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1. Introduction 

Some data indicate that the pigment-protein com- 
plex of the reaction center in purple bacteria spans 
the chromatophore membrane [l-7]. Primary con- 
version of light energy in the reaction centers involves 
electron transfer from the photoexcited bacterio- 
chlorophyll dimer P870 to the primary stable accep- 
tor Q1, which occurs via an intermediate transient 
acceptor I, probably, bacteriopheophytin or a complex 
of P800 and bacteriopheophytin [8]. Electron transfer 
from P870 to Q1, is transmembraneous, as follows in 
particular from the dependence of the intensity of a 
ms afterglow, resulting from emissive recombination 
of P870’ and Q1-, on the transmembrane electric 
potential difference, A* [9]. As for electron transfer 
from P870 to I, it is not clear whether this stage of 
charge separation is of electrogenic character. 

Charge separation in the reaction centers with Q1 
pre-reduced was accompanied by an intense short- 

lived (lifetime 4-6 ns) afterglow [IO-l 21, arising 
from emissive recombination of P870’ and I- 
[lo-141. The spectrum of this afterglow is the same 
as that of the prompt fluorescence. 

We investigated the effect of energization of 
Rhodospirillum rubrum chromatophores on the 
parameters of ns recombination luminescence. 
Generation of A\k across the chromatophore mem- 
brane was demonstrated to provoke an increase in 

Abbreviations: CCCP, carbonylcyanide m-chlorophenyl- 
hydrazone; FCCP, carbonylcyanide p-trifluoromethoxy- 
phenylhydrazone; PPi, inorganic pyrophosphate; TB-, tetra- 
phenylborate anions; A‘Ir and ApH, electrical and chemical 
components of transmembrane electrochemical gradient of 
protons; up and 7, relative quantum yield and lifetime of 
chromatophore emission 
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intensity and shortening of the lifetime of the nano- 
second afterglow. This observation enables us to sug- 
gest that the primary intermediate step in charge 
separation between P870 and I is electrogenic. 

2. Methods 

Growing of Rhodospirillum rubrum cells (wild- 
type strain no. 1 MGU). isolation of chromatophores 
and monitoring of membrane potential generation by 

the uptake of penetrating tetraphenylborate anions 
(using a phospholipid membrane as a selective elec- 
trode) were done as in [15,16]. 

The luminescence lifetime and relative quantum 
yield were measured with a phase-type fluorometer 

[ill. 
The incubation mixture contained 220 rhM sucrose, 

50 mM Tris-HCl buffer (pH 7.6), 2 mM MgS04, 
chromatophores (,4gi&m amounted to 0.75-l .5 for 
luminescence measurements and 1.5 for membrane 
potential measurements). Sodium tetraphenylborate 
(TB-) was added at 1 X 10e6 M for experiments in 
which the TB- uptake was monitored. Some experi- 

ments were done under anaerobic conditions: 
0.17 mg/ml glucose oxidase (EC 1 .1.3.4), 0.17 mg/ml 
catalase (EC 1.11.1.6) and 30 mM glucose were added 
to the incubation mixture; refined sunflower oil was 
layered onto the aqueous surface. 

3. Results 

In chromatophores of purple bacteria incubated at 
a low ambient redox potential the short-lived after- 
glow, resulting from recombination of P870’ and I-, 
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is observed along with the bacteriochlorophyll prompt 
fluorescence [l 11. The total emission is characterized 
by an increased lifetime (7) and a decreased quantum 
yield (q) as compared to the prompt fluorescence 
measured under light saturation conditions. 

Addition of dithionite to anaerobic Rhodospirillum 

rubrum chromatophores causes increase in r from 
0.25-2.70 ns and 2-fold decrease in cp (fig.lA). Upon 
subsequent energization of the chromatophore mem- 
brane by PP, r drops 1 S-fold and cp rises 1.3-fold. The 
effect of PPiis removed by a protonophorous uncoupler 
(fig.lA), suppressed by NaF, an inhibitor of pyrophos- 
phatase, and reversed when the added pyrophosphate 
is exhausted in the course of hydrolysis catalyzed by 
chromatophore pyrophosphatase (not shown). 
Similar changes in T and cp are observed when the 
chromatophores are energized by ATP. The ATP 
effect is removed by uncouplers and by NN’-dicyclo- 
hexylcarbodiimide (not shown). 

