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Consider a finite (t + r - I)-dimensional projective space PG(t + r - 1, s) 
based on the Galois field GF(s), where s is prime or power of a prime. A set of k 
distinct points in PG(t + r - 1, s), no t-linearly dependent, is called a (k, t)-set 
and such a set is said to be maximal if it is not contained in any other (k*, t)-set 
with k* > k. The number of points in a maximal (k, t)-set with the largest k is 
denoted by m,(t + r, s). Our purpose in the paper is to investigate the conditions 
under which two or more points can be adjoined to the basic set of Ei , i = 1, 
2 ,..., t + r, where Ei is a point with one in i-th position and zeros elsewhere. 
The problem has several applications in the theory of fractionally replicated 
designs and information theory. 

1. TNTR~DUCTI~N 

Several interesting problems of a combinatorial nature have recently 
arisen in the study of finite projective spaces. One of these, due to Bose, 
concerns the maximum number of distinct points in finite projective 
geometry PG(t + r - 1, s) based on GF(s) so that no t among them lie 
on a (t - 2)-flat. Attempts made by several research workers including 
Bose, Segre, Tallini, and many others have been successful only in special 
cases. Very few general results or methods seem to be in the literature. 

R. C. Bose [I] showed that the maximum number of factors in a 
symmetrical factorial design in which each factor operates at s levels, 
blocks are of size s$+~, and no main effect or t-factor (t > 1) or lower order 
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interaction is confounded with block effects is given by the maximum 
number of distinct points in PG(t + r - 1, s) no t-linearly dependent. 
These considerations have later led to an extensive use of fractional 
factorial designs and the study of their confounding properties has been 
approached from several closely related points of view. In a separate paper, 
Bose [2] proved that, for a fractionally replicated design (l/Y) x So, con- 
sisting of a single block with .st+” plots or experimental units, t + r = k - d, 
the maximum possible value of k is m,,(2v + r, s) if no v-factor or lower 
order interaction is to be aliased with another v-factor or lower order 
interaction. In case it is required that no u-factor is to be aliased with a 
(V + I)-factor or lower order interaction, then the maximum value of k is 
given by mZufl (20 + r + 1, s). For given k and o, one needs to maximize 
d, that is, to take as high a fraction of the full factorial design as possible. 
The number m,(t + r, s) also plays a significant role in the information 
theory. If there is an s-ary channel capable of transmitting s distinct 
symbols, then, for a group code (k, d) with d information symbols and 
fixed redundancy k-d, the maximum value of k for which u-errors can be 
corrected with certainty is m,,(2u + r, s). Similarly, the maximum value 
of k for which u errors can be corrected and u + 1 errors detected is 
established by m2V+l (2~ + r + 1, s). This interconnection between the 
theory of confounding and fractional replication developed by Fisher, 
Finney, Bose, and Kishan and theory of error correcting codes due to 
Hamming and Slepian has been elegantly brought out by Bose [2]. 

It was recently established [5] that 

(1.1) m,(t+r,s)=t+r+b for t > s(r + 1), 

a particular case for r = 0 having been established earlier by Bush [3], 
Maneri and Silverman [6], and Gulati [4]. It was also shown in [5] that 

(1 *a f&t + r, s) 3 t + r + 2, for t < s(r + l), 

(1.3) mdt + r, 4 < t + r + s, for sr < t < s(r + l), r > 1. 

We will establish that the upper bound (1.3) can be improved for r > s 
and that only two points can be adjoined to the basic set of (t + r)- 
linearly independent points Ei , i = 1,2,..., t + r, where Ei is a point in 
PG(t + r - 1, s) with a one in i-th position and zeros elsewhere. 

2. MAXIMAL (k, t)-SETS 

DEFINITION 2.1. A set of k distinct points in PG(t + r - 1, s) no t 
linearly dependent, is called a (k, t)-set. 
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DEFINITION 2.2. A (k, t)-set is said to be maximal if it is not contained 
in any (k*, t)-set with k* > k. 

DEFINITION 2.3. The number of points in a maximal (k, t)-set with 
the largest k is denoted by mt(t + r, s). 

THEOREM 2.1, 

For r > s > 2, m,(t + r, s) = t + r + 2, forf(r) < t < s(r + I), 

m,(t+r,S)~t+r+3,fort<f(r), 

where 

(s- l)(r+2)+ r$],fir r=(s--2),(s-- l)mod(s+ 11, 

f(r) = 
(s-l)(r+l)+(q+l)+r$],firr=qmod(s+l)and 

q = 0, 1, 2 ,...) (S - 3), 

(s - l)(r + 1) + rs], for r = s mod (8 + 11, (2 1) 

where [x] means the largest integer not exceeding x. 

