′)| ∈ {0, 1} for each u ∈ U and therefore each of zu(x

′) is
adjacent to or equal to zu(x) in G. This in return implies that z∗(x) is also adjacent to or is equal to z∗(x′) in G, and
hence dG(z∗(x), z∗(x′))�1, showing that �f,s : H → G is a homomorphism. By the mere definition of �f ;s , it is
clear that �f ;s is an s-SE. Finally, by the uniqueness of z∗(x) we see that �f ;s is uniquely determined. Since s ∈ V (G)

was arbitrary we have completed the proof. �

Note. Similar arguments as used in the above proof can be used to show directly that every block-tree has the Helly
property: assuming this property, since f : U → V (G) is an NE-map we have Nu(x)∩Nu′(x) 	= ∅ for every u, u′ ∈ U

and hence by the Helly property of {Nu(x) : u ∈ U} we have

N(x) =
⋂
u∈U

Nu(x) 	= ∅.

By induction on |U | we can see that N(x) is a block-subtree of G, and hence contains a unique vertex closest to s

among all vertices of N(x). This vertex turns out to be precisely the vertex z∗(x) defined in the above proof.

Remark. In the case of a reflexive tree T , the definition of our s-SE �f ;s in the proof of Theorem 3.5, has a physical
interpretation as follows: let T be rooted at s and direct each edge from a child to its parent, so that all vertices of T

except s have out-degree one whereas s has out-degree zero. Call this digraph �Ts and assume further that each edge is
straight and has a unit length. Now, imagine there is a gravitational force field on �Ts that pulls along its directed edges.
Assume likewise that the edges in H also have unit length and that we identify each x ∈ U with its image f (x) in �Ts

and form the quotient (H + �Ts)/f (where the edges of T are directed and the ones from H are not). Keeping �Ts rigid
and letting the vertices of H hang along the gravitational field of �Ts , then each vertex x ∈ H will place precisely at the
unique vertex as close to the root s as H allows. This is exactly the vertex z∗(x) defined in the proof of Theorem 3.5
in the case of reflexive tree T .

Since a reflexive path is in particular a reflexive block-tree, we have by Theorem 3.5 the following trivial but important
corollary.

Corollary 3.6. Every reflexive path has the USEP, and hence the SEP.

For reflexive graphs G1 and G2 their Cartesian product or just product, denoted by G1 × G2, is the reflexive graph
with vertex set V (G1) × V (G2) (the usual Cartesian product) and where

{(x1, x2), (y1, y2)} ∈ E(G1 × G2) ⇔ {x1, y1} ∈ E(G1) and {x2, y2} ∈ E(G2).

It is easy to see that the product of reflexive graphs is an associative operation and hence it makes sense to talk about
the product of k reflexive graphs G̃=G1 ×· · ·×Gk as the reflexive graph with vertices V (G̃)=V (G1)×· · ·×V (Gk)
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and where for two vertices x̃ = (x1, . . . , xk) and ỹ = (y1, . . . , yk) we have {x̃, ỹ} ∈ E(G̃) ⇔ {xi, yi} ∈ E(Gi) for
each i ∈ [k]. Note that for x̃, ỹ ∈ V (G̃) we have

dG̃(x̃, ỹ) = max
1� i �k

{dGi
(xi, yi)}. (3)

Also, for each i ∈ [k] the natural projection �i : G̃ → Gi is given by �i (x̃) = xi . It is clear that each �i is a
homomorphism of reflexive graphs. If k ∈ N and �i : H → Gi is a homomorphism for each i ∈ [k], then �̃ : H → G̃

given by �̃ = (�1, . . . ,�k) is the map x → (�1(x), . . . ,�k(x)) for each x ∈ H . By (3) we note the following:

Observation 3.7. Let k ∈ N.

1. If �i : H → Gi is a homomorphism for each i ∈ [k] then �̃ : H → G̃ given by �̃ = (�1, . . . ,�k) is also a
homomorphism.

