metadata, citation and similar papers at_core.ac.uk

=

=
brought to you by . CQ

provided by Elsevier - Publisher Conni

SCIENCE (] DIRECT®

Physics Letters B 598 (2004) 139-148

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

A note on AdS/CFT dual a8.(2, Z) action on 3D conformal field
theories withtU (1) symmetry

Ho-Ung Yee

School of Physics, Korea Institute for Advanced Sudy, 207-43 Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, South Korea
Received 4 March 2004; received in revised form 28 May 2004; accepted 28 May 2004

Editor: L. Alvarez-Gaumé

Abstract

In this Letter, we elaborate on ti8:(2, Z) action on three-dimensional conformal field theories witfl) symmetry intro-
duced by Witten, by trying to give an explicit verification of the claim regarding holographic dual Sfaperation in AAS/CFT
correspondence. A consistency check with the recently peappsescription on boundary condition of bulk fields when we
deform the boundary CFT in a non-standard manner is also discussed.

0 2004 Elsevier B.VOpen access under CC BY license,

PACS 11.25.Hf; 11.25.Tq

1. Introduction

Mirror symmetry found in three-dimensional theo-
ries with extended supersymmefig] gives us much
insight about non-trivial duality in quantum field the-
ory. For the cases with Abelian gauge groups, it was
shown[8] that many aspects of duality may be derived
by assuming a single ‘elementary’ duality, that is, the
duality (in IR) between the\' = 4 SQED with sin-
gle flavor hypermultiplet and the free theory of single
hypermultiplet. The former has a glob@l1) symme-
try that shifts the dual photon scalar 6f(1) gauge
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field. This symmetry is supposed to be the symmetry
of U (1) phase rotation in the latter. Because magnetic
vortices break the shift symmetry of the dual photon,
they can be identified to elementary excitations in the
free theory side.

Recently, it was observed in R¢1] that the above
simplest duality between vortex and particle may be
seen as an invariance under certain transformation on
three-dimensional CFTs. Specifically, given a CFT
with globalU (1) symmetry, this transformation is de-
fined by gauging the/(1) symmetry without intro-
ducing gauge kinetic term. Although the above ex-
ample is in the context of supersymmetric version of
this transformation, there is no problem in defining
this transformation in non-supersymmetric cases, in
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general. The intriguing fact shown in Rdf] is the
possibility of extending this transformation into a set
of transformations forming the groufL(2, Z). The
above transformation correspondsstavith 2 = —1,
while the transformatiod with (S7)3 = 1 was intro-
duced.

The meaning of thiSL(2, Z) in the space of 3D
CFTs has been studied in Ref,4—6]for theories in
which Gaussian approximation is valid in calculating
correlation functiong12,13]. (See[10] for implica-
tions on QHE.) These analysis identified ®lg?2, Z)
as certain transformations of basic correlation func-
tions of the theory. While we may be almost convinced
that the transformations of correlation functions found
in these analysis hold true in general, its proof is cur-
rently limited to the theories with Gaussian approxi-
mation.

As suggested in Refl], another way of interpret-
ing theSL(2, Z) transformations may be provided by
AdS/CFT corresponden¢®]. According to AAS/CFT,

a globalU (1) symmetry in the CFT corresponds to
having aU (1) gauge theory in the bulk, whose asymp-
totic value on the boundary couples to thié€l) cur-
rent of the CFT. Th&/ (1) gauge theory in the bulk has
a naturalSL(2, Z) duality[2]. While it is easy to iden-
tify the T operation in the CFT as the usuat 8hift of
the bulkd parametefl], describing holographic dual
of the S operation turns out to be much more subtle. It
was suggested that thetransformed CFT is dual to
the same gauge theory in the bulk, butlitél) current
couples to the&S-dualized gauge field. Note that the re-
sulting CFT with different oupling to the bulk field is
not equivalent to the original CHIL4,18]

Although a compelling discussion on holographic
dual of theS operation was provided in Rdfl] using
various aspects of AdS/CHL7-19] and was further
supported in Ref[6] by explicitly calculating cer-
tain correlation functions, a rigorous verification of the
claim is missing. In this Letter, we propose a rigorous
argument that fills this gap.