Proof. That the maximal set contains at least t + r + 2 points for 
t < s(r + 1) is a consequence of (1.2). Consider an addition of three 
points Qi , i = 1,2, 3, to the basic set oft + r linearly independent points, 
where 

Q, : (a, , a2 , ~3 ,..., ut+A 

(2.2) Q2 : (b, , b, , b, ,..., &+A, 

Q3 : (cl , cz , c3 ,..., ct+T). 

The possibilities for the corresponding coordinates, up to multiples, are 

Xl x2 x3 x4 x5 x3 **. x,+2 
. . . . . . 

x9 x8z+l X*2+2 X9+3 *.- x*z+,+l 

0 0 1 1 1 1 ... 1 . . . . . . 0 1 1 1 *** 1 
0 1 0 1 w w2 . . . ws-2 . . . . . . 1 0 1 w . . . )p-2 

0 0 0 0 0 0 . . . 0 . . . . . . +p-2 )p-2 )@-2 ws-2 . . . ws-2 

where w  is the primitive element of the field. 
The above table, which exhausts all possibilities, may be represented in 

the following form: 

o* v, v, v, *** *** v, 
v3= [I (J 1 w . . . . . . 1 ws-2 ' (2.3) 
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where 0, 1, wi (i = 1,2 s - ,..., 2) are each 1 x (S + 1) row vectors of the 
elements 0, 1, w, w2 ,..., wS-~, respectively, and 0* is a (2 x 1) column 
vector of O’s and 

v2=[1 0 0 1 1 1 w  1 a.* . . . .*. . . . ws-2 1 1 * 

Considering all possible linear combinations of three points, we observe 
that (i) there exists s2 + s + 1 linear inequalities involving xi’s, (ii) each 
inequality contains s + 1 variables xi’s and each xi appears in s + 1 
linear inequalities, and (iii) (Z)(S - l)u-l, u = 1, 2, 3, possible linear 
combinations of Qi , i = 1,2, 3, exists each having at most r + u - 1 
zero coordinates. This corresponds to the fact that three points determine 
a plane, that there are se + s + 1 points in a plane, there exists s + 1 lines 
through a point, and a line contains exactly s + 1 points. Adding all the 
linear inequalities, one obtains 

2+s+1 

(s + 1) C xi < (s2 + s + l)r + (2s2 - s - l), (2.4) 
i=l 

which reduces to 

“‘r xi < s(r + 2) - 3 + r-1. (2.5) 

Adding those inequalities in which xi appears, we have 

S%Sfl 

sxj + 1 xi d 
I 

6 + l)r + (s - I), j= 1,2,3, 
(8 + l)r + (2s - l), j > 3. (2.6) 

i=l 

In general, the upper bound (2.5) is not sharp and one needs to consider 
several cases separately. However, if we consider the case for 

r = (s + OP + (s - I>, 

the bound (2.5) reduces to 

z1 xi < w + s + l)p + w + s - 21, (2.7) 

an optimal solution for which is given by 

x*= l-5 
I 

j = 1,2, 3, 
P-t 1, j > 3. 
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If r = (s + 1)~ + s, the upper bound (2.5) which reduces to 

2+s+1 

g xi G (s2 + s + l)p + (s2 + 2s - 2) (2.9 

is not attained. However, if we consider improving (2.9) so as to read as 

s*+s+1 
-& xi d (s2 + s + UP + (s2 + 2s - 2) - (s - 11, 

that is, 

2+s+1 

&Tl xi < (s2 + s + l)P + (s2 + s - l), 

then an optimal solution is given by 

xj = 
I 
PY j== 1,2, 
P+ 1, j > 2. 

(2.10) 

(2.11) 

Consider next the case for r = (s + 1) P + q, where 4 = 0, 1,2 ,..., (s - 3). 
Then one obtains from (2.5) and (2.6) - 

s*+s+1 

^ - 

g1 xi < (s2 + s + VP + dq + 2) - 3 

and 

cca+s+l 

sxj + c xi < 
I 

(s + 112P + (s + 1)q + (s - 11, 

61 (s + IYP + (8 + l)q + (23 - 11, 

If bound (2.12) is attained, then from (2.13) we have 

sx, < I S(P - 1) + (4 + 3, j = 1, 2, 3, 
SP + (4 + 2, j > 3. 

Since xi are non-negative integers, it follows that 

x3< P--l, I 
j = 1,2,3, 

Pt j > 3. 

This shows that 

(2.12) 

j = 1,2, 3, 
j > 3. 

(2.13) 

s*+.s+1 

z1 xi = (sa + s + l)P - 3, 
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a contradiction to (2.12). Thus the bound is not attained, but it considers 
refining (2.12) so as to read as 

zl xi d (s2 + s + 1)~ + s(q + 2) - 3 - (s - q - 2), (2.14) 

it follows that 

xj < 
P9 j= 1,2,3, 
P+ 1, j > 3. 