Fig.lB shows that both illumination and addition 
of PP, to aerobic chromatophores bring about mem- 
brane potential generation monitored by the uptake 

of penetrating tetraphenylborate anions. These effects 
are reversed when the light is switched off or the 
added pyrophosphate is exhausted. In agreement 
with the data in [ 171, the light-induced membrane 
potential generation in the chromatophores incubated 
anaerobically with dithionite is inhibited, whereas the 
PPi-dependent response that is sensitive to uncouplers 
is not affected considerably. 

Antimycin Ainhibits the light-induced TB-response 
in aerobic chromatophores, but only slightly decreases 
the level of PPi-dependent TB- uptake (fig.2A, [IS]). 
Successive additions of antimycin, PPi and uncoupler 

CCCP do not influence the parameters (7 and cp) of 
the prompt fluorescence of the chromatophores 
incubated aerobically without dithionite (fig.2B). 
Hence, the effect of chromatophore energization under 
reducing conditions may be exclusively attributed to 
the recombination luminescence. 

As shown in [lo-141, a transition of reaction cen- 
ters to the state P870 Q; is necessary for ns lumines- 
cence to appear. It can be achieved not only by 
chemical, but also by photochemical reduction of Qi 
at moderate ambient redox potentials: upon illumina- 
tion of chromatophores incubated anaerobically with 
NJ’N,iV’-tetramethyl-p-phenylenediamine (TMPD) 
and ascorbate (fig.3). Addition of PP, under these 
conditions leads to a decrease in r and an increase in 
cp, as in the presence of dithionite. 
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Fig.1. (A) Effect of PPi and uncoupler FCCP on the Lifetime 

(7) and relative quantum yield (numbers above the columns) 

of the total emission of R. rubrum chromatophores under 

reducing conditions. Measurements of r were made as follows: 

First, the zero level of r was determined by placing a latex 

suspension into an exciting beam and recording a phase-shift 

of the scattered light as compared to the reference signal. 

Then, the latex was replaced by a luminescent sample and a 
phase-shift of the lummescence in relation to the zero level 

was recorded. The value of this shift was used to calculate r 

of the luminescence, according to the formula in [ 111. (f) 

and (J) designate the moments when the sample was placed 
into the light and then removed. Luminescence was excited 

by 404 and 436 nm Lines from a high-pressure mercury lamp 

and detected through a combination of glass filters cutting 
off the h < 760 nm range. Additions: 1 mg/ml Na,S,O,, 

0.25 mM PPi, 1 X lo-’ M FCCP. 

Fig.]. (B) Energy-linked uptake of penetratmg TB- by 

R. rubrum chromatophores under aerobic and anaerobic (+ 

dithionite) conditions. Successive additions: 4 X 10m5 M PPi; 

1 mg Na,S,O,/ml; 1 X IO-“ M PPi; 5 X 10m6 M CCCP. On 
and off, switching on and off the Light (A > 660 nm) of 
saturating intensity. 
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Fig.2. (A) Effect of antimycin A on the light- and PPi-in- 

duced uptake of penetrating TB- by aerobic R. rubnrrn 

chromatophores. (B) Effect of antimycin A, PPi and CCCP 

on the lifetime (7) and relative quantum yield (numbers above 

the columns) of the prompt fluorescence of aerobicR. rubrurn 

chromatophores. Additions: 4 X lo-’ M (A) and 1 X 10m4 M 

(B) PPi; 1 X 10m6 M antimycin A; 1 X 10e6 M CCCP. 

r *, ns 
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Anaerobiosis, 
TMPD and 
ascorbate 
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Fig.3. Effect of PPi on the total emission of R. mbrum chro- 

matophores incubated anaerobically with TMPD and ascorbate 

Additions: 0.1 mM TMPD; 5 mM sodium ascorbate; 0.1 mM 

PPi. 