2. Conversely, if �̃ : H → G̃ is a homomorphism, then �̃ has the form �̃= (�1, . . . ,�k) where each homomorphism
�i : H → Gi is a uniquely determined by �i = �i ◦ �̃.

A celebrated complete description of absolute retracts is given by the following theorem, the statement of which can
be found in [14, Theorem 5.7] and [12, Corollory 2.56] but stems from [8].

Theorem 3.8. A reflexive graph is an absolute retract if, and only if, it is a retract of product of reflexive paths.

Assume now G1, . . . , Gk are reflexive graphs with the SEP and G̃ = G1 × · · · × Gk . Let s̃ = (s1, . . . , sk) ∈ V (G̃)

a vertex, H a reflexive graph, U ⊆ V (H) and f̃ : U → V (G̃) an NE-map. If �i : G̃ → Gi is the projection onto the
ith coordinate then each fi = �i ◦ f̃ : U → V (Gi) is also an NE-map for each i, which can be extended to an si-SE
�fi ;si : H → Gi . Then �̃

f̃ ;s̃ = (�f1;s1
, . . . ,�fk;sk ) : H → G̃, yields a uniquely determined homomorphism. Suppose

now that �̃
f̃

: H → G̃ is a homomorphism that also extends f̃ . In this case �fi
: H → Gi extends the NE-map

fi : U → Gi for each i ∈ [k]. In this case we have dGi
(�fi ;si (x), si)�dGi

(�fi
(x), si) for each i ∈ [k], and hence

dG̃(�̃
f̃ ;s̃ (x), s̃) = max

1� i �k
{dGi

(�fi ;si (x), si)}� max
1� i �k

{dGi
(�fi

(x), si)} = dG̃(�̃
f̃
(x), s̃).

This shows that �̃
f̃ ;s̃ is a s̃-SE. Since s̃ ∈ V (G̃) was arbitrary, we have the following.

Observation 3.9. A product of reflexive graphs with the SEP has the SEP.

Note. We cannot replace “SEP” with “USEP” in Observation 3.9 as the following example will demonstrate.

Example. Let H be the reflexive path on three vertices a, b, c in this order. Likewise let P1 and P2 be the reflexive
paths on the vertices {0, 1} and on {0, 1, 2} in this order, respectively. If U = {a, c} and f̃ : U → V (P1 × P2) is given
by f̃ (a) = (0, 0) and f̃ (c) = (1, 2), then f̃ is clearly an NE-map. Assume our sink s̃ = (0, 0). Here there are precisely
two legitimate extensions �̃

f̃ ;1 and �̃
f̃ ;2 where �̃

f̃ ;1(b) = (0, 1) and �̃
f̃ ;2(b) = (1, 1). These homomorphisms satisfy

dP1×P2(�̃f̃ ;1(x), s̃) = dP1×P2(�̃f̃ ;2(x), s̃)

for all x ∈ {a, b, c} and hence are both s̃-SEs. Hence, a product of two USEPs is not necessarily a USEP. We have,
however, the following.

Proposition 3.10. For reflexive graphs we have:

1. A retract of a reflexive graph with the SEP has the SEP.
2. A retract of a reflexive graph with the USEP has the USEP.

Proof. Let G be a retract of G′ where G′ has the SEP and s ∈ V (G) a given vertex. Let r : G′ → G be the retraction.
Let H be a reflexive graph, U ⊆ V (H) and f : U → V (G) an NE-map. Since V (G) ⊆ V (G′) we can view f as a
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map from U into V (G′). By the SEP of G′ there is an s-SE �′
f ;s : H → G′. Let �f ;s = r ◦ �′

f ;s : H → G. Clearly
�f ;s is a homomorphism that extends f . Assume that �f : H → G is another extension of f . Since r is a retraction
and hence an NE-map, we have

dG(�f ;s(x), s) = dG((r ◦ �′
f ;s)(x), r(s))�dG′(�′

f ;s(x), s). (4)

Since G is an isometric subgraph of G′ and by viewing �f as a homomorphism into G′ we have, since �′
f ;s is an s-SE,

that

dG′(�′
f ;s(x), s)�dG′(�f (x), s) = dG(�f (x), s). (5)

By (4) and (5) we have that dG(�f ;s(x), s)�dG(�f (x), s). Since s ∈ V (G) was arbitrary, we have that G has the
SEP. Hence, we have proved the first part.