2. Setting up the stage

This section is intended to give a brief review of rel-
evant facts in Refl1] on SL(2, Z) transformations of

3D CFTs, as a necessary preparation for the discussion

in next section.
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A basic ingredient used in the discussion of R&F.
is the equation,

DAexplil (A, B))

:/DA exp(zl—n/d% e"f"Aia,Bk)

Y

=58(B), 2.1)

whereA and B are connections of line bundles on an
oriented base three-manifold The delta function on
the right-hand side means th&tis zero, that is, its
field strength vanishes and there is no non-vanishing
Wilson line. The path integraJ DA in the left-hand
side includes summing over topologically distinct line
bundles as well as integral over trivial connections. For
topologically non-trivial connections, especially when
a quantized magnetic flux on a 2-dimensional cyEle
does not vanish,

1

— | F#£0,

271/ 7
b

it is not possible to define a global connectiérsuch
that dA = F. In this case, we need to understand
I(A, B) as follows. Pick up a compact-oriented four
manifold X whose boundary i¥, and extend connec-
tions (and line bundles}, B onY to connections4,
BonX.ThenlI(A, B) is defined to be

1
—/fAAfB,
27

X

whereF 4, Fp are the field strengths of, 5. Because

for anyclosed four manifoldX, ;25 [z Fa4 A Fpisan
integer Chern number, the above definition A, B)

is easily shown to be independent of extensions mod-
ulo 2. This is fine as long as we are concerned only
with ¢t/ (4.8),

In Ref. [1], several ways of showin¢2.1) were
given. In simple terms, we splt = Ayiy + A’, where
Ayiv is a globally defined trivial connection, am
is a representative of a given topologically non-trivial
line bundle (which does not kia a global definition).
Note that we can write

2.2)

(2.3)

1(A, B)

1 .. .
Z/d?’x €Ik A By + 1(A', B),
Y (2.4)
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becauses’/*d; By = 3¢'/¥ Fj; is well-defined ony.
The path integral overdy, gives us delta function
setting the field strength oB zero. Then, only re-
maining component oB is its possible Wilson line

in H1(Y, U(1)). With vanishing field strength oB,

it is clear as in(2.4)that I(A’, B) is invariant under
adding trivial connection tat’, that is,1(A’, B) de-
pends only on the cohomology of the field strength of
A’. This cohomology (characteristic class) belongs to
H2(Y,Z) as a consequence of Dirac quantization (a
Chern’s theorem), or more specifically,

1/FeZ
2 ’
)

where X' is any integer coefficient 2-cycle. Thus, we
see that' (A’, B) is a kind of bilinear form,

(2.5)

H?(Y,Z) x HY(Y,UD) — R. (2.6)

In Ref.[1], this bilinear form was identified and sum-
ming overH?(Y, Z) was shown to give the remaining
delta function setting Wilson line @ zero. A possible
intuitive picture on this may be the following. Con-
sider a non-zero 1-cycle on which there is a Wilson
line ¢’ ¥ < U(1). We roughly consideF as a prod-
uct ofy and two-dimensional transverse spageand
write 1(A’, B) as

1
I(A’,B)NZ/B/\FA

Y
! F /B /B
N — . Nn. N
21 A
D) % Y

wheren € Z. Hence, summing oveF, € H(Y,Z)
involves something like

Zei"'fVB,

nezZ

2.7)

(2.8)

which imposes vanishing Wilson liné,/» © = 1. This
argument is intended to be just illustrative, and we re-
fer to Ref.[1] for rigorous derivation.

