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Abstract

Some pathological properties of the first-return integrals are explored. In particular it is proved that there
exist Riemann improper integrable functions which are first-return recoverable almost everywhere, but not
first-return integrable, with respect to each trajectory. It is also proved that the usual convergence theorems
fail to be true for the first-return integrals.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We call trajectory in [0, 1] any sequence ¢ = {t,,} of distinct points of [0, 1], dense in [0, 1].
Given a trajectory ¢ and an interval J C [0, 1], we denote by r(z, J) the first element of 7 that
belongs to J.

We call partition of [0, 1] any finite collection of non-overlapping compact intervals
Ji, ..., Jy such that U?:l Ji = [0, 1]. Given a partition P = {J1, ..., J,}, we set mesh(P) =
sup; | Jil.

Definition 1. (See [3].) A function f :[0, 1] — R is said to be first-return integrable with respect
to a given trajectory t on [0, 1] if there exists a finite number A such that the following condition
holds: for each ¢ > 0 there is a constant § > 0 such that
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D FrE D) - A] <e,

JeP

for every partition P of [0, 1] with mesh(P) < §.
In this case we write A = (fr[f]) fol f.

Remark that for each function f (even not measurable) there is an equivalent function g which
is first-return integrable with respect to a fixed trajectory 7. Namely the function g is defined as
g(x) = f(x)forx ¢ and g(x) =0 for x €.

M.J. Evans and P.D. Humke proved in [2, Theorem 2.3] that a function f:[0,1] — R is
Lebesgue measurable if and only if there exists a trajectory 7 such that, at almost each point
x €[0, 1], f is first-return recoverable with respect to 7, according to the following definition:

Definition 2. (See [2] and [3].) A function f:[0, 1] — R is said to be first-return recoverable
with respect to a given trajectory t at x € [0, 1] if

lim f(ty0)) = f (%),
k—00
where {t,, (x)}p2 is defined recursively via #,,(x) =11,

¢ _ { r(t, (x — [t oy — X1, X+ |t ) — X1)), %fx 7 Ing(x)
" g o if X =t (x)-

It is clear that each Riemann integrable function f:[0, 1] — R is first-return recoverable
almost everywhere (br. a.e.) and first-return integrable with respect to each trajectory #, with
friiDfy f=Jy £

U.B. Darji and M.J. Evans proved in [1] that for each Lebesgue integrable function
f:[0,1] — R there exists a trajectory 7 such that f is first-return integrable on [0, 1] with
respect to 7 and (fr[t]) fol f=() fol f. Moreover M.J. Evans and P.D. Humke proved that
f is first-return recoverable with respect to the same trajectory 7 a.e. in [0, 1] (see [2, Theo-
rem 2.1]).

The problem whether a first-return recoverable function is first-return integrable with respect
to the same trajectory was solved in [2, Theorem 2.2] for bounded and measurable functions. It
was also proved that for such functions the value of the first-return integrals coincide with the
value of the Lebesgue integral. Concerning the case of unbounded and measurable functions,
M. Csornyei, U.B. Darji, M.J. Evans and P.D. Humke constructed in [3] a trajectory ¢ and a func-
tion f :[0, 1] — [0, +00) such that f(x) =0 for x ¢ 7 and such that f is first-return recoverable
a.e. and first-return integrable on [0, 1] both with respect to 7, but (fr[z]) fol f>0.

In this paper we prove that:

Theorem 1. There exist Riemann improper integrable functions which are first-return recover-
able a.e. with respect to a generic trajectory t, but not first-return integrable with respect to t.

Theorem 2. Monotone convergence theorem, dominated convergence theorem and Fatou’s
Lemma fail to be true for the first-return integrals.

Moreover, we give a convergence theorem, based on the following notion of first-return equi-
integrability:
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Definition 3. A sequence of function { f,, : [0, 1] — R} is said to be first-return equi-integrable
with respect to a given trajectory t on [0, 1] if each function f}, is first-return integrable with
respect to £ on [0, 1] and for each ¢ > 0 there is a constant § > 0 (independent of 7) such that

1

> hule@ D)1= (7rif) [ £,

JeP 0

sup
n

<e, e

for each partition P of [0, 1] with mesh(P) < §.

Theorem 3. Let f be a trajectory, and let { f,,} be a sequence of functions defined on [0, 1] and
convergent pointwisely to f. If { f,,} is first-return equi-integrable with respect to t on [0, 1], then
f is first-return integrable with respect to t on [0, 1] and

1 1
im (fri7]) / fa = (fr1i)) f f. @
0 0

2. Proof of Theorem 1

Let {a,} be a strictly decreasing sequence in (0, 1] such that a; = 1 and such that there exists
A > 0 with

ap < Aa, —ay41) foreachn e N. 3)

Moreover, let {c,} be a decreasing sequence of positive numbers such that

o o
D =00 and Y (o — cans1) < 0. @
n=1 n=1
We define
f(x)= (=" an—CZnJrl » X €(@ntranl, 5)
0, x=0.