(2.15) 

The problem now reduces to solving the linear inequalities separately for 
each value of s in question subject to (2.15) above. We will demonstrate 
here the solutions for s = 3 and 5. The solutions for s = 2 and s = 4 are 
given in [S]. One can find solutions for s > 5 by adopting a similar proce- 
dure. In this case, (2.5) is improved to 

s'+s+1 

c xi G (s - I)@ + 1) + (r 
i=l 

+ (2.16) 

Since xi xd = t + I, it follows that, if 

t < (s - l)(r + 1) + 4 - 

three points can be added but, if 

r+2 1 1 q-i’ (2.17) 

t 2 6 - l)(r + 1) + (4 + 1) + [s], (2.18) 

only two points can be included in the maximal set. 

(i) s = 3. The possibilities for the corresponding coordinates, up to 
multiples are 

Xl x2 x3 x4 x5 X6 x7 x3 x9 x10 x11 x12 x13 

0011101110111 

0 1 0 1 2 1 0 1 2 1 0 1 2 

1000011112222 

Since any strict linear combination of Qi , i = 1,2, 3, yield at most 
r + u - 1 zero coordinates, we have 

&& d rEs + Ds, 
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where 

Az = 

1 
1 
1 
1 
- .- 

D 
D 
D 
D 
- .- 

3 
3 
3 
3 
- - 

1 
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100010001000 
010001000100 
001000100010 
000100010001 

100000000111 
010000011010 
001001001001 
000100101100 

100001110000 
010010100001 
001010010100 
000111000010 

111100000000 

These may recursively be represented as follows: 

where D,’ = (O,O,l,l), E; = (1, 1, 1, I), = 0’ = (0, O,O,O), 

0 
0 
1 
1 
- 
1 
1 
2 
2 
- 

1 
1 
2 
2 
- 
0 

1 1 1 
0 1 0 
001 
1 0 0 

and X,’ = (x1 , ~2 ,..., xs), E,’ = (b’, C’, El’, 1). 
The solutions corresponding to the maximal t are given below: 

r = 4p 

P - 1, i = 4, 
xi= p+L 

1 
i = 5,8, 12, 

PY otherwise. 
r==4p+l 

x.r p+l, 
I 

i = 4,6,7,9, 12, 13, 
1 

PY otherwise. 
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r=4pt2 

xi = 
I 
PT i= 1,2,3, 
PS 1, i > 3. 

r=4p+3 

xi= pfl, I 
P, i= 1,2, 

i > 2. 

(ii) s = 5. The possible coordinates of Q’s up to multiples are 

Xl x2 x3 x4 x5 X6 x7 x3 x9 x10 x11 x12 x13 x14 x15 X16 

001111101 1 1 1 1 0 1 1 
010123410 1234101 
10000001111 1 1 2 2 2 

61 

x17 xl3 x19 x2O x21 x22 x23 x24 x25 x26 x27 x28 x29 x3O x3l 

1 11011111011111 
234101234101234 
222333333444444 

Consideration of all possible linear combinations of three points, we have 

where 
A,X, d rE2 + D2 

El 4 B, BI B, BI Dl 
0 B, B, B3 B4 B5 DI + El 
0 B, B3 B, B2 B, DI + El 

A, = 0 B, B, B, B, B, , D, = D, + E, , 

0 Itr, B, B., B3 B2 DI + El 
- 

0 El’ 0’ 0’ 0’ 0 0 

where El’ and 0’ are each 1 x 6 row vectors of 1 and 0, respectively, and 
D,’ = (0, 0, 1, 1, 1, 1) where Bi , i = 1,2, 3,4, 5, are described below: 

E2' = (El', El', El', El', El', l), X2' = (Xl 3 x2 Y.--Y x311, X2' = (Xl 3 x2 Y.--Y x311, 

1 

100000 100000 
010000 010000 1 

%= [ 001000 1 oooloo 3 B,= 

000010 
000001 

, 
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4 
I 000001 1 and B, = 100010’ 

000100 
001000 

011111 
101000 
010000 
010000 * 
010000 
110000 1 

Solutions which correspond to the maximal t with Q’s in the set are: 

r = 6p 

I 

p- 1, 
Xi= P+l, 

P, 

r=6p+l 

xi= p+L 
I 

p- 1, 

P, 

r=6p+2 

I 

p- 1, 
xi= p, 

p + 1, 

r=6p+3 

I P, 
xi= p+1, 

r=6p+4 

I PY 
xi= pfl, 

r=6p+5 

I 
P, 

xi= p+1, 

i = 5, 6, 16,20,25,26, 
i = 4, 7, 8, 12, 14, 18, 19,22,23,29, 
otherwise. 

i = 6, 25, 26, 
i = .4, 7, 8, 12, 13, 14, 18, 19,22,23,24,27, 29, 
otherwise. 

i = 26, 
i = 1, 2, 3, 5,6, 10, 11, 15, 16, 21,25, 30, 31, 
otherwise. 

i = 1,2, 3, 6, 11, 16,21,26, 31, 
otherwise. 

i = 1,2, 3, 
i > 3. 

i = 1,2, 
i > 2. 

