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Abstract

In this Letter, we elaborate on theSL(2,Z) action on three-dimensional conformal field theories withU(1) symmetry intro-
duced by Witten, by trying to give an explicit verification of the claim regarding holographic dual of theS operation in AdS/CFT
correspondence. A consistency check with the recently proposed prescription on boundary condition of bulk fields when
deform the boundary CFT in a non-standard manner is also discussed.
 2004 Elsevier B.V.
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1. Introduction

Mirror symmetry found in three-dimensional the
ries with extended supersymmetry[7] gives us much
insight about non-trivial duality in quantum field th
ory. For the cases with Abelian gauge groups, it w
shown[8] that many aspects of duality may be deriv
by assuming a single ‘elementary’ duality, that is,
duality (in IR) between theN = 4 SQED with sin-
gle flavor hypermultiplet and the free theory of sing
hypermultiplet. The former has a globalU(1) symme-
try that shifts the dual photon scalar ofU(1) gauge
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field. This symmetry is supposed to be the symme
of U(1) phase rotation in the latter. Because magn
vortices break the shift symmetry of the dual phot
they can be identified to elementary excitations in
free theory side.

Recently, it was observed in Ref.[1] that the above
simplest duality between vortex and particle may
seen as an invariance under certain transformatio
three-dimensional CFTs. Specifically, given a C
with globalU(1) symmetry, this transformation is de
fined by gauging theU(1) symmetry without intro-
ducing gauge kinetic term. Although the above
ample is in the context of supersymmetric version
this transformation, there is no problem in defini
this transformation in non-supersymmetric cases
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general. The intriguing fact shown in Ref.[1] is the
possibility of extending this transformation into a s
of transformations forming the groupSL(2,Z). The
above transformation corresponds toS with S2 = −1,
while the transformationT with (ST )3 = 1 was intro-
duced.

The meaning of thisSL(2,Z) in the space of 3D
CFTs has been studied in Refs.[1,4–6] for theories in
which Gaussian approximation is valid in calculati
correlation functions[12,13]. (See[10] for implica-
tions on QHE.) These analysis identified theSL(2,Z)

as certain transformations of basic correlation fu
tions of the theory. While we may be almost convinc
that the transformations of correlation functions fou
in these analysis hold true in general, its proof is c
rently limited to the theories with Gaussian appro
mation.

As suggested in Ref.[1], another way of interpret
ing theSL(2,Z) transformations may be provided b
AdS/CFT correspondence[9]. According to AdS/CFT,
a globalU(1) symmetry in the CFT corresponds
having aU(1) gauge theory in the bulk, whose asym
totic value on the boundary couples to theU(1) cur-
rent of the CFT. TheU(1) gauge theory in the bulk ha
a naturalSL(2,Z) duality [2]. While it is easy to iden-
tify the T operation in the CFT as the usual 2π shift of
the bulkθ parameter[1], describing holographic dua
of theS operation turns out to be much more subtle
was suggested that theS-transformed CFT is dual to
the same gauge theory in the bulk, but itsU(1) current
couples to theS-dualized gauge field. Note that the r
sulting CFT with different coupling to the bulk field is
not equivalent to the original CFT[14,18].

Although a compelling discussion on holograph
dual of theS operation was provided in Ref.[1] using
various aspects of AdS/CFT[17–19], and was further
supported in Ref.[6] by explicitly calculating cer-
tain correlation functions, a rigorous verification of t
claim is missing. In this Letter, we propose a rigoro
argument that fills this gap.

2. Setting up the stage

This section is intended to give a brief review of r
evant facts in Ref.[1] on SL(2,Z) transformations o
3D CFTs, as a necessary preparation for the discus
in next section.
A basic ingredient used in the discussion of Ref.[1]
is the equation,∫

DAexp
(
iI (A,B)

)

=
∫

DAexp

(
i

2π

∫
Y

d3x εijkAi∂jBk

)

(2.1)= δ(B),

whereA andB are connections of line bundles on
oriented base three-manifoldY . The delta function on
the right-hand side means thatB is zero, that is, its
field strength vanishes and there is no non-vanish
Wilson line. The path integral