Now, we are ready to describe tBe(2, Z) actions
defined in Ref.[1] on three-dimensional conformal
field theories with global/ (1) symmetry. The defini-
tion of a conformal field theory here means to specify
the globalU (1) current/! and introduce a background
gauge fieldA; without kinetic term that couples t#' .
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A theory is thus specified by

<exp(iy/d3x A,-J")>,

where(- - -) means to evaluate expectation value in the
given CFT. The above generating functional can pro-
duce all correlation functions @f (1) currentJ?. The

S operation is defined by letting; be dynamical and
introducing a background gauge fiekd with a cou-
pling

(2.9)

1 ..
I(A,B) = Z/d?’xe”kAiajBk, (2.10)

Y
that is, the transformed theory is now specified by

/DA<exp<i/d3x A,-J")>exp(i1(A,B)), (2.11)
Y

where (---) means expectation value in the origi-
nal conformal field theory. Noting thak(A, B) ~

[y B A F4, we see that th& (1) current of theS-trans-
formed theory thatB couples isJ = = (xF4)' =
ﬁe"-/k(FA)jk. The U (1) symmetry corresponding to
this current is the shift symmetry of dual photon scalar
of A;.

The definition of 7" operation is a little subtle, be-
cause it involves modifying a theory in a way which
is not manifest in low energy action that is supposed
to define the theory. Concretely, tiieoperation is de-
fined to shift the 2-point function of’ by a contact
term,

(J’(X)J’(y)) — (J'(X)J"(y))
i .. 0

ZelkaS?’(x — y)
Because the above contact term has mass dimension 4,
which is the right dimension of J correlation, this
term does not introduce any dimensionful coupling.
Moreover, it does not conflict with any symmetry of
the theory (in some cas¢$6], we need this term to
preserve gauge invariance). In fact, whenever there is
freedom to add local contact terms that are consistent
with the symmetry of a theory, this signals the intrinsic
inability of our low energy action in predicting them,
and we have toenormalize them. In other words, they
must be treated as input parameters rather than out-
puts. Note that this is not an unusual thing; it is an

+ (2.12)
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essential concept of renormalization in quantum field
theory. The effect of the modificatiof2.12) on our
generating functiongR.9)is

<exp<i Y/ d3x A,~J’>>
- <exp<i/d3x A,-J")>

Y
xexp(L/cﬁx ef-/kA,-a,-Ak), (2.13)
4
Y
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Let X denote the bulk AdS, andX =Y be our
space—time. Le# be theU (1) gauge field in the bulk
whose boundary value couples to the glolGal) cur-
rent J' in the CFT side. According to AJS/CFT, we
have

o f )

DAexp(iS(A)),
Ai—A;

(3.16)

whereS(A) = eiz [x FaN*Fa+---is the action of

which can be shown by first expanding the exponent ne pylk gauge field and we omitted other bulk fields

in series ofJ and re-exponentiating the effects Bf
operation orJ correlation functions.

Another fact in Ref[1], which is needed to show
the SL(2, Z) group structure of the above transforma-
tions is,

/ DAexp(il(A)) =1,

up to possible phase factf#,3]. This equation should
be understood as a statement that the theory has on
one physical state and trivigl5]. Here,

(2.14)

1 .
1(A) = —/d?’xe”kAiajAk
4

(2.15)

defined with some extension ov&r similarly as be-

fore [11]. This is well-defined modulos2 for a spin

manifoldY . Using(2.1)and(2.14) it is readily shown

that S and T satisfy theS_(2, Z) generating algebra,
(ST)3=1and & = —1, where—1 is the transforma-
tion J' — —J' commuting with everything.

3. Holographic dual of the S operation in
AdS/ICFT

We now try to elaborate on the claim in Ré¢i]
and to give an explicit proof that th& operation on
CFTs is dual to the Abelia§-duality in the bulk AdS
in AAS/CFT correspondence.

for simplicity. Before considering holographic dual
of S operation, it is easy to identify fror(8.16) the
holographic dual off' operation as in Ref{1]. The

T operation simply multiplieg’/ (4 in both sides of
(3.16) But, note that' (A) = = [, F.4 A F.4 modulo

27 irrespective of the bulk extensioa as long as its
boundary value is fixed, hence in the right-hand side,
multiplying ¢!/ (4 is equivalent to shifting the bulk

h}erm,

6
S(A) S —/]—'A AFa, (3.17)
812
X

byo — 6 + 2r.