Assume further that G′ has the USEP. We want to show that �f ;s : H → G is the unique s-SE of G. Let i : G ↪→ G′
be the inclusion map.

Claim 3.11. The homomorphism i ◦ �f ;s : H → G′ is an s-SE of G′.

Proof. (Claim 3.11) Since G is an isometric subgraph of G′ we have

dG′((i ◦ �f ;s)(x), s) = dG(�f ;s(x), s). (6)

Assume �f : H → G′ extends f : U → V (G) ⊆ V (G′). Since the retraction r is a homomorphism it is nonexpansive
and hence

dG((r ◦ �f )(x), s)�dG′(�f (x), s). (7)

Clearly r ◦ �f extends the vertex map f . Since �f ;s is an s-SE of G, then we have by (6) and (7) that dG′((i ◦
�f ;s)(x), s) = dG(�f ;s(x), s)�dG((r ◦ �f )(x), s)�dG′(�f (x), s). This completes the proof of Claim 3.11. �

By the USEP property of G′ and Claim 3.11 the sink-extension i◦�f ;s is unique and hence so is �f ;s . This completes
the proof of the second part. �

Note that in a product G̃ = G1 × · · · × Gk each Gi can be viewed as a retract of G̃. Hence, by Proposition 3.10, we
can state the reverse of Observation 3.9.

Corollary 3.12. A product G̃ = G1 × · · · × Gk of reflexive graphs has the SEP if, and only if, each Gi has the SEP.

Let G be a reflexive graph satisfying the EP. By Observation 2.3 and Theorem 3.8, G must be a retract of product
of reflexive paths. By Corollary 3.6, Observation 3.9 and Proposition 3.10, G must have the SEP. Hence, we have the
following.

Theorem 3.13. A reflexive graph has the SEP if, and only if, it has the EP.

We summarize in the following extension of Observation 2.3.

Corollary 3.14. For a reflexive graph G the following are equivalent:

1. G has the SEP.
2. G has the EP.
3. G is an absolute retract.
4. G has the Helly property.

Algorithmic concerns: To decide whether a given reflexive graph on n vertices and m nonloop edges has the Helly
property can be done in polynomial time. In fact, Bandelt and Pesch [2] gave two recognition algorithms for Helly
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graphs, one of time complexity O(n4) and the other of time complexity O(mn2). Hence, by Corollary 3.14, reflexive
graphs satisfying the SEP can also be recognized by these very polynomial time algorithms.

Although not entirely within the focus of this paper, we will conclude this section by briefly considering the relevant
special case when G is a reflexive path G = P :

If P has n vertices, then we can represent the vertices of P by the integers {1, . . . , n} = [n] and connect a and b iff
|a − b|�1. In this way we obtain a total order on V (P ) = [n]. Hence, if X is a set, then we have a natural partial order
� ′ on the collection of all vertex maps f : X → P , namely by putting f1 � ′f2 iff f1(x)�f2(x) holds in V (P ) = [n]
for all x ∈ X. In [5, Theorem 2] it is shown that if H is a reflexive graph, U ⊆ V (H) and f : U → P an NE-map,
then there are homomorphisms �−, �+ : H → P extending f such that for any homomorphism � that also extends
f we have �− � ′�� ′�+. By using the SEP of reflexive paths and their products, this becomes clear and transparent,
and can further be generalized as we will now briefly do:

Recall that for k ∈ N we have a natural partial order � on Nk given by

ã�b̃ ⇔ ai �bi for all i ∈ [k].
Since each reflexive path on n vertices can be represented by the vertices [n] ⊆ N, we can embed any product of reflexive
paths P1×· · ·×Pk into the infinite reflexive grid Nk in which two vertices ã and b̃ are adjacent iff maxi∈[k]{|ai −bi |}�1.
With this notation we have the following.