∫
DA in the left-hand

side includes summing over topologically distinct li
bundles as well as integral over trivial connections.
topologically non-trivial connections, especially wh
a quantized magnetic flux on a 2-dimensional cycleΣ

does not vanish,

(2.2)
1

2π

∫
Σ

F �= 0,

it is not possible to define a global connectionA such
that dA = F . In this case, we need to understa
I (A,B) as follows. Pick up a compact-oriented fo
manifoldX whose boundary isY , and extend connec
tions (and line bundles)A, B on Y to connectionsA,
B onX. ThenI (A,B) is defined to be

(2.3)
1

2π

∫
X

FA ∧FB,

whereFA,FB are the field strengths ofA,B. Because
for anyclosed four manifoldX̄, 1

4π2

∫
X̄ FA ∧FB is an

integer Chern number, the above definition ofI (A,B)

is easily shown to be independent of extensions m
ulo 2π. This is fine as long as we are concerned o
with eiI (A,B).

In Ref. [1], several ways of showing(2.1) were
given. In simple terms, we splitA = Atriv + A′, where
Atriv is a globally defined trivial connection, andA′
is a representative of a given topologically non-triv
line bundle (which does not have a global definition)
Note that we can write

(2.4)

I (A,B) = 1

2π

∫
Y

d3x εijkAtriv
i ∂jBk + I (A′,B),
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becauseεijk∂jBk = 1
2εijkFjk is well-defined onY .

The path integral overAtriv gives us delta function
setting the field strength ofB zero. Then, only re
maining component ofB is its possible Wilson line
in H 1(Y,U(1)). With vanishing field strength ofB,
it is clear as in(2.4) that I (A′,B) is invariant under
adding trivial connection toA′, that is,I (A′,B) de-
pends only on the cohomology of the field strength
A′. This cohomology (characteristic class) belongs
H 2(Y,Z) as a consequence of Dirac quantization
Chern’s theorem), or more specifically,

(2.5)
1

2π

∫
Σ

F ∈ Z,

whereΣ is any integer coefficient 2-cycle. Thus, w
see thatI (A′,B) is a kind of bilinear form,

(2.6)H 2(Y,Z) × H 1(Y,U(1)
) → R.

In Ref. [1], this bilinear form was identified and sum
ming overH 2(Y,Z) was shown to give the remainin
delta function setting Wilson line ofB zero. A possible
intuitive picture on this may be the following. Con
sider a non-zero 1-cycleγ on which there is a Wilson

line e
i
∫
γ B ∈ U(1). We roughly considerY as a prod-

uct ofγ and two-dimensional transverse spaceΣ , and
write I (A′,B) as

I (A′,B) ∼ 1

2π

∫
Y

B ∧ FA

(2.7)∼ 1

2π

∫
Σ

FA ·
∫
γ

B ∼ n ·
∫
γ

B,

wheren ∈ Z. Hence, summing overFA ∈ H 2(Y,Z)

involves something like

(2.8)
∑
n∈Z

e
in·∫γ B

,

which imposes vanishing Wilson line,e
i
∫
γ B = 1. This

argument is intended to be just illustrative, and we
fer to Ref.[1] for rigorous derivation.

Now, we are ready to describe theSL(2,Z) actions
defined in Ref.[1] on three-dimensional conform
field theories with globalU(1) symmetry. The defini-
tion of a conformal field theory here means to spec
the globalU(1) currentJ i and introduce a backgroun
gauge fieldAi without kinetic term that couples toJ i .
A theory is thus specified by

(2.9)

〈
exp

(
i

∫
Y

d3x AiJ
i

)〉
,

where〈· · ·〉 means to evaluate expectation value in
given CFT. The above generating functional can p
duce all correlation functions ofU(1) currentJ i . The
S operation is defined by lettingAi be dynamical and
introducing a background gauge fieldBi with a cou-
pling

(2.10)I (A,B) = 1

2π

∫
Y

d3x εijkAi∂jBk,

that is, the transformed theory is now specified by

(2.11)
∫

DA

〈
exp

(
i

∫
Y

d3x AiJ
i

)〉
exp

(
iI (A,B)

)
,

where 〈· · ·〉 means expectation value in the orig
nal conformal field theory. Noting thatI (A,B) ∼∫
Y B ∧FA, we see that theU(1) current of theS-trans-

formed theory thatB couples isJ̃ i = 1
2π

(�FA)i =
1

4π
εijk(FA)jk . TheU(1) symmetry corresponding t

this current is the shift symmetry of dual photon sca
of Ai .

