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Abstract

Some pathological properties of the first-return integrals are explored. In particular it is proved that there
exist Riemann improper integrable functions which are first-return recoverable almost everywhere, but not
first-return integrable, with respect to each trajectory. It is also proved that the usual convergence theorems
fail to be true for the first-return integrals.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We call trajectory in [0,1] any sequence t ≡ {tn} of distinct points of [0,1], dense in [0,1].
Given a trajectory t and an interval J ⊂ [0,1], we denote by r(t, J ) the first element of t that
belongs to J .

We call partition of [0,1] any finite collection of non-overlapping compact intervals
J1, . . . , Jn such that

⋃n
i=1 Ji = [0,1]. Given a partition P = {J1, . . . , Jn}, we set mesh(P) =

supi |Ji |.

Definition 1. (See [3].) A function f : [0,1] → R is said to be first-return integrable with respect
to a given trajectory t on [0,1] if there exists a finite number A such that the following condition
holds: for each ε > 0 there is a constant δ > 0 such that
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∣∣∣∣
∑
J∈P

f
(
r(t, J )

)|J | − A

∣∣∣∣ < ε,

for every partition P of [0,1] with mesh(P) < δ.
In this case we write A = (f r[t ]) ∫ 1

0 f .

Remark that for each function f (even not measurable) there is an equivalent function g which
is first-return integrable with respect to a fixed trajectory t . Namely the function g is defined as
g(x) = f (x) for x /∈ t and g(x) = 0 for x ∈ t .

M.J. Evans and P.D. Humke proved in [2, Theorem 2.3] that a function f : [0,1] → R is
Lebesgue measurable if and only if there exists a trajectory t such that, at almost each point
x ∈ [0,1], f is first-return recoverable with respect to t , according to the following definition:

Definition 2. (See [2] and [3].) A function f : [0,1] → R is said to be first-return recoverable
with respect to a given trajectory t at x ∈ [0,1] if

lim
k→∞f (tnk(x)) = f (x),

where {tnk(x)}∞k=1 is defined recursively via tn1(x) = t1,

tnk+1(x) =
{

r(t, (x − |tnk(x) − x|, x + |tnk(x) − x|)), if x �= tnk(x),

tnk(x), if x = tnk(x).

It is clear that each Riemann integrable function f : [0,1] → R is first-return recoverable
almost everywhere (br. a.e.) and first-return integrable with respect to each trajectory t , with
(f r[t ]) ∫ 1

0 f = ∫ 1
0 f .

U.B. Darji and M.J. Evans proved in [1] that for each Lebesgue integrable function
f : [0,1] → R there exists a trajectory t such that f is first-return integrable on [0,1] with
respect to t and (f r[t ]) ∫ 1

0 f = (L)
∫ 1

0 f . Moreover M.J. Evans and P.D. Humke proved that
f is first-return recoverable with respect to the same trajectory t a.e. in [0,1] (see [2, Theo-
rem 2.1]).

The problem whether a first-return recoverable function is first-return integrable with respect
to the same trajectory was solved in [2, Theorem 2.2] for bounded and measurable functions. It
was also proved that for such functions the value of the first-return integrals coincide with the
value of the Lebesgue integral. Concerning the case of unbounded and measurable functions,
M. Csörnyei, U.B. Darji, M.J. Evans and P.D. Humke constructed in [3] a trajectory t and a func-
tion f : [0,1] → [0,+∞) such that f (x) = 0 for x /∈ t and such that f is first-return recoverable
a.e. and first-return integrable on [0,1] both with respect to t , but (f r[t ]) ∫ 1

0 f > 0.
In this paper we prove that:

Theorem 1. There exist Riemann improper integrable functions which are first-return recover-
able a.e. with respect to a generic trajectory t , but not first-return integrable with respect to t .

Theorem 2. Monotone convergence theorem, dominated convergence theorem and Fatou’s
Lemma fail to be true for the first-return integrals.

Moreover, we give a convergence theorem, based on the following notion of first-return equi-
integrability:
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Definition 3. A sequence of function {fn : [0,1] → R} is said to be first-return equi-integrable
with respect to a given trajectory t on [0,1] if each function fn is first-return integrable with
respect to t on [0,1] and for each ε > 0 there is a constant δ > 0 (independent of n) such that

sup
n

∣∣∣∣∣
∑
J∈P

fn

(
r(t, J )

)|J | − (
f r[t ])

1∫
0

fn

∣∣∣∣∣ < ε, (1)

for each partition P of [0,1] with mesh(P) < δ.

Theorem 3. Let t be a trajectory, and let {fn} be a sequence of functions defined on [0,1] and
convergent pointwisely to f . If {fn} is first-return equi-integrable with respect to t on [0,1], then
f is first-return integrable with respect to t on [0,1] and

lim
n→∞

(
f r[t ])

1∫
0

fn = (
f r[t ])

1∫
0

f. (2)

2. Proof of Theorem 1

Let {an} be a strictly decreasing sequence in (0,1] such that a1 = 1 and such that there exists
λ > 0 with

an < λ(an − an+1) for each n ∈ N. (3)

Moreover, let {cn} be a decreasing sequence of positive numbers such that
∞∑

n=1

cn = ∞ and
∞∑

n=1

(c2n − c2n+1) < ∞. (4)

We define

f (x) =
{

(−1)n cn

an−an+1
, x ∈ (an+1, an],

0, x = 0.
(5)

It is clear that f is Riemann improper integrable, and not Lebesgue integrable, on [0,1] with

1∫
0

f =
∞∑

n=1

(−1)ncn.

Let t ≡ {tn} be a generic trajectory. It is easy to check that f is first-return recoverable with
respect to t a.e. in [0,1].