It is clear that f is Riemann improper integrable, and not Lebesgue integrable, on [0, 1] with

1 o0
/f =Y (—Dc.
0

n=1

Let 7 = {t,} be a generic trajectory. It is easy to check that f is first-return recoverable with
respect to 7 a.e. in [0, 1].

We show that f is not first-return integrable with respect to  on [0, 1].

If n <m and Jy, J, are non-overlapping subintervals of [0, 1] such that r(z, J|) = f,,
r(t, b)) =ty, thenwe set r (¢, J1) <r(z, J2).

We set Nj = {n e N: r(t, [ayr1,a,]) < ¥, [an12,an+1])} and N = N\ Nj. At least one of
the series Zn €N, Cns Zn eN, Cn is divergent; then, without loss of generality, we can assume that
o N, Cn = +00.

We also set NT ={n € Nj: niseven} and N| = {n € N;: n is odd}. At least one of the
series ZneNT Cn, ZneNl— ¢, is divergent; then, without loss of generality, we can assume that

X:nENTr Cn = +00.
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Given ¢, M > 0, let N be an integer such that

cy < ée/h.

115

(6)

Take 0 < § < 2max{a,, —a,+1: n > N} and take two even numbers m > N and p > 0 such that

am <96,

00
Z Cn>M+Cl+Z(Czn—czn+1)+8.
neNTﬂ{m ..... m+p—2} n=1

Define a partition P of [0, 1] with mesh(P) < § such that
M) [0, am+pl €P;

(i) r(, [0, am+p]) € [am+p+1»am+p];
(iii) foreachn € Nf‘ N{m,...,m+ p—2},itis [ay42,a,] € P;

)
®)

(iv) foreach J € P/ =P\ {[0, am+pl, [any2,an],n € NT N{m,...,m+ p—2}}, thereiss € N

such that J C [a+1, ds).

Then
Y Fr @ DN = f(r (10, ams p))) - amip+ Y F(rE D)IJ]

JeP JeP!

C
+ > ———(an — An12).

a, — ap1
neNTﬂ{m ..... m+p—2} " m

Nowremarkthat,fors:1,...,m+p—1andforsEN;ﬁ{m,...,m+p—2},whereN+=

{n € No: niseven},itis (J{J € P: J Clas+1,as]} = [as+1, as]. Hence by (5) we have

> f(r@ D)

JeP
Cm+p
= "am+p —C1
Am+p — Am+p+1
m/2—1
+ Z (c2n — c2nt1) + Z (c2n — €2n+1)
n=1 neNS N{m,....m+p—2}
Cn
Y O g,

ap — dn41
neNfn{m,...m+p—2} " "

Thus, by (3), (6), and (8), we have

}:fva»uﬂ

JeP
00
> > cn—c1— Y _(can = Can41) = Amip
nENTﬂ{m,...,m—&-p—2} n=1
> M.

By the arbitrariness of § and M this implies that f is not first-return integrable with respect to 7

on [0, 1].
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Possible choices of sequences {a,} and {c,} satisfying conditions (3) and (4) are a, =

1
2;1—]
and ¢, = % n=1,2,..., respectively.

3. Proof of Theorem 2

Let 7 and f be defined as in [3, §4]. For each natural n we define f,,(x) =0if x ¢ f or x =13,
with k > n, and we define f,(tx) = f () if k < n. It is clear that f;, is first-return integrable
with respect to 7, and that (fr[7]) fol fn =0 for n € N. Then the claim follows immediately by

condition (fr[z]) fol f >0, proved in [3, §4.4].
4. Proof of Theorem 3

Let ¢ and é be as in Definition 3, and fix a partition P with mesh(P) < §. Since
lim, f,(r(z, J)) = f(r(f, J)), for each J € P there exists a natural number N such that

| £u(r G, D) = £(r G, D) <§ )

(where p is the cardinality of P), for n > N and J € P. Then, by (1) and (9), for n,m > N we
have

1 1
‘(fr[f])/fn - (fr[f])/fm
0 0

1
<| X sl (i) [ 1]+
0

1
D fu(r@ D)= (friFl) / fn
0

JeP JeP
+ [ X0 falr@ D)L= fu(r(E D)) |J|‘
JeP JeP

<&+ e+ 2e =4e.

Therefore the sequence {(fr[f]) fol fn} is convergent, € being arbitrary.
Let A =1lim, (fr[i]) [y fo-
Now we show that f is first-return integrable with respect to 7 on [0, 1] and (fr[7]) fol f=A.

To this aim let € and é be as in Definition 3. Then, by (1), for each partition P with mesh(P) < §
we have

1
Y Fr@ D) -A ’—hm 3" FalrG D)L= (fr1i] /fn
JeP JeP o
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