The definition ofT operation is a little subtle, be
cause it involves modifying a theory in a way whi
is not manifest in low energy action that is suppos
to define the theory. Concretely, theT operation is de-
fined to shift the 2-point function ofJ i by a contact
term,〈
J i(x)J j (y)

〉 → 〈
J i(x)J j (y)

〉
(2.12)+ i

2π
εijk ∂

∂xk
δ3(x − y).

Because the above contact term has mass dimens
which is the right dimension ofJJ correlation, this
term does not introduce any dimensionful coupli
Moreover, it does not conflict with any symmetry
the theory (in some cases[16], we need this term to
preserve gauge invariance). In fact, whenever the
freedom to add local contact terms that are consis
with the symmetry of a theory, this signals the intrin
inability of our low energy action in predicting them
and we have torenormalize them. In other words, the
must be treated as input parameters rather than
puts. Note that this is not an unusual thing; it is
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theory. The effect of the modification(2.12) on our
generating functional(2.9) is〈
exp

(
i

∫
Y

d3x AiJ
i

)〉

→
〈
exp

(
i

∫
Y

d3x AiJ
i

)〉

(2.13)×exp

(
i

4π

∫
Y

d3x εijkAi∂jAk

)
,

which can be shown by first expanding the expon
in series ofJ and re-exponentiating the effects ofT

operation onJ correlation functions.
Another fact in Ref.[1], which is needed to show

theSL(2,Z) group structure of the above transform
tions is,

(2.14)
∫

DAexp
(
iI (A)

) = 1,

up to possible phase factor[2,3]. This equation should
be understood as a statement that the theory has
one physical state and trivial[15]. Here,

I (A) = 1

4π

∫
Y

d3x εijkAi∂jAk

≡ 1

16π

∫
X

d4x εijklFij Fkl

(2.15)= 1

4π

∫
X

F ∧ F,

defined with some extension overX similarly as be-
fore [11]. This is well-defined modulo 2π for a spin
manifoldY . Using(2.1)and(2.14), it is readily shown
that S andT satisfy theSL(2,Z) generating algebra
(ST )3 = 1 and S2 = −1, where−1 is the transforma
tion J i → −J i commuting with everything.

3. Holographic dual of the S operation in
AdS/CFT

We now try to elaborate on the claim in Ref.[1]
and to give an explicit proof that theS operation on
CFTs is dual to the AbelianS-duality in the bulk AdS
in AdS/CFT correspondence.
Let X denote the bulk AdS, and∂X = Y be our
space–time. LetA be theU(1) gauge field in the bulk
whose boundary value couples to the globalU(1) cur-
rent J i in the CFT side. According to AdS/CFT, w
have〈
exp

(
i

∫
Y

d3x AiJ
i

)〉

(3.16)=
∫

Ai→Ai

DAexp
(
iS(A)

)
,

whereS(A) = 1
e2

∫
X FA ∧ ∗FA + · · · is the action of

the bulk gauge field and we omitted other bulk fie
for simplicity. Before considering holographic du
of S operation, it is easy to identify from(3.16) the
holographic dual ofT operation as in Ref.[1]. The
T operation simply multiplieseiI (A) in both sides of
(3.16). But, note thatI (A) = 1

4π

∫
X
FA ∧FA modulo

2π irrespective of the bulk extensionA as long as its
boundary value is fixed, hence in the right-hand s
multiplying eiI (A) is equivalent to shifting the bulkθ
term,

(3.17)S(A) ⊃ θ

8π2

∫
X

FA ∧FA,

by θ → θ + 2π .
Now, using(3.16), we want to show that(2.11) is

nothing but the bulk path integral of the same bulk t
ory, but with the boundary condition that the ‘dua
field B has the specified boundary valueBi . In terms
of the original fieldA, this corresponds to specifyin
electric field on the boundary, instead of specify
magnetic field. (WhenBi = 0, the boundary conditio
in terms ofA is that the electric field vanishes on t
boundary, as given in Ref.[1].)