We show that f is not first-return integrable with respect to t on [0,1].
If n < m and J1, J2 are non-overlapping subintervals of [0,1] such that r(t, J1) = tn,

r(t, J2) = tm, then we set r(t, J1) ≺ r(t, J2).
We set N1 = {n ∈ N: r(t, [an+1, an]) ≺ r(t, [an+2, an+1])} and N2 = N \ N1. At least one of

the series
∑

n∈N1
cn,

∑
n∈N2

cn is divergent; then, without loss of generality, we can assume that∑
n∈N1

cn = +∞.
We also set N

+
1 = {n ∈ N1: n is even} and N

−
1 = {n ∈ N1: n is odd}. At least one of the

series
∑

n∈N
+
1

cn,
∑

n∈N
−
1

cn is divergent; then, without loss of generality, we can assume that∑
n∈N

+ cn = +∞.

1
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Given ε,M > 0, let N be an integer such that

cN < ε/λ. (6)

Take 0 < δ < 2 max{an − an+1: n > N} and take two even numbers m > N and p > 0 such that

am < δ; (7)
∑

n∈N
+
1 ∩{m,...,m+p−2}

cn > M + c1 +
∞∑

n=1

(c2n − c2n+1) + ε. (8)

Define a partition P of [0,1] with mesh(P) < δ such that

(i) [0, am+p] ∈P ;
(ii) r(t, [0, am+p]) ∈ [am+p+1, am+p];

(iii) for each n ∈ N
+
1 ∩ {m, . . . ,m + p − 2}, it is [an+2, an] ∈P ;

(iv) for each J ∈P ′ = P \ {[0, am+p], [an+2, an], n ∈ N
+
1 ∩ {m, . . . ,m + p − 2}}, there is s ∈ N

such that J ⊂ [as+1, as].

Then ∑
J∈P

f
(
r(t, J )

)|J | = f
(
r
(
t, [0, am+p])) · am+p +

∑
J∈P ′

f
(
r(t, J )

)|J |

+
∑

n∈N
+
1 ∩{m,...,m+p−2}

cn

an − an+1
(an − an+2).

Now remark that, for s = 1, . . . ,m + p − 1 and for s ∈ N
+
2 ∩ {m, . . . ,m + p − 2}, where N

+
2 =

{n ∈ N2: n is even}, it is
⋃{J ∈P: J ⊂ [as+1, as]} = [as+1, as]. Hence by (5) we have∑

J∈P
f

(
r(t, J )

)|J |

= cm+p

am+p − am+p+1
· am+p − c1

+
m/2−1∑
n=1

(c2n − c2n+1) +
∑

n∈N
+
2 ∩{m,...,m+p−2}

(c2n − c2n+1)

+
∑

n∈N
+
1 ∩{m,...,m+p−2}

cn

an − an+1
(an − an+2).

Thus, by (3), (6), and (8), we have∣∣∣∣
∑
J∈P

f
(
r(t, J )

)|J |
∣∣∣∣

�
∑

n∈N
+
1 ∩{m,...,m+p−2}

cn − c1 −
∞∑

n=1

(c2n − c2n+1) − λcm+p

> M.

By the arbitrariness of δ and M this implies that f is not first-return integrable with respect to t

on [0,1].
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Possible choices of sequences {an} and {cn} satisfying conditions (3) and (4) are an = 1
2n−1

and cn = 1
n

, n = 1,2, . . . , respectively.

3. Proof of Theorem 2

Let t and f be defined as in [3, §4]. For each natural n we define fn(x) = 0 if x /∈ t or x = tk
with k > n, and we define fn(tk) = f (tk) if k � n. It is clear that fn is first-return integrable
with respect to t , and that (f r[t ]) ∫ 1

0 fn = 0 for n ∈ N. Then the claim follows immediately by

condition (f r[t ]) ∫ 1
0 f > 0, proved in [3, §4.4].

4. Proof of Theorem 3

Let ε and δ be as in Definition 3, and fix a partition P with mesh(P) < δ. Since
limn fn(r(t, J )) = f (r(t, J )), for each J ∈P there exists a natural number N such that∣∣fn

(
r(t, J )

) − f
(
r(t, J )

)∣∣ <
ε

p
(9)

(where p is the cardinality of P), for n > N and J ∈ P . Then, by (1) and (9), for n,m > N we
have

∣∣∣∣∣
(
f r[t ])

1∫
0

fn − (
f r[t ])

1∫
0

fm

∣∣∣∣∣

�
∣∣∣∣∣
∑
J∈P

fn

(
r(t, J )

)|J | − (
f r[t ])

1∫
0

fn

∣∣∣∣∣ +
∣∣∣∣∣
∑
J∈P

fm

(
r(t, J )

)|J | − (
f r[t ])

1∫
0

fm

∣∣∣∣∣
+

∣∣∣∣
∑
J∈P

fn

(
r(t, J )

)|J | −
∑
J∈P

fm

(
r(t, J )

)|J |
∣∣∣∣

� ε + ε + 2ε = 4ε.

Therefore the sequence {(f r[t ]) ∫ 1
0 fn} is convergent, ε being arbitrary.

Let A = limn(f r[t ]) ∫ 1
0 fn.

Now we show that f is first-return integrable with respect to t on [0,1] and (f r[t ]) ∫ 1
0 f = A.

To this aim let ε and δ be as in Definition 3. Then, by (1), for each partition P with mesh(P) < δ

we have

∣∣∣∣
∑
J∈P

f
(
r(t, J )

)|J | − A

∣∣∣∣ = lim
n

∣∣∣∣∣
∑
J∈P

fn

(
r(t, J )

)|J | − (
f r[t ])

1∫
0

fn

∣∣∣∣∣ � ε.
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