Proposition 3.15. Let H be a (finite) connected reflexive graph, U ⊆ V (H) and f : U → Nk a NE-map. Then there
are homomorphisms �f ;min, �f ;max : H → Nk extending f , such that for any homomorphism �f extending f we
have �f ;min��f ��f ;max.

Proof (Sketch). Since H is finite and connected, then there is an m ∈ N such that f : U → [m]k ⊆ Nk and such that
any homomorphism �f extending f has �f (x)�m̃ = (m, . . . , m) ∈ Nk . By Theorem 3.9 we have that [m]k has the

SEP, so the desired bounding homomorphisms can obtained by letting �f ;min be the 1̃-SE �f ;1̃ and �f ;max the m̃-SE

�f ;m̃, where 1̃ = (1, . . . , 1) ∈ Nk . �

When k = 1, Proposition 3.15 is now precisely [5, Theorem 2]. In fact, for k = 1 we can further say the following.
The proof is clear by the definition of an s-SE given in the proof of Theorem 3.5.

Proposition 3.16. Let H be a (finite) connected reflexive graph, U ⊆ V (H) and f : U → N a NE-map. In this case
all the i-SEs {�f ;i : i ∈ N} are totally ordered and form a chain

�f ;1 � ′�f ;2 � ′ · · · � ′�f ;i � ′ · · · .

Moreover, this listing eventually becomes stationary, that is, for each H there is an N ∈ N that depends on H , U and
f , such that �f ;i = �f ;N for all i�N .

4. On graphs satisfying the USEP

As we saw in the example preceding Proposition 3.10, the product P1 × P2 of two reflexive paths on two and three
vertices, respectively, did not satisfy the USEP. By the same token as in that example, we can argue that any reflexive
graph that contains the reflexive 4-cycle C4 with at most one chord as an induced subgraph does not have the USEP.
Therefore, if G1 and G2 are two connected reflexive graphs on two or more vertices and G2 is not complete, then
G1 × G2 does not have the USEP. Since the class of connected reflexive graphs has the unique factorization property
w.r.t the product ×, then we have in particular the following observation. (Note that by a prime graph we mean a
connected reflexive graph that cannot be written as a product of two graphs, each on two or more vertices and neither
complete. For more detailed information see [14, p. 159] or the original paper [17].)

Observation 4.1. A connected reflexive graph satisfying the USEP is either a prime graph or a complete reflexive
graph.
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The only fact we used to deduce Observation 4.1 was that if there are two vertices with at least two shortest paths
between them, then the graph cannot satisfy the USEP. This we state more formally.

Lemma 4.2. If G is a connected reflexive graph that satisfies the USEP, then the shortest path between any pair of
vertices in G is unique.

Proof (Sketch). Assume there are two vertices x, y ∈ V (G) with two different shortest paths P and P ′ between them
of length k=dG(x, y). Let H be the simple reflexive path on u0, u1, . . . , uk , U ={u0, uk} ⊆ V (H) and f : U → V (G)

be given by f (u0) = x and f (uk) = y. In this case mapping H onto either P or P ′ will in both cases yield an s-SE for
s ∈ {x, y}. Hence, there are at least two s-SE’s in G. �

The converse of Lemma 4.2 does not hold since the shortest path between any pair of distinct vertices in an odd
cycle Cm is unique, and it is easy to see that Cm does not have the EP for any m�4.

For a more complete description of graphs satisfying the USEP we need the following intuitively obvious theorem.

Theorem 4.3. If G is a reflexive Helly graph in which the shortest path between any pair of vertices is unique, then
each cycle of G induces a clique in G.