Using AdS/CFT and the fact thatI (A,B) = 1
2π

×∫
Y

d3x εijkAi∂jBk can be written as a bulk integr
(up to mod2π)

(3.18)I (A,B) = 1

2π

∫
X

FB ∧FA,

whereB andA are ‘arbitrary’ extensions ofBi andAi ,
we have〈
exp

(
i

∫
Y

d3x AiJ
i

)〉
exp

(
i

2π

∫
Y

d3x εijkAi∂jBk

)
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=
∫

Ai→Ai

DAexp

(
iS(A) + i

2π

∫
X

FB ∧FA

)
,

whereB is some fixed extension ofBi . (2.11) is the
integral of this quantity over the boundary valueAi ,
hence(2.11)is equal to the r.h.s. of(3.19)without any
boundary conditions onA,∫

DA

〈
exp

(
i

∫
d3x AiJ

i

)〉

× exp

(
i

2π

∫
d3x εijkAi∂jBk

)

(3.20)

=
∫

DAexp

(
iS(A) + i

2π

∫
X

FB ∧FA

)
.

We now perform a dualizing procedure in the bu
X, which is similar to the one in Ref.[2], but appropri-
ately taking care of the fact that our space–time n
has a boundary∂X = Y . First we want to argue tha
for a bulk 2-form fieldG, the integral

(3.21)
∫

V→0

DV exp

(
i

2π

∫
X

FV ∧ G

)

over all possible connectionsV (and also sum over lin
bundles) inX with boundary condition thatV vanishes
onY (up to gauge transformations), gives a delta fu
tion on G that precisely saysG is a field strength o
some connection of a line bundle. To show this,
consider a “closed” 4-manifold̄X which is obtained
from X by attaching on∂X = Y a orientation reverse
copy of X which we callX′, as in Fig. 1. We also
consider a 2-form fieldḠ on X̄, whose value onX′
is the identical copy ofG on X. It is clear thatG is
a field strength of some connection onX if and only
if Ḡ is a field strength of some connection onX̄. As
X̄ is closed, we can use the well-known procedure
requiringḠ to be a field strength[2]; the integral

(3.22)
∫

DV̄ exp

(
i

2π

∫

X̄

FV̄ ∧ Ḡ

)

over connections̄V on X̄ gives a delta function im
posing thatḠ is a field strength of some connectio
on X̄. Simply put, the integration over trivial part in̄V
imposes that̄G be a closed 2-form, while the remai
ing sum over line bundles requires̄G to satisfy Dirac
quantization,Ḡ ∈ H 2(X̄,Z).
Fig. 1.

Thus, when expressed in terms ofG, it gives the de-
sired delta function (up to a constant factor) that s
G should be a field strength onX. Now, we can split
V̄ on X̄ into a connectionV onX and a connectionV ′
onX′, and we have

i

2π

∫

X̄

FV̄ ∧ Ḡ = i

2π

∫
X

FV ∧ G + i

2π

∫
X′

FV ′ ∧ G

= i

2π

∫
X

FV ∧ G − i

2π

∫
X

FV ′ ∧ G

(3.23)= i

2π

∫
X

(FV −FV ′) ∧ G,

where in the last line, we considerV ′ as a connection
on X, but with the minus sign in the integral due
orientation reversal. Note thatV andV ′ should agree
on the boundaryY , as they are from a common̄V on
X̄, hence we can rewrite the path integral overV̄ into

(3.24)
∫

DV̄ =
∫

(V−V ′)→0

DV DV ′.

From the above two observations, we have∫
DV̄ exp

(
i

2π

∫

X̄

FV̄ ∧ Ḡ

)

=
∫

(V−V ′)→0

DVDV ′ exp

(
i

2π

∫
X

(FV −FV ′) ∧ G

)

(3.25)

=
[∫

DV ′
]

·
∫

V→0

DV exp

(
i

2π

∫
X

FV ∧ G

)
,

where we have changed the variable(V − V ′) → V in
the last line. Thus,(3.21)indeed gives a desired del
function (up to a constant factor).
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Now, we are ready to perform the duality pr
cedure in a space–time with boundary. Introduc
2-form field G and replace everyFA in the action
with FA + G. Also introduce a connectionV with the
boundary condition thatV vanishes onY , and add the
coupling

(3.26)
i

2π

∫
X

FV ∧ G.