Now, using(3.16) we want to show thaf2.11)is
nothing but the bulk path integral of the same bulk the-
ory, but with the boundary condition that the ‘dual’
field B has the specified boundary valBe. In terms
of the original field.A, this corresponds to specifying
electric field on the boundary, instead of specifying
magnetic field. (WherB; = 0, the boundary condition
in terms of A is that the electric field vanishes on the
boundary, as given in Ref1].)

Using AdS/CFT and the fact thdi(A, B) = 5= x
[y d3x €7k A;9; B, can be written as a bulk integral
(up to mod 27

1
I(A,B)=§/]:B/\]:Av (3.18)
X

whereB and.A are ‘arbitrary’ extensions a8; andA;,
we have

<exp(i/d3x A,-J")>exp(é/d3xe"f’<A,-a,-Bk)
Y Y
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/ DAexp(iS(A)Jr é/]—'BA]-'A),

A4 (3.19)
where B is some fixed extension a#;. (2.11)is the
integral of this quantity over the boundary valde,
hence(2.11)is equal to the r.h.s. dB.19)without any
boundary conditions o,

/DA<exp<i/d3x A,~J")>
x exp(L/d?’xeikaia,»Bk)

/DAexp(zS(A)+ —/]—"BA]-"A)

(3.20)
We now perform a dualizing procedure in the bulk
X, which is similar to the one in Refi2], but appropri-
ately taking care of the fact that our space—time now
has a boundary X = Y. First we want to argue that,
for a bulk 2-form fieldG, the integral

/ DVexp(l—/}'V/\G)
2
V-0 X

over all possible connections(and also sum over line
bundles) inX with boundary condition that vanishes

onY (up to gauge transformations), gives a delta func-
tion on G that precisely say§ is a field strength of
some connection of a line bundle. To show this, we
consider a “closed” 4-manifol® which is obtained
from X by attaching ord X = Y a orientation reversed
copy of X which we call X’, as inFig. 1L We also
consider a 2-form fields on X, whose value orX’

is the identical copy of5 on X. It is clear thatG is

a field strength of some connection anif and only

if G is a field strength of some connection &n As

X is closed, we can use the well-known procedure of
requiringG to be a field strengtf2]; the integral

/Dfiexp(é/}}-,/\(?)
X

over connectiond’ on X gives a delta function im-
posing thatG is a field strength of some connection
on X. Simply put, the integration over trivial part i
imposes that; be a closed 2-form, while the remain-
ing sum over line bundles requir€sto satisfy Dirac
quantizationG € H2(X, Z).

(3.21)

(3.22)
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Fig. 1.

Thus, when expressed in terms@fit gives the de-
sired delta function (up to a constant factor) that says
G should be a field strength axi. Now, we can split
Y on X into a connectio on X and a connectiol’
on X’, and we have

/fv/\G——/fv/\G—l-—/fv//\G

/fVAG——/fV/AG

= — /(]—'V — ) AG, (3.23)
27
X

where in the last line, we consid®f as a connection

on X, but with the minus sign in the integral due to

orientation reversal. Note that and)” should agree

on the boundary’, as they are from a commanon
X, hence we can rewrite the path integral ovento

DY = DYDYV
V-yH—0

(3.24)

From the above two observations, we have

/DVexp(é/}‘f,/\G)
X
f DYDY exp<l— / (Fy — Fv) A G)

V-V)—0
[/DV} f DVexp< /]-‘VAG)
(3.25)
where we have changed the variable— V') — V in

the last line. Thus(3.21)indeed gives a desired delta
function (up to a constant factor).