Proof. Let G be a reflexive Helly graph in which shortest paths are unique. Let Cm be a cycle of length m ∈ N. We
will show by induction on m that Cm must induce a clique:

For m = {1, 2, 3} then Cm is a reflexive clique, so we may assume m�4. If m = 4 and Cm = C4 does not induce a
clique, then there are two opposite vertices of C4 that are not connected with a cord in G. In this case there are at least
two shortest 2-paths between them, a contradiction. Hence we can assume m�5. We start by showing that Cm must
have a cord. If

x1 = u0, �1 = �(m − 3)/2�,
x2 = u�(m−1)/2�, �2 = 1,

x3 = u�(m+1)/2�, �3 = 1,

then the closed balls NG
�1

[x1], NG
�2

[x2] and NG
�3

[x3] have pairwise a nonempty intersection, so by the Helly property of
G they have a nonempty intersection. Let v be a vertex in their intersection. Since either v 	= x2 or v 	= x3, we can for
symmetric reasons assume that v 	= x2. Also, we may assume that v /∈ {u0, u1, . . . , u�(m−3)/2�} since otherwise {x3, v}
is a cord of Cm. Hence, we can assume that v /∈ {u0, u1, . . . , u�(m−1)/2�}.

Claim 4.4. Let p�2, q �p and P = (u0, u1, . . . , up) and Q = (u0, v1, . . . , vq) be paths in G satisfying up = vq ,
up−1 	= vq−1 and dG(u0, vq−1)=q −1. In this case the circuit PQ−1 contains a cycle involving at least three vertices
from P .

Proof. We may assume that q �2 since otherwise P induces a cycle and we are done. Otherwise, the claim is clearly
true for p = 2 since in that casePQ−1 is itself a cycle. For p�3 we proceed by induction as follows:

If u1 ∈ {v1, . . . , vq−1}, then u1 /∈ {v2, . . . , vq−1} since otherwise we have dG(u0, vq−1) < q − 1. Hence u1 = v1
must hold and the claim follows by induction on P ′ = (u1, . . . , up) and Q′ = {v1, . . . , vq}.

Otherwise there is a least index � ∈ {2, . . . , p} such that u� ∈ {v2, . . . , vq}, say u� = v�. (Note that ���.) If

P� = (u0, u1, . . . , u�) and Q� = (u0, v1, . . . , v�) then P�Q
−1
� is a cycle involving u0, u1 and u2. This completes the

proof of the claim. �

Continuing with our proof of Theorem 4.3, let P = (u0, u1, . . . , u�(m−1)/2�) be a path from u0 to u�(m−1)/2� =x2 and
let Q = (u0, v1, . . . , vq) be a path from u0 to vq = x2 where vq−1 = v and dG(u0, vq−1) = q − 1. By Claim 4.4, PQ−1

contains a cycle involving three of the vertices from P . This cycle has at most 2�(m−1)/2��m−1 vertices and hence
by induction hypothesis this cycle must induce a clique in G. Further, this cycle involves at least three vertices of Cm

which must therefore have a chord, say {u0, uk} where k ∈ {2, . . . , m − 2} and where Cm = (u0, . . . , um−1, u0). By
induction hypothesis the cycles C′ = (u0, . . . , uk, u0) and C′′ = (u0, uk, . . . , um−1, u0) each induces a clique in G.
Therefore, if i ∈ {1, . . . , k − 1} and j ∈ {k + 1, . . . , m − 1} then the four-cycle C′′′ = (u0, ui, uk, uj , u0)also induces
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a clique in G, so ui and uj are connected in G. This shows that Cm induces a clique in G and completes the induction
and the proof.

A graph in which every cycle induces a clique has all its blocks as cliques. By Theorem 4.3 we therefore have the
following:

Corollary 4.5. A reflexive Helly graph in which the shortest path between any pair of vertices is unique must be a
block-tree.

By Theorem 3.5, Lemma 4.2 and Corollaries 3.14 and 4.5 we therefore have the following complete characterization.

Theorem 4.6. A connected reflexive graph G has the USEP if, and only if, G is a block-tree.

Algorithmic concerns: Recognition of block-trees is easy: a pair of distinct vertices are in the same block iff they are
adjacent. Hence, by Theorem 4.6, graphs with the USEP can be recognized in O(n2)-time.
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