The resulting action is invariant under the extend
gauge transform,

(3.27)A → A+ C, G → G −FC,

whereC is an arbitrary connection inX. Precisely be-
causeV vanishes onY , (3.26)is invariant under(3.27)
modulo 2πi. Let us explain this fact in some deta
The vanishing connection onY can be extended to
trivial (globally defined one form) connection onX,
sayV ′. We also know that

(3.28)
i

2π

∫
X

FV ′ ∧FC = i

2π

∫
X

FV ∧FC,

modulo 2πibecauseV ′ andV agree onY . Being triv-
ial, FV ′ can be written asFV ′ = dV ′ globally onX,
and performing partial integration, we have

(3.29)
1

2π

∫
X

FV ′ ∧FC = 1

2π

∫
Y

V ′ ∧FC = 0,

becauseV ′ vanishes onY .
We then considerG andV as dynamical, and mo

out the theory with gauge equivalence. If we integr
over V first, it gives a constraint thatG is a field
strength of some connectionC by the discussion in
the previous paragraphs. Then, by gauge fixing,
can setG = 0 and recover the original theory ofA.
The equivalent dual theory in terms ofV is obtained
by first gauge fixingA = 0, and integrating overG.
Applying this to(3.20), we get
∫

DAexp

(
iS(FA) + i

2π

∫
X

FB ∧FA

)

=
∫

V→0

DV
∫

DG
× exp

(
iS(G) + i

2π

∫
X

(FB +FV ) ∧ G

)

=
∫

V→Bi

DV
∫

DGexp

(
iS(G) + i

2π

∫
X

FV ∧ G

)

(3.30)=
∫

V→Bi

DV exp
(
iSD(FV)

)
,

where in the fourth line, we changed the variableB +
V → V with the new boundary condition thatV goes
to the specifiedBi on Y . In the last line, integrating
over G gives the dual bulk actionSD(FV ) in terms
of the dual gauge fieldV with the coupling constan
−1/τ , and we have the desired boundary condition
V onY .

At this point, it would be clarifying to see explic
itly the relation betweenthe boundary condition fo
the dual fieldV that we derived above, and the boun
ary condition in terms of the original fieldA [1]. In the
bulk AdS, the dual fieldV is nothing but a non-loca
change of variable from the original variableA. In the
case of vanishingθ angle,1 they are related by

(3.31)(FA)µν = e2

8π
εµναβ(FV )αβ .

This is easily seen in a naive dualization procedur
making the field strength ofA as a fundamental inte
gration variable by imposing the Bianchi identity. T
dual fieldV is introduced as a Lagrange multiplier

(3.32)

∫
DV DFA exp

(
i

∫
d4x

√
g

(
1

2e2(FA)µν(FA)µν

+ 1

8π
εµναβ(FV )µν(FA)αβ

))
.

Integrating outFA gives the dual description. Th
equation of motion ofFA is (3.31).

Now, in Poincaré coordinate(x0, x), (with the
boundary atx0 = 0)

(3.33)ds2 = dx2
0 + d x2

x2
0

,

1 This is just for simplicity. The case with non-vanishingθ angle
is similar [2].
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the usual boundary condition specifying the value
gauge field on the boundary corresponds to sp
ifying the (gauge invariant) ‘magnetic’ compone
Mi = 1

2εijkF
jk , i, j, k = 1,2,3. Because(3.31) in-

terchanges the ‘magnetic’ component ofV with the
‘electric’ component ofA, Ei = ∂0Ai (in the gauge
A0 = 0), we see that in terms of the original fieldA,
the S-transformed CFT is mapped to the bulk Ad
theory with ‘electric’ boundary condition. Note th
‘magnetic’ and ‘electric’boundary conditions are na
ural counterparts of Dirichlet and Neumann boun
ary conditions for scalar field, and they are na
rally expected to be conjugate with each other
AdS/CFT. We will come to this point in the next se
tion. In fact, we need to look at theT -transformation
more carefully in this respect. The AdS dual of t
T -transformation of 3D CFT was identified as a 2π

shift of the bulkθ -angle, while the ‘magnetic’ bound
ary condition is unchanged. In the presence ofθ -angle,
the ‘electric’ component naturally conjugate to t
‘magnetic’ component (or more precisely, the valueAi

on the boundary) has a term proportional toθ -angle.
This is most easily seen from the fact that the natura
conjugate variable toAi is obtained by varying the ac
tion w.r.t.∂0Ai .2 Denoting this asDi , we have

(3.34)Di = 1

e2
∂0Ai + θ

8π2
Mi,

and shiftingθ results in shifting ofDi by a unit of
‘magnetic’ componentMi .