144

Now, we are ready to perform the duality pro-
cedure in a space-time with boundary. Introduce a
2-form field G and replace everyr 4 in the action
with F 4 + G. Also introduce a connectiov with the
boundary condition tha vanishes orY, and add the
coupling

i
EffVAG.
X

The resulting action is invariant under the extended
gauge transform,

(3.26)

A— A+C, G—G—Fe, (3.27)

whereC is an arbitrary connection iX. Precisely be-
cause) vanishes o1y, (3.26)is invariant unde(3.27)
modulo 2xi Let us explain this fact in some detail.
The vanishing connection on can be extended to a
trivial (globally defined one form) connection ox,
sayV’. We also know that

L/fv,Afch/foc,
2 2
X X

modulo 2z ibecausd” and) agree ort'. Being triv-
ial, 7y can be written asFy» = d)V’ globally on X,
and performing partial integration, we have

1 1
—ffv//\f(j:—/v//\fczo,
2 2

X Y

becaus@” vanishes or¥.

We then consideG and)V as dynamical, and mod
out the theory with gauge equivalence. If we integrate
over YV first, it gives a constraint tha; is a field
strength of some connectiafi by the discussion in
the previous paragraphs. Then, by gauge fixing, we
can setG = 0 and recover the original theory of.
The equivalent dual theory in terms dfis obtained
by first gauge fixing4 = 0, and integrating oveG.
Applying this to(3.20) we get

/DAexp(iS(fA) n é/}—g /\]-'A)
X

/DV/DG

V-0

(3.28)

(3.29)
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X eXp(iS(G) + é /(.7:3 +Fp) A G)
X

= / DV/DGexp(iS(G)+L/.7:V/\G)
27
X

— B

= / DV exp(iSp(Fy)),

V—B;

(3.30)

where in the fourth line, we changed the variaBBle-

Y — V with the new boundary condition that goes

to the specifiedB; on Y. In the last line, integrating
over G gives the dual bulk actioiSp (Fy) in terms

of the dual gauge field with the coupling constant
—1/7, and we have the desired boundary condition for
yonY.

At this point, it would be clarifying to see explic-
itly the relation betweerthe boundary condition for
the dual fieldy that we derived above, and the bound-
ary condition in terms of the original field [1]. In the
bulk AdS, the dual fieldV is nothing but a non-local
change of variable from the original variable In the
case of vanishing angle! they are related by

2

e
(fA)/w = geuvaﬁ(f\/)aﬂ- (3-31)

This is easily seen in a naive dualization procedure of
making the field strength ofl as a fundamental inte-
gration variable by imposing the Bianchi identity. The
dual fieldV is introduced as a Lagrange multiplier

1
/ DVDF 4 exp<i / d*x /g (? (FA) o (F )M

1
+ —€uvap (fv)“%fA)“ﬁ)).

8
(3.32)

Integrating outF 4 gives the dual description. The
equation of motion off 4 is (3.31)

Now, in Poincaré coordinatéxg, x), (with the
boundary atcg = 0)

4 2_dxc2)+dfz

= —
0

(3.33)

1 This is just for simplicity. The case with non-vanishiagngle
is similar[2].



H.-U. Yee/ Physics Letters B 598 (2004) 139-148

the usual boundary condition specifying the value of

gauge field on the boundary corresponds to spec-

ifying the (gauge invariant) ‘magnetic’ component
M; = 3eix F7*, i, j,k = 1,2, 3. Becausg3.31) in-
terchanges the ‘magnetic’ component)fwith the
‘electric’ component ofA, E; = do.A; (in the gauge
Ao =0), we see that in terms of the original fiel]
the S-transformed CFT is mapped to the bulk AdS
theory with ‘electric’ boundary condition. Note that
‘magnetic’ and ‘electricboundary conditions are nat-
ural counterparts of Dirichlet and Neumann bound-
ary conditions for scalar field, and they are natu-
rally expected to be conjugate with each other in
AdS/CFT. We will come to this point in the next sec-
tion. In fact, we need to look at thE-transformation
more carefully in this respect. The AdS dual of the
T-transformation of 3D CFT was identified as a 2
shift of the bulké-angle, while the ‘magnetic’ bound-
ary conditionis unchanged. In the presence-aingle,
the ‘electric’ component naturally conjugate to the
‘magnetic’ component (or more precisely, the valje
on the boundary) has a term proportionabt@angle.
This is most easily seen frorhea fact that the natural
conjugate variable td; is obtained by varying the ac-
tion w.r.t. 9o.4;.2 Denoting this ad;, we have