3. MAXIMAL SETS WITH n > 3 ADDITIONAL POINTS 

In this section, we sketch briefly some conditions on t which must be 
satisfied for the existence of n(< t) points Q, , Q, )..., Q,, such that any t 
points in the set 

(3.0 Pi, Q, , Qz >-.., Q& i = 1, 2 ,..., t + r, 
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are linearly independent. Clearly, no t points in this set are linearly 
dependent if a strict linear combination of U, 1 < u < t, of 
Qj ,j = 1,2 ,..., n, has at most r + u - 1 zero coordinates. If Qi’s are 
written in the form of (t + r, n) matrix, then column vectors denoted by 
xi , can be interpreted as points in PG(n - 1, s). Considering all possible 
linear combinations of n points, we observe that 

(i) there are (P - l)/(s - 1) linear inequalities involving xi’s, 

(ii) each inequality contains (~-l - l)/(s - 1) variables, and each x, 
appears in(P-r - l)/(s - 1) inequalities, and 

(iii) (t)(s - 1)%--l, u = 1, 2,..., n, linear combinations of Qj)s, 
j = 1, 2,..., n, exist, each having at most r + u - 1 zero coordinates. 
This corresponds to the fact that (P - l)/(s - I)(n - I)-flats 
incident with each point and (P-l - l)/(s - l)(n - 1)-flats incident 
with each pair of points. 

Adding all the linear inequalities, we have 

( ““,-‘-1’ ) 1 xi < z (j (s - l)U-l(r 
i 

which yields 

-u- 11, (3.2) 

n .p-1 (3.3) 

This further reduces to 

~xi”,,+.-l)-~+[(~-,‘!i:+‘f-‘)]. (3.4) 

To derive conditions analogous to (2.6) we recall that each xi appears 
in (P-l - 1)/(x - 1) inequalities. Adding inequalities containing xi , we 
obtain 

( 
p-l - 1 

s-l 1 Xi + ““,-II l g xj 

< ! 
( “~~~ ’ ) (r - 1) + (n - 1) sn+, i = 1, 2 )...) n, 

( “~~wll ) (r - 1) + nsn-2, 
(3.5) 

i > n, 
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which reduces to 

( “+y; l ) (r - 1) + (n - 1) P-2, i = 1) 2,. . .) Fl, 
< 

( 
“~-~~ ’ ) (r - 1) + n.F2, 

(3.6) 
i > n. 

The inequalities derived in (3.6) are useful in investigating upper bound on 
xj for each j, j = 1, 2 ,..., (P-l - l)/(s - 1). 

The upper bound (3.4) is attained in few special cases. Consider, for 
example, 

r = S(F2 - 1) 
( s-l - n +m 

1 ( 
mod 

s-1 - 1 
1 s-l ’ 

2<m<n, 

that is 

( 
p-1 - 1 

r= 
S-l ) P + sw-2 - l) s-l - n+m 

=( 
p-l- 1 

s-l 1 
(p+ I)--n+m- 1. 

Thus, 

r+n-I= 
i 

‘p-l- 1 

s-l ) (P + 1) 

Clearly, 

(r + n - l)(s - 1) 
[- f-1 - 1 l=p 

The upper bound (3.4) reduces to 

+ (m - 2). 

+ 1. 

71 

An optimal solution for m = 2 is evidently given by 

I 
P, 

xi= p+1, 
i = 1, 2 ,..., n, 
i > n. 

Since C xi = t + r, it follows that if 
? 

- n. 

t > (s - l)(r + n - 1) + [ (r + rnI fl(i - ‘) 1, 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

the set of t + I Els, i = 1, 2 ,..., t + r, will include at most (n - 1) points. 
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For 3 < m < n, the bound (3.10) can be improved. Consider 

pq$+)( p + 1) + s(m - 2) - n - (m - 2)(s - I), 

which reduces to 

y($+)( p + 1) - (n - m + 21, (3.13) 

an optimal solution for which is given by 

I 
P, i = 1, 2 ,..., (n - m + 2); m = 3,4 ,..., n, Xi = P+ 1, i > (n (3 - m + 2). 14) 

In conclusion, we wish to remark that the values of r considered here 
are by no means exhaustive and one needs to consider several cases 
separately. The problem lies in the refinement of the upper bound (3.4) and 
exhibiting a solution to the basic inequalities. 
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