4. In view of boundary deformations

In the last section, we observed that the AdS d
of S-operation on 3D CFT interchanges the ‘magne
and ‘electric’ boundary conditions, whileT -operation
corresponds to shifting the ‘electric’ componentDi by
a unit of ‘magnetic’ component. ThoughT -operation
does not really change the boundary condition by
self, it has a non-trivial effect when combined withS.
With appropriate normalization, we can represent

2 If we considerx0 as a time variable, this is the Witten effec
This should be true even in Euclidean case when considering ‘n
rally’ conjugate boundary variables onx0 = 0.
S andT action on boundary conditions as

S:

(
Di

Mi

)
→

(
0 −1
1 0

)(
Di

Mi

)
,

(4.35)T :

(
Di

Mi

)
→

(
1 1
0 1

)(
Di

Mi

)
,

where we take the usual ‘magnetic’ boundary con
tion in terms of transformed variable. This gives a n
ural correspondence between theSL(2,Z) action on
3D CFTs with theSL(2,Z) action on boundary cond
tion (or bulk gauge field).

In this section, we give another concrete evide
of this picture in the context of the recently propos
prescription[17] on boundary conditions when we d
form the boundary CFT in a non-standard manner.
proposed prescription in Ref.[17] is for scalar fields
in the bulk, and it goes as follows. Suppose we hav
scalar fieldφ in the bulk, whose asymptotic behavi
near the boundaryx0 = 0 is

(4.36)φ(x0, x) ∼ A(x)x
∆+
0 + B(x)x

∆−
0 .

We consider the CFT onx0 = 0 defined by the bound
ary conditionA(x) = 0. By standard AdS/CFT dictio
nary,A(x) couples to a scalar operatorO of dimension
∆+ on the boundary, that is, a boundary condition w
non-vanishingA(x) maps to a deformation of CF
side by

(4.37)SCFT → SCFT +
∫

d x A(x)O(x).

The expectation value ofO in this deformed CFT is
given byB(x),

(4.38)
〈
O(x)

〉
A

∼ B(x).

They are natural conjugate pair of source and exp
tation value. For specific range ofφ mass, it is pos-
sible also to consider the boundary CFT defined
B(x) = 0. In this CFT, the roles ofA(x) andB(x) are
reversed, and the partition function is just a Legen
transform of the previous CFT[18]. It has been ar
gued that this CFT is the IR fixed point of the previo
CFT deformed by a term which is quadratic inO(x).
The question is what would be the boundary con
tion when we deform the boundary CFT (defined
A(x) = 0) in a more general manner,

(4.39)SCFT → SCFT + W(O),
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whereW is an arbitrary (possibly non-local) functio
of O(x). The proposal in Ref.[17] is to take the fol-
lowing boundary condition onA(x) andB(x),

(4.40)A(x) = δW(O)

δO(x)

∣∣∣∣
O(x)→B(x)

.

The situation with bulk gauge field inAdS4/CFT3
correspondence might look similar to the case of b
scalar field with its mass such that two CFTs a
possible. We have two naturally conjugate variab
(Ai,Di) in the boundary, and two different boun
ary conditions are possible. However, contrary to
scalar field case, these two boundary CFTs cannot
sibly be related by an RG flow, because actingS twice
gives us the original theory and the degrees of freed
are not lost.

However, the proposal(4.40)can be naturally ex
tended to include the case of gauge fields, and we
show that this extension indeed reproduces the re
in the previous sections, providing a compelling che
for the proposal applied to gauge fields. We start w
the CFT defined by the usual ‘magnetic’ bounda
condition specifying gauge field components tang
tial to the boundary asx0 → 0,

(4.41)Ai → Ai, i = 1,2,3.