1 0
D; = e_zaoAi + QMi’

(3.34)
and shiftingé results in shifting ofD; by a unit of
‘magnetic’ componeni/;.

4. Inview of boundary deformations

In the last section, we observed that the AdS dual
of S-operation on 3D CFT interchanges the ‘magnetic’
and ‘electric’ boundary conditions, whilE-operation
corresponds to shifting the ‘electric’ compondntby
a unit of ‘magnetic’ component. Thoudh-operation
does not really change the boundary condition by it-
self, it has a non-trivial effect when combined wigh
With appropriate normalization, we can represent the

2 If we considerxg as a time variable, this is the Witten effect.
This should be true even in Euclidean case when considering ‘natu-
rally’ conjugate boundary variables ag = 0.
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S andT action on boundary conditions as
) M; 1 O M; ]’
D; 1 1 D;
(h)=G () e

where we take the usual ‘magnetic’ boundary condi-
tion in terms of transformed variable. This gives a nat-
ural correspondence between te(2, Z) action on
3D CFTs with theSL(2, Z) action on boundary condi-
tion (or bulk gauge field).

In this section, we give another concrete evidence
of this picture in the context of the recently proposed
prescriptior{17] on boundary conditions when we de-
form the boundary CFT in a non-standard manner. The
proposed prescription in RefL7] is for scalar fields
in the bulk, and it goes as follows. Suppose we have a
scalar fieldg in the bulk, whose asymptotic behavior
near the boundaryp =0 is

¢ (x0,X) ~ AGE)xs™ + B(E)xg ™. (4.36)

We consider the CFT oxg = 0 defined by the bound-
ary conditionA (¥) = 0. By standard AdS/CFT dictio-
nary,A(x) couples to a scalar operat6rof dimension
A4 onthe boundary, that is, a boundary condition with
non-vanishingA(x) maps to a deformation of CFT
side by

Scrt— ScrT+ / dx A(X)O(X). (4.37)
The expectation value dP in this deformed CFT is
given by B(X),

(0®), ~ BX). (4.38)

They are natural conjugate pair of source and expec-
tation value. For specific range @f mass, it is pos-
sible also to consider the boundary CFT defined by
B(x) = 0. In this CFT, the roles ofi (x) andB(x) are
reversed, and the partition function is just a Legendre
transform of the previous CFJ18]. It has been ar-
gued that this CFT is the IR fixed point of the previous
CFT deformed by a term which is quadraticdhx).

The question is what would be the boundary condi-
tion when we deform the boundary CFT (defined by
A(x) =0) in a more general manner,

Scrt — Scrr+ W(0), (4.39)
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whereW is an arbitrary (possibly non-local) function Having this in mind, let us go back to o8L(2, Z)
of O(x). The proposal in Refl17] is to take the fol- actions on 3D CFT and consider the action given by
lowing boundary condition o (x) and B(x), ST, which corresponds to the matrix,
.. SW(O) (o —1>(1 n) (0 —1)
A(X) = . 4.40 = . 4.46
=350 low e @40 {1 o )lo 1)=\1 » (4.46)