September 1980 

Table 1 

Effect of agents, influencing A* and ApH, on TB- uptake, 

luminescence lifetime (7) and yield (9) of R. rubrunz 

chromatophores energized by PPi under anaerobic conditions 

Additions Cont. 

(M) 

TB- uptake AT A9 

(70) (%) (%) 

None _ 100 100 100 
NaSCN 1 X lo-* 67 65 
NaSCN 3 x 1o-2 55 50 55 
NH,Cl 2 x 1o-2 121 114 112 
Valinomycina 1 x lo+ 2 0 45 

Nigericin + 1 x 10-e 

valinomycina 1 x 1o-6 0 0 0 

a For these experiments the chromatophores were preincu- 

bated in 50 mM Tris-HCl buffer containing 75 mM KC1 
and 2 mM MgSO, for 2 days, then diluted with the same 
buffer 

The incubation mixture contained 1 mg sodium dithionite/ml 

and 0.1 mM PPi. 100% level of TB- uptake corresponded to 
the electric potential difference across the measuring phos- 
pholipid membrane of 45-56 mV. 100% changes in 7 and 9 

amounted, respectively, to 0.60-0.95 ns and 0.2-0.3 of the 
luminescence yield measured in the absence of PP, 

In a final series of experiments, we investigated the 

role played by the electric (A*) and chemical (ApH) 
components of transmembrane H’ electrochemical 
potential difference in the effect described. As shown 
in table 1, penetrating SCN-, by decreasing A\Ir and 
increasing ApH, equally suppress the PPi-dependent 
TB- response and changes in r and cp. On the con- 
trary, NH4Cl enhances these changes. Valinomycin 
eliminates the TB- response, restores 7 to tlie initial 
level and diminishes the PP, effect on p. The value of 
cp is restored upon addition of the nigericin + valino- 
mycin combination, acting similarly to protonopho- 

rous uncouplers. 
Experiments on non-enzymatic AQ generation 

were also done. Chromatophores were placed into an 
anaerobic medium containing 100 mM KC1 and 
dithionite. Addition of valinomycin under these con- 
ditions gave rise to a diffusion potential across the 
chromatophore membrane, accompanied by a decrease 
in 7 and an increase in cp of the luminescence. The 
magnitude of these effects relaxing within 1.5-3 min 
was -50% of those observed with PPi. 

The data obtained indicate that the bacterio- 
chlorophyll recombination luminescence in the 
chromatophores essentially depends on the trans- 
membrane difference of electric potentials. 
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4. Discussion 

Recent studies using ps spectroscopy demon- 
strated that the states, arising from charge separation 
in bacterial reaction centers with Q1 prereduced, are 
identical with those occurring when Q1 is oxidized 
[8]. On this basis, one may believe that the state, the 
radiative decay of which manifests in ns recombina- 
tion luminescence, is an intermediate in photosyn- 
thetic charge separation and its energy characteristics 
reflect the actual thermodynamic parameters of the 
reaction centers. 

Assuming the effect of membrane energization on 
the luminescence parameters to be entirely due to the 
membrane potential action on activation energy of 
the recombination luminescence, we concluded that 
in our experiments A* generaiion across the chro- 
matophore membrane caused shortening of the 
recombination luminescence lifetime from 4-6 ns to 
2-3 ns and a 1.5-2-fold increase in its yield. According 

to the kinetic description of the photosynthetic 
primary processes in [ 111, this may take place when 
the luminescence activation energy decreases -2-fold: 
from 50-70 meV to -30 meV. 

Thus, the results obtained point out that the 
primary intermediate step of charge separation in the 
reaction centers of photosynthetic bacteria may be 
electrogenic. 
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