As usual, this corresponds to deforming the CFT
adding the coupling,

(4.42)δSCFT =
∫

d3x AiJ
i,

whereJ i is the 3DU(1) current. Now, we ask th
question of what boundary condition we take when
deform the CFT with an arbitrary function ofJ i(x),

(4.43)δSCFT = W
[
J i

]
,

instead of a linear one(4.42). Recalling that

(4.44)Di(x) = δSbulk

δ∂0Ai (x)

is the “electric” field that is canonically conjuga
to Ai (x), a direct analogy with the case of sca
fields(4.40)suggests the following prescription on t
boundary condition asx0 → 0,

(4.45)Ai(x) = δW [J ]
δJ i(x)

∣∣∣∣
J i(x)→Di(x)

,

whereAi → Ai .
Having this in mind, let us go back to ourSL(2,Z)

actions on 3D CFT and consider the action given
ST n, which corresponds to the matrix,

(4.46)

(
0 −1
1 0

)(
1 n

0 1

)
=

(
0 −1
1 n

)
.

By definition, the partition function of the transforme
CFT is given by

(4.47)

Zafter=
∫

DBi

〈
exp

(
i

∫
d3x BiJ

i

+ n · i

4π

∫
d3x εijkBi∂jBk

)〉
,

where〈· · ·〉 and J i are expectation values andU(1)

current, respectively, of the original CFT, andBi is the
intermediate connection variable in defining theS op-
eration. Because the exponent is quadratic inBi , we
can perform the path integral overBi explicitly. We
introduce the gauge fixing termi

∫
d3x ξ(∂iBi)

2, and
theBi propagator is

Sij (p) ≡ 〈
Bi(p)Bj (−p)

〉
(4.48)= i

pipj

2ξ(p2)2 + 2π

np2 εijkp
k.

Using this,(4.47)is given by

Zafter=
〈
exp

(
−1

2

∫
d3p

(2π)3J i(−p)Sij (p)J j (p)

)〉

(4.49)

=
〈
exp

(
−π

n

∫
d3p

(2π)3J i(−p)
εijkp

k

p2 J j (p)

)〉
,

whereJ i(p) ≡ ∫
d3x e−ipxJ i(x), and we have use

the Ward identity〈piJ
i(p) . . .〉 = 0. Now, looking at

the last expression, it is clear that the transformed
ory is nothing but the original CFT with the deform
tion W [J ] given by

δSCFT = W [J ] = iπ

n

∫
d3p

(2π)3
J i(−p)

εijkp
k

p2
J j(p)

= iπ

n

∫
d3p

(2π)3

∫
d3x

(4.50)

×
∫

d3y eipxe−ipy εijkp
k

p2
J i(x)J j (y).

Hence, according to our proposal(4.45), the bulk AdS
gauge theory of the transformed CFT has a modi
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boundary condition,

Ai(x) = 2πi

n

∫
d3p

(2π)3

(4.51)

×
∫

d3y eipxe−ipy εijkp
k

p2
J j (y)

∣∣∣∣
J j (y)→Dj(y)

.

To see clearly what this means, take thex-derivative,
1
2εmni∂n, on both sides. The left-hand side giv
the ‘magnetic’ componentMm(x) = 1

2εmni∂nAi(x),
while the right-hand side becomes

−π

n

∫
d3p

(2π)3

∫
d3y eipxe−ipyεmniεijk

× pnp
k

p2 J j (y)

∣∣∣∣
J j (y)→Dj(y)

= −π

n

∫
d3p

(2π)3

∫
d3y eipxe−ipy

(
δm
j δn

k − δm
k δn

j

)

× pnp
k

p2 J j (y)

∣∣∣∣
J j (y)→Dj(y)

= −π

n

∫
d3p

(2π)3

∫
d3y eipxe−ipy

(
δm
j − pmpj

p2

)

× J j (y)

∣∣∣∣
J j (y)→Dj(y)

= −π

n

∫
d3p

(2π)3

∫
d3y eipxe−ipy

× Jm(y)

∣∣∣∣
J j (y)→Dj(y)

(4.52)= −π

n
Jm(x)

∣∣∣∣
J j (x)→Dj(x)

= −π

n
Dm(x),

where in going from the fifth line to the seventh, w
again used the Ward identity forJ i .

In summary, the AdS bulk gauge field for the tran
formed CFT has the boundary condition;n · Mi(x) +
Di(x) = 0 (with appropriate normalization absorbin
π ). Observe that this matches precisely with the re
of the previous sections, becauseST n corresponds to
performing first the change(

Di

Mi

)
→

(
0 −1
1 n

)(
Di

Mi

)

(4.53)=
( −Mi

n · Mi + Di

)
,

before taking the usual ‘magnetic’ boundary condit
Mi = 0.
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