The situation with bulk gauge field iAdS;/CFT3 By definition, the partition function of the transformed
correspondence might look similar to the case of bulk CFT is given by
scalar field with its mass such that two CFTs are ,
possible. We have two naturally conjugate variables Zafter= /DBi<eXI0<i/d3X BiJ!
(A;, D;) in the boundary, and two different bound-

ary conditions are possible. However, contrary to the +n. L /d3x kB, dj Bk>>,
scalar field case, these two boundary CFTs cannot pos- 4

sibly be related by an RG flow, because actinvice (4.47)
gives us the original theory and the degrees of freedom where(---) and J/ are expectation values arid(1)
are not lost. current, respectively, of the original CFT, aBgdis the

However, the proposd#.40)can be naturally ex-  intermediate connection variable in defining thep-
tended to include the case of gauge fields, and we will eration. Because the exponent is quadrati®inwe
show that this extension indeed reproduces the resultscan perform the path integral ove explicitly. We
in the previous sections, providing a compelling check introduce the gauge fixing terim/ d3x £(3; B;)?, and
for the proposal applied to gauge fields. We start with the B; propagator is
the CFT defined by the usual ‘magnetic’ boundary
condition specifying gauge field components tangen- Sij(p) = (Bi (p)Bi(_p)>

. D 2
tial to the boundary asp — 0, :izsf( sz)z i —nzéijkpk. (4.48)
Using this,(4.47)is given by
As usual, this corresponds to deforming the CFT by
adding the coupling 1 &% '
’ Zaiter={ €XP __/ 3-] =p)Sij(p)J’ (p)
' 2) (2m)

SSCFTZ/d3x AJ', (4.42) T d? ; ik’

) =<exp<_;/ (znl))gjl(_p) ! 2 JJ(P))>,
where J' is the 3DU (1) current. Now, we ask the P 4.49
question of what boundary condition we take when we ‘ S (4.49)
deform the CFT with an arbitrary function df (x), where Ji(p) = [d3x e”'P*J'(x), and we have used

. the Ward identity(p; J'(p) ...) = 0. Now, looking at
8Scrr=W[J'], (4.43) the last expression, it is clear that the transformed the-
instead of a linear on@.42) Recalling that ory is nothing but the original CFT with the deforma-
tion W[J] given by

8d0.A; (x) 8Scrr=WlJl=— [ 57" (=== (p)
is the “electric” field that is canonically conjugate ' 3n (2m) p
to A;(X), a direct analogy with the case of scalar _r d°p / 3
fields(4.40)suggests the following prescription on the nJ (2r)3
boundary condition asg — 0, . e pt .

;’W " < / d3yeriem iy P i 1 y).
A3 = T[*] o (4.45) P (4.50)

@) 1yiy—pic) Hence, according to our propo%dl45) the bulk AdS

whereA; — A;. gauge theory of the transformed CFT has a modified
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boundary condition,

2mi d3p
A === Gop
ok
X /dsye’pxef’py%ﬂ(y) .
p JI ()= DI(y)
(4.51)

To see clearly what this means, take theéerivative,
%em"fa,,, on both sides. The left-hand side gives
the ‘magnetic’ componen¥™ (x) = %e”’”"anA,-(x),
while the right-hand side becomes

b4 dp
nJ (27)3

k
pnpP"
77 (y)
p

/dSy etpxe—lpyemmeijk

X

JI(y)= DI (y)
b4 d3p

__r 3., Jipx —ipy(smgn
=— (2n)3fd ye'lte ((Sj )

k
p

— 8,’:’87)

2

JI ()= DI (y)

[ dp D p"p;
i [ e (-5

x J7(y)

JI(y)=DI(y)

T d3p 3 : F oy
__ d ipx —ipy
7 (2n)3/ yere

x J™(y)

JI(y)—Di(y)
o

=——J"(x)
n

=-Zpm),

Ji(x)—DJ(x) n
where in going from the fifth line to the seventh, we
again used the Ward identity for .

In summary, the AdS bulk gauge field for the trans-
formed CFT has the boundary condition; M; (x) +
D; (X) = 0 (with appropriate normalization absorbing

(4.52)
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before taking the usual ‘magnetic’ boundary condition
M; =0.
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